This paper is dedicated to a lattice analog to the classical “sum of interior angles of a polygon theorem”. In 2008, the first formula expressing conditions on the geometric continued fractions for lattice angles of triangles was derived, while the cases of $n$-gons for $n > 3$ remained unresolved. In this paper, we provide the complete solution for all integer $n$. The main results are based on recent advances in geometry of continued fractions.
Cet article est consacré à l’analogue, en théorie des réseaux, de la formule classique de la somme des angles intérieurs d’un polygone. Bien que, en 2008, la première formule donnant des conditions sur les fractions continues géométriques pour les angles réseaux des triangles a été obtenue, le cas des $n$-gones pour $n > 3$ demeurait non résolu. Dans cet article, nous proposons une solution complète pour tout entier $n$. Les principaux résultats reposent sur les avancées récentes en géométrie des fractions continues.
Révisé le :
Accepté le :
Publié le :
Keywords: lattice geometry, integer trigonometry, continued fractions, lattice polygons, IKEA problem
James Dolan 1 ; Oleg Karpenkov 1
CC-BY-ND 4.0
@article{JTNB_2025__37_3_873_0,
author = {James Dolan and Oleg Karpenkov},
title = {Lattice angles of lattice polygons},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {873--896},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {3},
doi = {10.5802/jtnb.1345},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1345/}
}
TY - JOUR AU - James Dolan AU - Oleg Karpenkov TI - Lattice angles of lattice polygons JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 873 EP - 896 VL - 37 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1345/ DO - 10.5802/jtnb.1345 LA - en ID - JTNB_2025__37_3_873_0 ER -
%0 Journal Article %A James Dolan %A Oleg Karpenkov %T Lattice angles of lattice polygons %J Journal de théorie des nombres de Bordeaux %D 2025 %P 873-896 %V 37 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1345/ %R 10.5802/jtnb.1345 %G en %F JTNB_2025__37_3_873_0
James Dolan; Oleg Karpenkov. Lattice angles of lattice polygons. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 873-896. doi: 10.5802/jtnb.1345
[1] Statistics of integral convex polygons, Funct. Anal. Appl., Volume 14 (1980), pp. 79-81 Russian version in Funkts. Anal. Prilozh. 14(2) (1980), p. 1-3 | Zbl
[2] Continued fractions, Moscow Center of Continuous Mathematical Education, 2002 (in Russian)
[3] On the number of convex lattice polytopes, Geom. Funct. Anal., Volume 2 (1992) no. 4, pp. 381-393 | Zbl | DOI | MR
[4] Computing the continuous discretely. Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, 2007, xviii+226 pages | Zbl | MR
[5] Multidimensional integer trigonometry, Commun. Math., Volume 31 (2023) no. 2, pp. 1-26 | Zbl | MR
[6] The lattice size of a lattice polygon, J. Comb. Theory, Volume 136 (2015), pp. 64-95 | DOI | Zbl | MR
[7] A linear algorithm for integer programming in the plane, Math. Program., Volume 102 (2005) no. 2, pp. 249-259 | DOI | Zbl | MR
[8] Fast 2-variable integer programming, Integer programming and combinatorial optimization (Utrecht, 2001) (Lecture Notes in Computer Science), Volume 2081, Springer, 2001, pp. 78-89 | Zbl | DOI | MR
[9] Lattice size of plane convex bodies, SIAM J. Discrete Math., Volume 36 (2022) no. 1, pp. 92-102 | DOI | Zbl | MR
[10] On lattice width of lattice-free polyhedra and height of Hilbert bases, SIAM J. Discrete Math., Volume 36 (2022) no. 3, pp. 1918-1942 | DOI | Zbl | MR
[11] Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann., Volume 126 (1953), pp. 1-22 | DOI | Zbl | MR
[12] Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen in der Umgebung einer Stelle , , J. für Math., Volume 133 (1908), pp. 289-314 | Zbl
[13] On an invariant Möbius measure and the Gauss–Kuz’min face distribution, Tr. Mat. Inst. Steklova, Volume 258 (2007), pp. 74-86 Russian version in Tr. Mat. Inst. Steklova 258 (2007), p. 79-92 | DOI | Zbl
[14] Elementary notions of lattice trigonometry, Math. Scand., Volume 102 (2008) no. 2, pp. 161-205 | DOI | Zbl | MR
[15] On irrational lattice angles, Funct. Anal. Other Math., Volume 2 (2009) no. 2-4, pp. 221-239 | DOI | Zbl | MR
[16] Continued fractions and the second Kepler law, Manuscr. Math., Volume 134 (2011) no. 1-2, pp. 157-169 | DOI | Zbl | MR
[17] Open problems in geometry of continued fractions (2017) | arXiv | Zbl
[18] Geometry of Continued Fractions, Algorithms and Computation in Mathematics, 26, Springer, 2022, xx+451 pages | Zbl | DOI | MR
[19] On Hermite’s problem, Jacobi–Perron type algorithms, and Dirichlet groups, Acta Arith., Volume 203 (2022) no. 1, pp. 27-48 | Zbl | DOI | MR
[20] Geometry and combinatoric of Minkowski-Voronoi 3-dimensional continued fractions, J. Number Theory, Volume 176 (2017), pp. 375-419 | Zbl | DOI | MR
[21] Continued fractions, FISMATGIS, 1961 | MR
[22] Ueber eine geometrische Auffassung der gewöhnliche Kettenbruchentwicklung, Gött. Nachr., Volume 3 (1895), pp. 352-357 | Zbl
[23] Sur une représentation géométrique de développement en fraction continue ordinaire, Nouv. Ann., Volume 15 (1896) no. 3, pp. 327-331
[24] Statistics of Klein polyhedra and multidimensional continued fractions, Pseudoperiodic topology (Translations. Series 2. American Mathematical Society), Volume 197, American Mathematical Society, 1999, pp. 9-27 | Zbl
[25] Integer programming with a fixed number of variables, Math. Oper. Res., Volume 8 (1983) no. 4, pp. 538-548 | DOI | Zbl | MR
[26] Généralisation de la théorie des fractions continues, Ann. Sci. Éc. Norm. Supér., Volume 13 (1896) no. 3, pp. 41-60 | Numdam | DOI | Zbl | MR
[27] Gesammelte Abhandlungen, AMS Chelsea Publishing, 1967
[28] Rational tensegrities through the lens of toric geometry (2022) | arXiv
[29] Convex lattice polygons with all lattice points visible, Discrete Math., Volume 344 (2021) no. 1, 112161, 19 pages | Zbl | MR
[30] Simplification of surface parametrizations — a lattice polygon approach, J. Symb. Comput., Volume 36 (2003) no. 3-4, pp. 535-554 International Symposium on Symbolic and Algebraic Computation (ISSAC’2002) (Lille) | DOI | Zbl | MR
[31] Multidimensional continued fractions, Oxford Science Publications, Oxford University Press, 2000, viii+234 pages | DOI | Zbl | MR
[32] Higher-dimensional analogues of periodic continued fractions and cusp singularities, Tôhoku Math. J. (2), Volume 35 (1983), pp. 607-639 | Zbl | MR
[33] A generalization of the algorithm of continued fractions, Ph. D. Thesis, Warsaw (1896) (in Russian) | Zbl
Cité par Sources :