We study how the field of definition of a rational function changes under iteration. We provide a complete classification of polynomials with the property that the field of definition of one of their iterates drops in degree (over a given base field). We show with families of examples that this characterization does not hold for rational functions. Finally, we also classify fractional linear transformations with this property.
Nous étudions comment le corps de définition d’une fonction rationnelle évolue sous itération. Nous fournissons une classification complète des polynômes ayant la propriété que le corps de définition de l’un de leurs itérés diminue en degré (par rapport à un corps de base donné). Nous montrons, à l’aide de familles d’exemples, que cette caractérisation ne s’applique pas aux fonctions rationnelles. Enfin, nous classifions également les transformations linéaires fractionnaires ayant cette propriété.
Révisé le :
Accepté le :
Publié le :
Keywords: field of definition, iterates of rational functions, arithmetic dynamics
Francesco Veneziano 1 ; Solomon Vishkautsan 2
CC-BY-ND 4.0
@article{JTNB_2025__37_2_691_0,
author = {Francesco Veneziano and Solomon Vishkautsan},
title = {The field of iterates of a rational function},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {691--709},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1337},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1337/}
}
TY - JOUR AU - Francesco Veneziano AU - Solomon Vishkautsan TI - The field of iterates of a rational function JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 691 EP - 709 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1337/ DO - 10.5802/jtnb.1337 LA - en ID - JTNB_2025__37_2_691_0 ER -
%0 Journal Article %A Francesco Veneziano %A Solomon Vishkautsan %T The field of iterates of a rational function %J Journal de théorie des nombres de Bordeaux %D 2025 %P 691-709 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1337/ %R 10.5802/jtnb.1337 %G en %F JTNB_2025__37_2_691_0
Francesco Veneziano; Solomon Vishkautsan. The field of iterates of a rational function. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 691-709. doi: 10.5802/jtnb.1337
[1] Rational self-maps with a regular iterate on a semiabelian variety, J. Number Theory, Volume 260 (2024), pp. 103-119 | Zbl | DOI | MR
[2] Current trends and open problems in arithmetic dynamics, Bull. Am. Math. Soc., Volume 56 (2019) no. 4, pp. 611-685 | DOI | MR | Zbl
[3] Uniform bounds for fields of definition in projective spaces (2024) | arXiv
[4] Newly reducible iterates in families of quadratic polynomials, Involve, Volume 5 (2013) no. 4, pp. 481-495 | DOI | MR | Zbl
[5] On the irreducibility of the iterates of , Proc. Am. Math. Soc., Volume 130 (2002) no. 6, pp. 1589-1596 | DOI | MR | Zbl
[6] A uniform field-of-definition/field-of-moduli bound for dynamical systems on PN, J. Number Theory, Volume 195 (2019), pp. 1-22 | DOI | MR | Zbl
[7] Some functional equations connected with the iteration of rational functions, Algebra Anal., Volume 1 (1989) no. 4, pp. 102-116 | MR
[8] Sur l’itération des fonctions transcendantes Entières, Acta Math., Volume 47 (1926) no. 4, pp. 337-370 | Zbl | DOI | MR
[9] Intersections of polynomials orbits, and a dynamical Mordell-Lang conjecture, Invent. Math., Volume 171 (2008) no. 2, pp. 463-483 | Zbl | DOI | MR
[10] The field of definition for dynamical systems on , Bull. Inst. Math. Acad. Sin. (N.S.), Volume 9 (2014) no. 4, pp. 585-601 | Zbl | MR
[11] Mémoire sur la permutabilité des fractions rationnelles, Ann. Sci. Éc. Norm. Supér. (3), Volume 39 (1922), pp. 131-215 | Numdam | DOI | Zbl | MR
[12] On Lattès maps, Dynamics on the Riemann sphere, European Mathematical Society, 2006, pp. 9-43 | Zbl | DOI | MR
[13] Irrational Numbers, Carus Mathematical Monographs, Mathematical Association of America, 2005 https://books.google.co.il/books?id=ov-ilieo47cc
[14] Commuting rational functions revisited, Ergodic Theory Dyn. Syst., Volume 41 (2021) no. 1, pp. 295-320 | Zbl | DOI | MR
[15] Prime and composite polynomials, Trans. Am. Math. Soc., Volume 23 (1922) no. 1, pp. 51-66 | Zbl | DOI | MR
[16] Permutable rational functions, Trans. Am. Math. Soc., Volume 25 (1923) no. 3, pp. 399-448 | DOI | Zbl | MR
[17] The field of definition for dynamical systems on , Compos. Math., Volume 98 (1995) no. 3, pp. 269-304 | Zbl | MR
[18] The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007, x+511 pages | Zbl | DOI | MR
[19] On Ritt’s polynomial decomposition theorems (2008) | arXiv | Zbl
Cité par Sources :