Lattice angles of lattice polygons
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 873-896

This paper is dedicated to a lattice analog to the classical “sum of interior angles of a polygon theorem”. In 2008, the first formula expressing conditions on the geometric continued fractions for lattice angles of triangles was derived, while the cases of $n$-gons for $n > 3$ remained unresolved. In this paper, we provide the complete solution for all integer $n$. The main results are based on recent advances in geometry of continued fractions.

Cet article est consacré à l’analogue, en théorie des réseaux, de la formule classique de la somme des angles intérieurs d’un polygone. Bien que, en 2008, la première formule donnant des conditions sur les fractions continues géométriques pour les angles réseaux des triangles a été obtenue, le cas des $n$-gones pour $n > 3$ demeurait non résolu. Dans cet article, nous proposons une solution complète pour tout entier $n$. Les principaux résultats reposent sur les avancées récentes en géométrie des fractions continues.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1345
Classification : 11A55, 11H06, 52C05
Keywords: lattice geometry, integer trigonometry, continued fractions, lattice polygons, IKEA problem

James Dolan 1 ; Oleg Karpenkov 1

1 Department of Mathematical Sciences, University of Liverpool, Mathematical Sciences Building, Liverpool, L69 7ZL, United Kingdom
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_3_873_0,
     author = {James Dolan and Oleg Karpenkov},
     title = {Lattice angles of lattice polygons},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {873--896},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {3},
     doi = {10.5802/jtnb.1345},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1345/}
}
TY  - JOUR
AU  - James Dolan
AU  - Oleg Karpenkov
TI  - Lattice angles of lattice polygons
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 873
EP  - 896
VL  - 37
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1345/
DO  - 10.5802/jtnb.1345
LA  - en
ID  - JTNB_2025__37_3_873_0
ER  - 
%0 Journal Article
%A James Dolan
%A Oleg Karpenkov
%T Lattice angles of lattice polygons
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 873-896
%V 37
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1345/
%R 10.5802/jtnb.1345
%G en
%F JTNB_2025__37_3_873_0
James Dolan; Oleg Karpenkov. Lattice angles of lattice polygons. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 3, pp. 873-896. doi: 10.5802/jtnb.1345

[1] Vlamidir I. Arnold Statistics of integral convex polygons, Funct. Anal. Appl., Volume 14 (1980), pp. 79-81 Russian version in Funkts. Anal. Prilozh. 14(2) (1980), p. 1-3 | Zbl

[2] Vlamidir I. Arnold Continued fractions, Moscow Center of Continuous Mathematical Education, 2002 (in Russian)

[3] Imre Bárány; Anatoli M. Vershik On the number of convex lattice polytopes, Geom. Funct. Anal., Volume 2 (1992) no. 4, pp. 381-393 | Zbl | DOI | MR

[4] Matthias Beck; Sinai Robins Computing the continuous discretely. Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics, Springer, 2007, xviii+226 pages | Zbl | MR

[5] John Blackman; James Dolan; Oleg Karpenkov Multidimensional integer trigonometry, Commun. Math., Volume 31 (2023) no. 2, pp. 1-26 | Zbl | MR

[6] Wouter Castryck; Filip Cools The lattice size of a lattice polygon, J. Comb. Theory, Volume 136 (2015), pp. 64-95 | DOI | Zbl | MR

[7] Friedrich Eisenbrand; Sören Laue A linear algorithm for integer programming in the plane, Math. Program., Volume 102 (2005) no. 2, pp. 249-259 | DOI | Zbl | MR

[8] Friedrich Eisenbrand; Günter Rote Fast 2-variable integer programming, Integer programming and combinatorial optimization (Utrecht, 2001) (Lecture Notes in Computer Science), Volume 2081, Springer, 2001, pp. 78-89 | Zbl | DOI | MR

[9] Anthony Harrison; Jenya Soprunova; Patrick Tierney Lattice size of plane convex bodies, SIAM J. Discrete Math., Volume 36 (2022) no. 1, pp. 92-102 | DOI | Zbl | MR

[10] Martin Henk; Stefan Kuhlmann; Robert Weismantel On lattice width of lattice-free polyhedra and height of Hilbert bases, SIAM J. Discrete Math., Volume 36 (2022) no. 3, pp. 1918-1942 | DOI | Zbl | MR

[11] Friedrich Hirzebruch Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann., Volume 126 (1953), pp. 1-22 | DOI | Zbl | MR

[12] Heinrich W. E. Jung Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen x,y in der Umgebung einer Stelle x=a, y=b, J. für Math., Volume 133 (1908), pp. 289-314 | Zbl

[13] Oleg Karpenkov On an invariant Möbius measure and the Gauss–Kuz’min face distribution, Tr. Mat. Inst. Steklova, Volume 258 (2007), pp. 74-86 Russian version in Tr. Mat. Inst. Steklova 258 (2007), p. 79-92 | DOI | Zbl

[14] Oleg Karpenkov Elementary notions of lattice trigonometry, Math. Scand., Volume 102 (2008) no. 2, pp. 161-205 | DOI | Zbl | MR

[15] Oleg Karpenkov On irrational lattice angles, Funct. Anal. Other Math., Volume 2 (2009) no. 2-4, pp. 221-239 | DOI | Zbl | MR

[16] Oleg Karpenkov Continued fractions and the second Kepler law, Manuscr. Math., Volume 134 (2011) no. 1-2, pp. 157-169 | DOI | Zbl | MR

[17] Oleg Karpenkov Open problems in geometry of continued fractions (2017) | arXiv | Zbl

[18] Oleg Karpenkov Geometry of Continued Fractions, Algorithms and Computation in Mathematics, 26, Springer, 2022, xx+451 pages | Zbl | DOI | MR

[19] Oleg Karpenkov On Hermite’s problem, Jacobi–Perron type algorithms, and Dirichlet groups, Acta Arith., Volume 203 (2022) no. 1, pp. 27-48 | Zbl | DOI | MR

[20] Oleg Karpenkov; Alexey Ustinov Geometry and combinatoric of Minkowski-Voronoi 3-dimensional continued fractions, J. Number Theory, Volume 176 (2017), pp. 375-419 | Zbl | DOI | MR

[21] A. Ya. Khinchin Continued fractions, FISMATGIS, 1961 | MR

[22] Felix Klein Ueber eine geometrische Auffassung der gewöhnliche Kettenbruchentwicklung, Gött. Nachr., Volume 3 (1895), pp. 352-357 | Zbl

[23] Felix Klein Sur une représentation géométrique de développement en fraction continue ordinaire, Nouv. Ann., Volume 15 (1896) no. 3, pp. 327-331

[24] Maxim L. Kontsevich; Yurii M. Suhov Statistics of Klein polyhedra and multidimensional continued fractions, Pseudoperiodic topology (Translations. Series 2. American Mathematical Society), Volume 197, American Mathematical Society, 1999, pp. 9-27 | Zbl

[25] Hendrik W. Lenstra Integer programming with a fixed number of variables, Math. Oper. Res., Volume 8 (1983) no. 4, pp. 538-548 | DOI | Zbl | MR

[26] Hermann Minkowski Généralisation de la théorie des fractions continues, Ann. Sci. Éc. Norm. Supér., Volume 13 (1896) no. 3, pp. 41-60 | Numdam | DOI | Zbl | MR

[27] Hermann Minkowski Gesammelte Abhandlungen, AMS Chelsea Publishing, 1967

[28] Fatemeh Mohammadi; Xian Wu Rational tensegrities through the lens of toric geometry (2022) | arXiv

[29] Ralph Morrison; Ayush Kumar Tewari Convex lattice polygons with all lattice points visible, Discrete Math., Volume 344 (2021) no. 1, 112161, 19 pages | Zbl | MR

[30] Josef Schicho Simplification of surface parametrizations — a lattice polygon approach, J. Symb. Comput., Volume 36 (2003) no. 3-4, pp. 535-554 International Symposium on Symbolic and Algebraic Computation (ISSAC’2002) (Lille) | DOI | Zbl | MR

[31] Fritz Schweiger Multidimensional continued fractions, Oxford Science Publications, Oxford University Press, 2000, viii+234 pages | DOI | Zbl | MR

[32] Hiroyasu Tsuchihashi Higher-dimensional analogues of periodic continued fractions and cusp singularities, Tôhoku Math. J. (2), Volume 35 (1983), pp. 607-639 | Zbl | MR

[33] Georgii Voronoi A generalization of the algorithm of continued fractions, Ph. D. Thesis, Warsaw (1896) (in Russian) | Zbl

Cité par Sources :