

Helmut MAIER et Michael Th. RASSIAS **Prime Avoidance Property of** *k***-th Powers of Piatetski–Shapiro Primes**Tome 37, n° 2 (2025), p. 715-725.

https://doi.org/10.5802/jtnb.1339

© Les auteurs, 2025.

Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 4.0 FRANCE. http://creativecommons.org/licenses/by-nd/4.0/fr/

Le Journal de Théorie des Nombres de Bordeaux est membre du Centre Mersenne pour l'édition scientifique ouverte http://www.centre-mersenne.org/

e-ISSN: 2118-8572

Prime Avoidance Property of k-th Powers of Piatetski-Shapiro Primes

par Helmut MAIER et Michael Th. RASSIAS

RÉSUMÉ. Dans des articles antérieurs, les auteurs ont établi la propriété d'évitement des nombres premiers pour les puissances k-ièmes de nombres premiers et pour les nombres premiers dans les suites de Beatty. Dans cet article, les auteurs considèrent les puissances k-ièmes des nombres premiers de Piatetski—Shapiro.

ABSTRACT. In previous papers the authors established the prime avoidance property of k-th powers of prime numbers and of prime numbers within Beatty sequences. In this paper the authors consider k-th powers of Piatetski–Shapiro primes.

1. Introduction

Let p_n denote the increasing sequence of prime numbers.

The fact that

$$\limsup_{n \to \infty} \frac{p_{n+1} - p_n}{\log p_n} = \infty$$

was first proved by Westzynthius [15]. Erdős [2] obtained that infinitely often one has:

(1.1)
$$p_{n+1} - p_n > C_1 \frac{\log p_n \log_2 p_n}{(\log_3 p_n)^2}$$

with appropriate $C_1 > 0$. Here $\log_k x := \log(\log_{k-1} x)$.

The order of magnitude of the lower bound (1.1) was slightly improved by Rankin [13] who showed that

(1.2)
$$p_{n+1} - p_n > C_2 \frac{\log p_n \log_2 p_n \log_4 p_n}{(\log_3 p_n)^2} = C_2 g_1(p_n) .$$

The proof of Rankin differs only slightly from that of Erdős. Rankin is using a better estimate for the number of smooth integers. The approach of Rankin and modifications of it have become known as the Erdős–Rankin method. In [2] and [13] these two authors for sufficiently large x construct a long interval of integers, which all have greatest common divisor greater than 1 with $\prod_{p < x} p$.

Manuscrit reçu le 11 mai 2024, révisé le 25 septembre 2024, accepté le 16 novembre 2024. 2020 Mathematics Subject Classification. 11P32, 11N05, 11A63. Mots-clefs. Piatetski-Shapiro primes, k-th powers.

The results (1.1) and (1.2) are closely related to the concept of prime-avoidance. The term "prime avoidance" first appears in the paper [5] of K. Ford, D. R. Heath-Brown and S. Konyagin, where they prove the existence of infinitely many "prime-avoiding" perfect k-th powers for any positive integer k. Their definition is as follows:

Definition 1.1. Let

(1.3)
$$g_1(m) := \frac{\log m \, \log_2 m \, \log_4 m}{(\log_3 m)^2} \, .$$

Then an integer m, for which $g_1(m) \ge m^{(0)}$ (with $m^{(0)} > 0$ being a fixed constant) is called prime-avoiding with constant $c_0 > 0$ if m+u is composite for all integers u satisfying $|u| \le c_0 g_1(m)$. We also say, m has the prime avoidance property with constant c_0 .

For the sake of larger flexibility we also consider the following variations:

Definition 1.2. Let h(m) be defined for $m \ge m^{(1)}$ and let $h(m) \to \infty$ for $m \to \infty$. Let $c_1 > 0$ be a fixed constant.

- (i) Then an integer $m \geq m^{(1)}$ (with $m^{(1)} > 0$ being a fixed constant) is called prime-avoiding with constant $c_1 > 0$ and function h if $h(m) \geq m^{(1)}$ and m + u is composite for all integers u satisfying $|u| \leq c_1 h(m)$. We also say, that m has the prime avoidance property with constant c_1 and function h.
- (ii) $m \ge m^{(1)}$ is called prime-avoiding to the right with function h and constant c_2 if m + u is composite for all integers $u \in [0, c_2h(m)]$. We say that m has the prime-avoidance property to the right.

An analogous definition applies for "prime-avoiding to the left" and "prime avoidance property to the left".

(iii) The terms "one-sided prime-avoidance property" is used, if prime-avoidance property to the right, to the left or both hold.

The function g_1 in (1.3) has played a central role for a long time in the study of large gaps between consecutive primes. The connection between these questions can easily be seen as follows:

Let m be prime-avoiding with function h and constant $c_1 > 0$ and let p_n be the largest prime number $\leq m$ with p_{n+1} being the subsequent prime number. Then

$$p_{n+1} - p_n \ge 2c_1h(m) .$$

Also the reverse (large gaps imply the existence of prime-avoiding numbers) can be seen easily.

The results (1.1) and (1.2) also imply prime-avoidance results for most integers of the interval (p_n, p_{n+1}) .

A modified version of this method was applied by the authors of [5] on the problem of prime-avoiding k-th powers mentioned in the introduction.

In [10] the authors of the present paper extended this result by proving the existence of infinitely many prime-avoiding k-th powers of prime numbers. For the sake of simplicity they only treat one-sided prime avoidance. They prove the following:

There are infinitely many n, such that

$$p_{n+1} - p_n \ge C_3 g_1(n)$$

and the interval $[p_n, p_{n+1}]$ contains the k-th power of a prime number.

Their method of proof consists of a combination of the method of [5] with the matrix method of the first author [8]. The matrix \mathcal{M} employed in this technique is of the form

$$\mathcal{M} := (a_{r,u} : u \in \mathcal{B}),$$

where $P(x) := \prod_{p < x} p$, D is a fixed positive integer, the rows

$$\mathcal{R}(r) := \{ a_{r,u} : u \in \mathcal{B} \}$$

of the matrix are translates (in closer or wider sense) of the base-row \mathcal{B} .

The essential idea of the construction of the base-row \mathcal{B} is the Erdős–Rankin method. Here however (as in all combinations with the matrix method) the base-row is partially coprime to P(x). The columns

$$C(u) := (a_{r,u})_{1 \le r \le P(x)^{D-1}}, \text{ with } (a_{r,u}, P(x)) = 1$$

are called admissible columns.

The number of prime numbers in these columns, which are arithmetic progressions (or in the case of [10], shifted powers of elements of arithmetic progressions), can be estimated using theorems on primes in arithmetic progressions.

A famous prize problem of Erdős, being open for more than 70 years, was to replace the function g_1 in (1.2) by a function of higher order of magnitude. This problem could finally be solved in the paper [4] by K. Ford, B. J. Green, S. Konyagin and T. Tao and independently in the paper [12] by J. Maynard. Later all five authors improved on this result in their joint paper [3]. They proved:

$$p_{n+1} - p_n \ge C_4 g_2(p_n)$$

infinitely often, where

$$g_2(m) := \frac{\log m \, \log_2 m \, \log_4 m}{\log_3 m}$$
.

In the paper [10] the authors of the present paper combined the methods of the papers [3, 5, 8] to obtain the following theorem.

Theorem 1.1 of [10]. There is a constant $C_5 > 0$ and infinitely many n such that

$$p_{n+1} - p_n \ge C_5 g_2(n)$$

and the interval $[p_n, p_{n+1}]$ contains the k-th power of a prime.

Using the Definition 1.2 this can also be phrased as follows:

There is a constant $C_5 > 0$ such that infinitely many k-th powers of primes are one-sided prime-avoidant with constant $\frac{1}{2}C_5$. In the paper [11] the authors investigated the prime-avoidance of the k-th powers of prime numbers with Beatty sequences.

Definition 1.3. For two fixed real numbers α and β , the corresponding non-homogeneous Beatty sequence is the sequence of integers defined by

$$\mathscr{B}_{\alpha,\beta} := (\lfloor \alpha n + \beta \rfloor)_{n=1}^{\infty}$$

 $(\lfloor u \rfloor \ denotes \ the \ largest \ integer \leq u).$

Definition 1.4. For an irrational number γ we define its type τ by the relation

$$\tau := \sup \{ \rho \in \mathbb{R} : \liminf n^{\rho} ||\gamma n|| = 0 \}$$

(see [11]). $\|\cdot\|$ denotes the distance to the nearest integer. τ is called of finite type, if $\tau < \infty$.

In the paper [11] the authors prove:

Theorem 1.3 of [11]. Let $k \geq 2$ be an integer. Let α, β be fixed real numbers with α being a positive irrational and of finite type. Then there is a constant $C_6 > 0$, depending only on α and β , such that for infinitely many n we have:

$$p_{n+1} - p_n \ge C_6 g_2(n)$$

and the interval $[p_n, p_{n+1}]$ contains the k-th power of a prime $\widetilde{p} \in \mathscr{B}_{\alpha,\beta}$.

In this paper we deal with the Piatetski-Shapiro primes. We prove:

Theorem 1.5. Let $c_4 \in (1, 18/17)$ be fixed, $k \in \mathbb{N}$, $k \geq 2$. Then there is a constant $C_6 > 0$, depending only on k and c_4 , such that for infinitely many n we have

$$p_{n+1} - p_n \ge C_6 g_2(n)$$

and the interval $[p_n, p_{n+1}]$ contains the k-th power of a prime $\tilde{p} = \lfloor l^{c_4} \rfloor$.

Using Definition 1.2 we can phrase Theorem 1.5 as follows:

Theorem 1.6. Let $c_4 \in (1, 18/17)$ be fixed, $k \in \mathbb{N}$, $k \geq 2$. Then there is a constant $C_7 > 0$ such that infinitely many k-th powers of primes of the form $\tilde{p} = \lfloor l^{c_4} \rfloor$ have the one-sided prime avoidance property with constant C_7 and function g_2 .

One can achieve prime avoidance by a slight modification of the proof of Theorem 1.5.

2. Construction of the matrix \mathcal{M}

In several papers (e.g. [8, 9, 10, 11]) in which the matrix method was used, it was crucial for the estimate of prime numbers in arithmetic progressions mod q that q was a "good modulus".

The definitions and facts of these papers may be summarised as follows: We recall the definition:

Lemma 2.1. There exists a constant $C_8 > 0$ such that for every $C > C_8$ there is a sequence of real numbers $(x_n(C))$, depending only on C, such that for every n the modulus $q_n := P(x_n(C))$ is good with respect to C in the following sense: One has $L(s,\chi) \neq 0$ for every character χ modulo q_n and every $s = \sigma + it$ satisfying

(2.1)
$$\sigma > 1 - \frac{C}{\log[q(|t|+1)]}.$$

Lemma 2.2. Let C > 0 and the sequence $(x_n) = (x_n(C))$ be given, such that (2.1) is satisfied. Then there exists a constant D > 0 depending only on C, such that

(2.2)
$$\pi(x_n; q_n, a) \gg \frac{x_n}{\phi(q_n) \log x_n}$$

uniformly for $(a, q_n) = 1$ and $x_n \ge q^{D/2}$.

The constant D can be made arbitrarily large, if C is sufficiently large.

Proof. This is Lemma 2 of [8]. It is not due to Gallagher (as stated in [8]), but is a simple consequence of Theorem 7 of Gallagher [6]. \Box

In the sequel we fix constants C, D, such that D is sufficiently large and a sequence $(x_n) = (x_n(C))$, such that (2.1) and (2.2) are satisfied.

Lemma 2.3. Let x be sufficiently large.

(2.3)
$$y = C_9 x \frac{\log x \log_3 x}{\log_2 x},$$

 $C_9 > 0$ being a sufficiently small constant. Let $C_{10} > 0$ be a fixed constant to be specified later. Then there is an integer m_0 satisfying

$$(2.4) 1 \le m_0 < P(C_{10}x)$$

$$(2.5) (m_0 + 1, P(C_{10}x)) = 1$$

and an exceptional set V satisfying

(2.6)
$$\#V \ll x^{1/2+\epsilon}, \quad \epsilon > 0 \text{ arbitrarily small}$$

such that

$$(2.7) (m_0 + 1 + rP(C_0x))^k + u - 1$$

is composite for $2 \le u \le y$, unless $u \in V$.

Proof. By Lemma 3.10 of [10], there is an integer m_0 satisfying all the properties (2.3)–(2.7) with the possible exception of (2.5).

The additional property (2.5) follows from the construction of m_0 in [10]. In Definition 3.9 of [10], m_0 is defined by

$$1 \le m_0 < P(C_{10}x)$$
 (C_{10} being named C_0 in [10])

and the congruences

$$m_0 \equiv c_s \pmod{s}$$

$$m_0 \equiv d_p \pmod{p}$$

(2.8)
$$m_0 \equiv 0 \pmod{q}, \quad q \in (1, x], \quad q \notin S \cup P$$

 $m_0 \equiv e_u \pmod{p_u},$

 $m_0 \equiv g_p \pmod{p}$, for all other primes $p \leq C_{10}x$, g_p being arbitrary.

Since by the definition of \mathcal{A}, \mathcal{B} we have

$$c_s \not\equiv -1 \pmod{s}, \ d_p \not\equiv -1 \pmod{p}$$

we have from the first four congruences in (2.8) that $m_0 + 1 \not\equiv 0$ for all $p \in [2, C_{10}x]$ and thus $(m_0 + 1, P(C_{10}x)) = 1$.

The construction of V is described in Lemma 3.5 of [10]. We now construct the matrix \mathcal{M} . We start with the following:

Remark. In the proof of Lemma 3.10 in [10], prime numbers from the interval $(x, C_{10}x]$ are used to construct a number m_0 with $1 \le m_0 < P(C_{10}x)$, such that

$$a_{r,u} = (m_0 + 1 + rP(x))^k + u - 1$$
,

 $2 \leq u \leq y$, is composite unless $u \in V$. For the investigation of primes in the columns of the matrix \mathcal{M} the condition needed is that the moduli $P(C_{10}x)$ are good. This is transformed into the condition that P(x) is good by renaming x into x/C_{10} .

Definition 2.4. Let $n \in \mathbb{N}$ be sufficiently large and let $x = x_n = x_n(C)$. The existence has been established in Lemma 2.1. Let $q = q_n = P(x_n(C))$. Let y satisfy (2.3), and m_0 , V satisfy (2.4)–(2.7) with $C_{10} = 1$. We let

$$\mathcal{M} := (a_{r,u})_{\substack{1 \le r \le P(x)^{D-1} \\ 1 \le u \le y}},$$

where $a_{r,u} := (m_0 + 1 + rP(x))^k + u - 1$ For $1 \le r \le P(x)^{D-1}$ we denote by

$$R(r) := (a_{r,u})_{1 \le u \le v}$$

the r-th row of \mathcal{M} and for $1 \leq u \leq y$ we denote by

$$C(u) := (a_{r,u})_{1 < r < P(x)^{D-1}}$$

the u-th column of \mathcal{M} .

3. Piatetski-Shapiro primes in arithmetic progressions

Definition 3.1. Let $c_6 > 1$. Let a and d be coprime integers, $w \ge 1$. Then we let

$$\pi_{c_6}(w; d, a) = \#\{p \le w : p \in \mathcal{P}^{(c_6)}, p \equiv a \mod d\}$$

$$\mathcal{P}^{(c_6)} = \{p \ prime : p = \lfloor l^{c_6} \rfloor \ for \ some \ l\}.$$

Lemma 3.2. Let a and d be coprime integers, $d \ge 1$. For fixed $c_6 \in (1, 18/17)$ we have (with $\gamma = 1/c_6$):

$$\pi_{c_6}(w; d, a) = \gamma w^{\gamma - 1} \pi(w; d, a) + \gamma (1 - \gamma) \int_2^w u^{\gamma - 2} \pi(u; d, a) du + O\left(w^{\frac{17}{39} + \frac{7\gamma}{13} + \epsilon}\right),$$

with the constant being implied in O not depending on d or a.

We shall use Dirichlet-characters to evaluate $\pi(u; P(x), m_0 + 1)$ and use the familiar definition

$$\theta(u; g, r) = \sum_{\substack{p \le u \\ p \equiv r \bmod g}} \log p.$$

Lemma 3.3. Assume that $\chi \mod r$ is induced by the primitive character χ^* . Then

$$\sum_{p \le u} |\chi(p) \log p - \chi^*(p) \log p| = O(\log^2(ru)).$$

Proof. $\chi(p) \neq \chi^*(p)$ implies $\chi(p) = 0$ and thus $p \mid \text{conductor}(x) \mid r$. Also

$$\sum_{p|r} 1 = O(\log r).$$

Thus

$$\sum_{p \le u} |\chi(p)\log p - \chi^*(p)\log p| = O(\log u \cdot \log r) = O(\log(ur)^2). \quad \Box$$

Definition 3.4. We let $l(r) := m_0 + 1 + rP(x)$,

$$\mathcal{R}_1(\mathcal{M}) := \left\{ r : 1 \le r \le P(x)^{D-1}, \ l(r) \in \mathcal{P}^{(c_6)} \right\},$$

$$\mathcal{R}_2(\mathcal{M}) := \left\{ r : 1 \le r \le P(x)^{D-1}, \ r \in \mathcal{R}_1(\mathcal{M}), \right\}.$$

We observe that each row R(r) with $r \in \mathcal{R}_1(\mathcal{M})$ has as its first element $a_{r,1}$, the k-th power of the prime $l(r) \in \mathcal{P}^{(c_6)}$. We now conclude the proof of Theorem 1.5 by showing that the set $\mathcal{R}_1(\mathcal{M}) \setminus \mathcal{R}_2(\mathcal{M})$ is non-empty.

Lemma 3.5. We have

$$\#\mathcal{R}_1(\mathcal{M}) = \frac{P(x)^{D\gamma}}{\phi(P(x))} \left(1 + O\left(e^{-c_7 D}\right) \right).$$

Proof. We apply Lemma 3.2 with $P(x)^D$ instead of w, d = P(x), $a = m_0 + 1$ and obtain

(3.1)
$$\#\mathcal{R}_1(\mathcal{M}) = \gamma P(x)^{D(\gamma-1)} \pi(P(x)^D; P(x), m_0 + 1)$$

 $+ \gamma (1 - \gamma) \int_2^{P(x)^D} u^{\gamma - 2} \pi(u; P(x), m_0 + 1) du$
 $+ O\left(P(x)^{D\left(\frac{17}{39} + \frac{7\gamma}{13} + \epsilon\right)}\right).$

We now use Dirichlet-characters to evaluate $\pi(u; P(x), m_0 + 1)$. We use the familiar definition

$$\theta(u; g, r) = \sum_{\substack{p \leq u \\ p \equiv r \bmod g}} \log p$$

and obtain

(3.2)
$$\theta(u; P(x), m_0 + 1)$$

= $\frac{1}{\phi(P(x))} \sum_{p \le u} \log p + \frac{1}{\phi(P(x))} \sum_{\substack{\chi \bmod P(x) \ y \ne v_0}} \sum_{p \le u} \chi(p) \log p$.

From Lemma 3.3 we obtain

$$\left| \theta(u; P(x), m_0 + 1) - \frac{1}{\phi(P(x))} \sum_{p \le u} \log p \right|$$

$$\le \frac{1}{\phi(P(x))} \sum_{1 \le r \le P(x)} \sum_{\chi^* \bmod r}^* \left(\sum_{p \le u} \chi^*(p) \log p + O((\log P(x))^2) \right),$$

where $\sum_{i=1}^{\infty}$ denotes the summation over primitive characters.

We first assume that $u > P(x)^{D/2}$ and apply Lemma 2.2 and obtain:

(3.3)
$$\theta(u; P(x), m_0 + 1) = \frac{1}{\phi(P(x))} \left(\sum_{p \le u} \log p \right) \left(1 + O(e^{-c_7 D}) \right).$$

For $u \leq P(x)^{D/2}$ we use the trivial estimate

$$\theta(u; P(x), m_0 + 1) = O(u \log^2 u).$$

Lemma 3.5 now follows from (3.1), (3.2) and (3.3).

We now estimate $\mathcal{R}_2(\mathcal{M})$. We have

$$(3.4) |\mathcal{R}_2(\mathcal{M})| \le \sum_{v \in V} t(v) ,$$

where

(3.5)
$$t(v) = \#\{r : l(r) \in \mathcal{P}^{(c_6)}, l(r)^k + v - 1 \text{ prime}\}.$$

We majorize the set $\mathcal{P}^{(c_6)}$ by sieving the simpler set

$$\mathcal{N}^{(c_6)} = \{ n \in \mathbb{N} : n = |l^{c_6}| \text{ for some } l \}.$$

Definition 3.6. Let

$$s_c(x; h, i) = \# \{ n \in \mathcal{N}^{(c_6)} : n \le x, n \equiv i \bmod h \}.$$

Lemma 3.7.

$$s_c(x; h, i) = \frac{x^{1/c}}{h} + O_c\left(\left(x^{1+5/c}(\log x)^3\right)^{1/7}\right).$$

Proof. This is Proposition 1 of [14].

Let

$$Q(x) = \prod_{\substack{x$$

Let

$$n(r) = m_0 + 1 + rP(x)$$

(3.6)
$$N(v) := \# \left\{ r : \begin{array}{l} n(r) \in \mathcal{N}^{(c_6)}, \ n(r) \leq 2P(x)^D, \\ (n(r), P(x)) = 1, \ (n(r)^k + v - 1, Q(x)) = 1 \end{array} \right\}.$$

By the sieve of Eratosthenes we have:

$$(3.7) N(v) \le \sum_{\substack{r: n(r) \in \mathcal{N}^{(c_6)}, \\ n(r) \le 2P(x)^D}} \sum_{\substack{\tau_1 \mid (n(r), P(x))}} \mu(\tau_1) \sum_{\substack{\tau_2 \mid (n(n(r)^k + v - 1), Q(x))}} \mu(\tau_2).$$

We now apply a Fundamental Lemma in the theory of Combinatorial Sieves.

Lemma 3.8. Let $\kappa > 0$ and $\Omega > 1$. There exist two sets of real numbers $\Lambda^+ = (\lambda_d^+)$ and $\Lambda^- = (\lambda_d^-)$ depending only on κ and Ω with the following properties:

(3.8)
$$\lambda_1^{\pm} = 1$$
,

(3.9)
$$|\lambda_d^{\pm}| < 1$$
, if $1 < d < \Omega$,

(3.10)
$$\lambda_d^{\pm} = 0$$
, if $d \ge \Omega$, and for any integer $n > 1$,

$$(3.11) \qquad \sum_{d|n} \lambda_d^- \le 0 \le \sum_{d|n} \lambda_d^+.$$

Moreover, for any multiplicative function g(d) with $0 \le g(p) < 1$ and satisfying the dimension condition

$$\prod_{w \le p \le z} (1 - g(p))^{-1} \le \left(\frac{\log z}{\log w}\right)^{\kappa} \left(1 + \frac{K}{\log w}\right)$$

for all w, z such that $2 \le w < z \le y$ we have

$$\sum_{d|P(z)} \lambda_d^{\pm} g(d) = \left(1 + O\left(e^{-s} \left(1 + \frac{K}{\log z}\right)^{10}\right) \right) \prod_{p < z} (1 - g(p)) ,$$

where $s = \frac{\log \Omega}{\log z}$.

Proof. This is Fundamental Lemma 6.3 in [7, p. 159].

For $x < \widetilde{p} \le P(x)$ let $\rho(v, \widetilde{p})$ be the number of solutions (in s) of the congruence

$$s(s^k + v - 1) \equiv 0 \mod \widetilde{p}$$
.

We apply Lemma 3.8 with g given by

$$g(\widetilde{p}) = \begin{cases} 1/\widetilde{p}, & \text{for } 1 < \widetilde{p} \le x \\ \rho(v, \widetilde{p})/\widetilde{p} & \text{for } x < \widetilde{p} \le P(x). \end{cases}$$

The range of definition of g is extended to all integers by multiplicativity.

- λ_d^- is not needed.
- λ_d^{+} is chosen satisfying (3.8)–(3.11), with $\Omega = P(x)^{D/100}$.

From (3.7) and Lemma 3.8, we obtain

(3.12)
$$N(v) \leq \sum_{\substack{\tau \mid P(x) \\ n : n \equiv m_0 + 1 \text{ mod } P(x), \\ n(n^k + v - 1) \equiv 0 \text{ mod } \tau}} 1$$

Let $S(\tau, v)$ be the solution set of $s(s^k + v - 1) \equiv 0 \mod \tau$. The system of congruences in the inner sum of (3.12) is equivalent to a union of congruence classes

$$n \equiv z(s) \bmod P(x), \quad s \in S(\tau, v).$$

Thus

(3.13)
$$N(v) \leq \sum_{\tau \mid P(x)} \lambda^{+}(\tau) \sum_{\substack{n \in \mathcal{N}^{c_6}, n \leq 2P(x)^D \\ n \equiv z(s) \bmod P(x)}} 1$$

The inner sum in (3.13) can now be evaluated by the use of Lemma 3.7. From (3.4), (3.5), (3.6), (3.7) and (3.13) it follows that

$$\#\mathcal{R}_2 = o(\#\mathcal{R}_1),$$

which finishes the proof of Theorem 1.3.

Acknowledgements

The authors wish to express their thanks to the referee for their very valuable remarks, which helped improve the presentation of the paper.

References

- [1] R. C. Baker, W. D. Banks, J. Brüdern, I. E. Shparlinski & A. J. Weingartner, "Piatetski-Shapiro sequences", *Acta Arith.* **157** (2013), no. 1, p. 37-68.
- [2] P. Erdős, "On the difference of consecutive primes", Q. J. Math., Oxf. Ser. 6 (1935), p. 124-128.
- [3] K. FORD, B. GREEN, S. KONYAGIN, J. MAYNARD & T. TAO, "Large gaps between primes", 2016, https://arxiv.org/abs/1412.5029v2.
- [4] K. FORD, B. GREEN, S. KONYAGIN & T. TAO, "Large gaps between consecutive prime numbers", 2014, https://arxiv.org/abs/1408.4505.
- [5] K. FORD, D. R. HEATH-BROWN & S. KONYAGIN, "Large gaps between consecutive prime numbers containing perfect powers", in *Analytic number theory*. In honor of Helmut Maier's 60th birthday, Springer, 2015, p. 83-92.
- [6] P. X. Gallagher, "A large sieve density estimate near $\sigma=1$ ", Invent. Math. 22 (1970), p. 329-339.
- [7] H. IWANIEC & E. KOWALSKI, Analytic Number Theory, Colloquium Publications, vol. 53, American Mathematical Society, 2004, xi+615 pages.
- [8] H. MAIER, "Chains of large gaps between consecutive primes", Adv. Math. 39 (1981), p. 257-269
- [9] H. MAIER & M. T. RASSIAS, "Large gaps between consecutive prime numbers containing square-free numbers and perfect powers of prime numbers", Proc. Am. Math. Soc. 144 (2016), no. 8, p. 3347-3354.
- [10] ——, "Large gaps between consecutive prime numbers containing perfect k-th powers of prime numbers", J. Funct. Anal. 272 (2017), no. 6, p. 2659-2696.
- [11] ——, "Prime avoidance property of k-th powers of prime numbers with Beatty sequences", in *Discrete mathematics and applications*, Springer Optimization and Its Applications, vol. 165, Springer, 2020, p. 397-404.
- [12] J. MAYNARD, "Large gaps between primes", Ann. Math. 183 (2016), no. 3, p. 915-933.
- [13] R. A. RANKIN, "The difference between consecutive prime numbers", J. Lond. Math. Soc. 13 (1938), p. 242-247.
- [14] G. J. Rieger, "Über die natürlichen und primen Zahlen der Gestalt (nc) in arithmetischer Progression", Arch. Math. 18 (1967), p. 35-44.
- [15] E. Westzynthius, "Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind", Commentat. Helsingfors 5 (1931), article no. 25 (37 pages).

Helmut MAIER
Department of Mathematics, University of Ulm
Helmholtzstrasse 18
89081 Ulm, Germany
E-mail: helmut.maier@uni-ulm.de

Michael Th. RASSIAS
Department of Mathematics and Engineering Sciences
Hellenic Military Academy
16673 Vari Attikis, Greece
E-mail: mthrassias@yahoo.com