Prime Avoidance Property of $k$-th Powers of Piatetski–Shapiro Primes
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 715-725

In previous papers the authors established the prime avoidance property of $k$-th powers of prime numbers and of prime numbers within Beatty sequences. In this paper the authors consider $k$-th powers of Piatetski–Shapiro primes.

Dans des articles antérieurs, les auteurs ont établi la propriété d’évitement des nombres premiers pour les puissances $k$-ièmes de nombres premiers et pour les nombres premiers dans les suites de Beatty. Dans cet article, les auteurs considèrent les puissances $k$-ièmes des nombres premiers de Piatetski–Shapiro.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1339
Classification : 11P32, 11N05, 11A63
Keywords: Piatetski–Shapiro primes, $k$-th powers

Helmut Maier 1 ; Michael Th. Rassias 2

1 Department of Mathematics, University of Ulm, Helmholtzstrasse 18, 89081 Ulm, Germany
2 Department of Mathematics and Engineering Sciences, Hellenic Military Academy, 16673 Vari Attikis, Greece
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_2_715_0,
     author = {Helmut Maier and Michael Th. Rassias},
     title = {Prime {Avoidance} {Property} of $k$-th {Powers} of {Piatetski{\textendash}Shapiro} {Primes}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {715--725},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {2},
     doi = {10.5802/jtnb.1339},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1339/}
}
TY  - JOUR
AU  - Helmut Maier
AU  - Michael Th. Rassias
TI  - Prime Avoidance Property of $k$-th Powers of Piatetski–Shapiro Primes
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 715
EP  - 725
VL  - 37
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1339/
DO  - 10.5802/jtnb.1339
LA  - en
ID  - JTNB_2025__37_2_715_0
ER  - 
%0 Journal Article
%A Helmut Maier
%A Michael Th. Rassias
%T Prime Avoidance Property of $k$-th Powers of Piatetski–Shapiro Primes
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 715-725
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1339/
%R 10.5802/jtnb.1339
%G en
%F JTNB_2025__37_2_715_0
Helmut Maier; Michael Th. Rassias. Prime Avoidance Property of $k$-th Powers of Piatetski–Shapiro Primes. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 715-725. doi: 10.5802/jtnb.1339

[1] Roger C. Baker; William D. Banks; Jörg Brüdern; Igor E. Shparlinski; Andreas J. Weingartner Piatetski-Shapiro sequences, Acta Arith., Volume 157 (2013) no. 1, pp. 37-68 | DOI | MR | Zbl

[2] Pál Erdős On the difference of consecutive primes, Q. J. Math., Oxf. Ser., Volume 6 (1935), pp. 124-128 | DOI | Zbl

[3] Kevin Ford; Ben Green; Sergei Konyagin; James Maynard; Terence Tao Large gaps between primes (2016) | arXiv

[4] Kevin Ford; Ben Green; Sergei Konyagin; Terence Tao Large gaps between consecutive prime numbers (2014) | arXiv

[5] Kevin Ford; D. R. Heath-Brown; Sergei Konyagin Large gaps between consecutive prime numbers containing perfect powers, Analytic number theory. In honor of Helmut Maier’s 60th birthday, Springer, 2015, pp. 83-92 | DOI | Zbl

[6] Patrick X. Gallagher A large sieve density estimate near σ=1, Invent. Math., Volume 22 (1970), pp. 329-339 | DOI | MR | Zbl

[7] Henryk Iwaniec; Emmanuel Kowalski Analytic Number Theory, Colloquium Publications, 53, American Mathematical Society, 2004, xi+615 pages | Zbl | MR

[8] Helmut Maier Chains of large gaps between consecutive primes, Adv. Math., Volume 39 (1981), pp. 257-269 | DOI | Zbl

[9] Helmut Maier; Michael Th. Rassias Large gaps between consecutive prime numbers containing square-free numbers and perfect powers of prime numbers, Proc. Am. Math. Soc., Volume 144 (2016) no. 8, pp. 3347-3354 | Zbl | DOI | MR

[10] Helmut Maier; Michael Th. Rassias Large gaps between consecutive prime numbers containing perfect k-th powers of prime numbers, J. Funct. Anal., Volume 272 (2017) no. 6, pp. 2659-2696 | DOI | MR | Zbl

[11] Helmut Maier; Michael Th. Rassias Prime avoidance property of k-th powers of prime numbers with Beatty sequences, Discrete mathematics and applications (Springer Optimization and Its Applications), Volume 165, Springer, 2020, pp. 397-404 | DOI | Zbl

[12] James Maynard Large gaps between primes, Ann. Math., Volume 183 (2016) no. 3, pp. 915-933 | Zbl | DOI

[13] Robert A. Rankin The difference between consecutive prime numbers, J. Lond. Math. Soc., Volume 13 (1938), pp. 242-247 | DOI | MR | Zbl

[14] Georg J. Rieger Über die natürlichen und primen Zahlen der Gestalt (n c ) in arithmetischer Progression, Arch. Math., Volume 18 (1967), pp. 35-44 | DOI | Zbl

[15] Erik Westzynthius Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind, Commentat. Helsingfors, Volume 5 (1931), 25, 37 pages | Zbl

Cité par Sources :