In previous papers the authors established the prime avoidance property of $k$-th powers of prime numbers and of prime numbers within Beatty sequences. In this paper the authors consider $k$-th powers of Piatetski–Shapiro primes.
Dans des articles antérieurs, les auteurs ont établi la propriété d’évitement des nombres premiers pour les puissances $k$-ièmes de nombres premiers et pour les nombres premiers dans les suites de Beatty. Dans cet article, les auteurs considèrent les puissances $k$-ièmes des nombres premiers de Piatetski–Shapiro.
Révisé le :
Accepté le :
Publié le :
Keywords: Piatetski–Shapiro primes, $k$-th powers
Helmut Maier 1 ; Michael Th. Rassias 2
CC-BY-ND 4.0
@article{JTNB_2025__37_2_715_0,
author = {Helmut Maier and Michael Th. Rassias},
title = {Prime {Avoidance} {Property} of $k$-th {Powers} of {Piatetski{\textendash}Shapiro} {Primes}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {715--725},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1339},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1339/}
}
TY - JOUR AU - Helmut Maier AU - Michael Th. Rassias TI - Prime Avoidance Property of $k$-th Powers of Piatetski–Shapiro Primes JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 715 EP - 725 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1339/ DO - 10.5802/jtnb.1339 LA - en ID - JTNB_2025__37_2_715_0 ER -
%0 Journal Article %A Helmut Maier %A Michael Th. Rassias %T Prime Avoidance Property of $k$-th Powers of Piatetski–Shapiro Primes %J Journal de théorie des nombres de Bordeaux %D 2025 %P 715-725 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1339/ %R 10.5802/jtnb.1339 %G en %F JTNB_2025__37_2_715_0
Helmut Maier; Michael Th. Rassias. Prime Avoidance Property of $k$-th Powers of Piatetski–Shapiro Primes. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 715-725. doi: 10.5802/jtnb.1339
[1] Piatetski-Shapiro sequences, Acta Arith., Volume 157 (2013) no. 1, pp. 37-68 | DOI | MR | Zbl
[2] On the difference of consecutive primes, Q. J. Math., Oxf. Ser., Volume 6 (1935), pp. 124-128 | DOI | Zbl
[3] Large gaps between primes (2016) | arXiv
[4] Large gaps between consecutive prime numbers (2014) | arXiv
[5] Large gaps between consecutive prime numbers containing perfect powers, Analytic number theory. In honor of Helmut Maier’s 60th birthday, Springer, 2015, pp. 83-92 | DOI | Zbl
[6] A large sieve density estimate near , Invent. Math., Volume 22 (1970), pp. 329-339 | DOI | MR | Zbl
[7] Analytic Number Theory, Colloquium Publications, 53, American Mathematical Society, 2004, xi+615 pages | Zbl | MR
[8] Chains of large gaps between consecutive primes, Adv. Math., Volume 39 (1981), pp. 257-269 | DOI | Zbl
[9] Large gaps between consecutive prime numbers containing square-free numbers and perfect powers of prime numbers, Proc. Am. Math. Soc., Volume 144 (2016) no. 8, pp. 3347-3354 | Zbl | DOI | MR
[10] Large gaps between consecutive prime numbers containing perfect -th powers of prime numbers, J. Funct. Anal., Volume 272 (2017) no. 6, pp. 2659-2696 | DOI | MR | Zbl
[11] Prime avoidance property of -th powers of prime numbers with Beatty sequences, Discrete mathematics and applications (Springer Optimization and Its Applications), Volume 165, Springer, 2020, pp. 397-404 | DOI | Zbl
[12] Large gaps between primes, Ann. Math., Volume 183 (2016) no. 3, pp. 915-933 | Zbl | DOI
[13] The difference between consecutive prime numbers, J. Lond. Math. Soc., Volume 13 (1938), pp. 242-247 | DOI | MR | Zbl
[14] Über die natürlichen und primen Zahlen der Gestalt in arithmetischer Progression, Arch. Math., Volume 18 (1967), pp. 35-44 | DOI | Zbl
[15] Über die Verteilung der Zahlen, die zu den ersten Primzahlen teilerfremd sind, Commentat. Helsingfors, Volume 5 (1931), 25, 37 pages | Zbl
Cité par Sources :