The field of iterates of a rational function
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 691-709

We study how the field of definition of a rational function changes under iteration. We provide a complete classification of polynomials with the property that the field of definition of one of their iterates drops in degree (over a given base field). We show with families of examples that this characterization does not hold for rational functions. Finally, we also classify fractional linear transformations with this property.

Nous étudions comment le corps de définition d’une fonction rationnelle évolue sous itération. Nous fournissons une classification complète des polynômes ayant la propriété que le corps de définition de l’un de leurs itérés diminue en degré (par rapport à un corps de base donné). Nous montrons, à l’aide de familles d’exemples, que cette caractérisation ne s’applique pas aux fonctions rationnelles. Enfin, nous classifions également les transformations linéaires fractionnaires ayant cette propriété.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1337
Classification : 37P05, 11C08, 37P15
Keywords: field of definition, iterates of rational functions, arithmetic dynamics

Francesco Veneziano 1 ; Solomon Vishkautsan 2

1 Department of mathematics, University of Genova, Via Dodecaneso 35, 16146 Genova, Italy
2 Department of Computer Science, Tel-Hai Academic College, Upper Galilee 9977, Qiryat Shemona 1220800, Israel
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_2_691_0,
     author = {Francesco Veneziano and Solomon Vishkautsan},
     title = {The field of iterates of a rational function},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {691--709},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {2},
     doi = {10.5802/jtnb.1337},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1337/}
}
TY  - JOUR
AU  - Francesco Veneziano
AU  - Solomon Vishkautsan
TI  - The field of iterates of a rational function
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 691
EP  - 709
VL  - 37
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1337/
DO  - 10.5802/jtnb.1337
LA  - en
ID  - JTNB_2025__37_2_691_0
ER  - 
%0 Journal Article
%A Francesco Veneziano
%A Solomon Vishkautsan
%T The field of iterates of a rational function
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 691-709
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1337/
%R 10.5802/jtnb.1337
%G en
%F JTNB_2025__37_2_691_0
Francesco Veneziano; Solomon Vishkautsan. The field of iterates of a rational function. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 691-709. doi: 10.5802/jtnb.1337

[1] Jason Bell; Dragos Ghioca; Zinovy Reichstein Rational self-maps with a regular iterate on a semiabelian variety, J. Number Theory, Volume 260 (2024), pp. 103-119 | Zbl | DOI | MR

[2] Robert Benedetto; Patrick Ingram; Rafe Jones; Michelle Manes; Joseph H. Silverman; Thomas J. Tucker Current trends and open problems in arithmetic dynamics, Bull. Am. Math. Soc., Volume 56 (2019) no. 4, pp. 611-685 | DOI | MR | Zbl

[3] Giulio Bresciani Uniform bounds for fields of definition in projective spaces (2024) | arXiv

[4] Katharine Chamberlin; Emma Colbert; Sharon Frechette; Patrick Hefferman; Rafe Jones; Sarah Orchard Newly reducible iterates in families of quadratic polynomials, Involve, Volume 5 (2013) no. 4, pp. 481-495 | DOI | MR | Zbl

[5] Lynda Danielson; Burton Fein On the irreducibility of the iterates of x n -b, Proc. Am. Math. Soc., Volume 130 (2002) no. 6, pp. 1589-1596 | DOI | MR | Zbl

[6] John R. Doyle; Joseph H. Silverman A uniform field-of-definition/field-of-moduli bound for dynamical systems on PN, J. Number Theory, Volume 195 (2019), pp. 1-22 | DOI | MR | Zbl

[7] Alexandre È. Erëmenko Some functional equations connected with the iteration of rational functions, Algebra Anal., Volume 1 (1989) no. 4, pp. 102-116 | MR

[8] Pierre Fatou Sur l’itération des fonctions transcendantes Entières, Acta Math., Volume 47 (1926) no. 4, pp. 337-370 | Zbl | DOI | MR

[9] Dragos Ghioca; Thomas J. Tucker; Michael E. Zieve Intersections of polynomials orbits, and a dynamical Mordell-Lang conjecture, Invent. Math., Volume 171 (2008) no. 2, pp. 463-483 | Zbl | DOI | MR

[10] Benjamin Hutz; Michelle Manes The field of definition for dynamical systems on , Bull. Inst. Math. Acad. Sin. (N.S.), Volume 9 (2014) no. 4, pp. 585-601 | Zbl | MR

[11] Gaston Julia Mémoire sur la permutabilité des fractions rationnelles, Ann. Sci. Éc. Norm. Supér. (3), Volume 39 (1922), pp. 131-215 | Numdam | DOI | Zbl | MR

[12] John Milnor On Lattès maps, Dynamics on the Riemann sphere, European Mathematical Society, 2006, pp. 9-43 | Zbl | DOI | MR

[13] Ivan Niven Irrational Numbers, Carus Mathematical Monographs, Mathematical Association of America, 2005 https://books.google.co.il/books?id=ov-ilieo47cc

[14] Fedor Pakovich Commuting rational functions revisited, Ergodic Theory Dyn. Syst., Volume 41 (2021) no. 1, pp. 295-320 | Zbl | DOI | MR

[15] Joseph F. Ritt Prime and composite polynomials, Trans. Am. Math. Soc., Volume 23 (1922) no. 1, pp. 51-66 | Zbl | DOI | MR

[16] Joseph F. Ritt Permutable rational functions, Trans. Am. Math. Soc., Volume 25 (1923) no. 3, pp. 399-448 | DOI | Zbl | MR

[17] Joseph H. Silverman The field of definition for dynamical systems on 1 , Compos. Math., Volume 98 (1995) no. 3, pp. 269-304 | Zbl | MR

[18] Joseph H. Silverman The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007, x+511 pages | Zbl | DOI | MR

[19] Michael E. Zieve; Peter Mueller On Ritt’s polynomial decomposition theorems (2008) | arXiv | Zbl

Cité par Sources :