We generalise a result of Fourquaux and Xie thereby completely determining the relationship between $\mathbb{Q}_p$-analytic and $L$-analytic Lie algebra cohomology of analytic $(\varphi _L,\Gamma _L)$-modules. We use the results to conclude that for $L\ne \mathbb{Q}_p,$ there exist examples of étale $(\varphi _L,\Gamma _L)$-modules over Robba rings whose $\mathbb{Q}_p$-analytic cohomology does not arise as a base change of Galois cohomology.
Nous généralisons un résultat de Fourquaux et Xie, en déterminant ainsi complètement la relation entre la cohomologie de l’algèbre de Lie $\mathbb{Q}_p$-analytique et la cohomologie de l’algèbre de Lie $L$-analytique des $(\varphi _L,\Gamma _L)$-modules analytiques. Nous utilisons ces résultats pour conclure que, pour $L\ne \mathbb{Q}_p,$ il existe des exemples de $(\varphi _L,\Gamma _L)$-modules étales sur les anneaux de Robba dont la cohomologie $\mathbb{Q}_p$-analytique ne provient pas d’un changement de base de la cohomologie galoisienne.
Révisé le :
Accepté le :
Publié le :
Keywords: $(\varphi ,\Gamma )$-modules, Galois cohomology, analytic cohomology
Rustam Steingart 1
CC-BY-ND 4.0
@article{JTNB_2025__37_2_665_0,
author = {Rustam Steingart},
title = {Comparisons of {Lie} algebra cohomologies of $(\varphi ,\Gamma )$-modules},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {665--690},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1336},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1336/}
}
TY - JOUR AU - Rustam Steingart TI - Comparisons of Lie algebra cohomologies of $(\varphi ,\Gamma )$-modules JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 665 EP - 690 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1336/ DO - 10.5802/jtnb.1336 LA - en ID - JTNB_2025__37_2_665_0 ER -
%0 Journal Article %A Rustam Steingart %T Comparisons of Lie algebra cohomologies of $(\varphi ,\Gamma )$-modules %J Journal de théorie des nombres de Bordeaux %D 2025 %P 665-690 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1336/ %R 10.5802/jtnb.1336 %G en %F JTNB_2025__37_2_665_0
Rustam Steingart. Comparisons of Lie algebra cohomologies of $(\varphi ,\Gamma )$-modules. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 665-690. doi: 10.5802/jtnb.1336
[1] Multivariable ()-modules and locally analytic vectors, Duke Math. J., Volume 165 (2016) no. 18, pp. 3567-3595 | MR | Zbl
[2] Rigid Character Groups, Lubin–Tate Theory, and -Modules, Memoirs of the American Mathematical Society, 263, American Mathematical Society, 2020 no. 1275, v+79 pages | Zbl
[3] Représentations localement analytiques de et ()-modules, Represent. Theory, Volume 20 (2016) no. 9, pp. 187-248 | DOI | MR | Zbl
[4] Commutative algebra with view Toward Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer, 1995, xvi+785 pages | MR | Zbl
[5] Theory of p -adic Galois Representations, http://staff.ustc.edu.cn/~yiouyang/galoisrep.pdf
[6] Triangulable -analytic -modules of rank 2, Algebra Number Theory, Volume 7 (2013) no. 10, pp. 2545-2592 | MR | Zbl | DOI
[7] The cohomology of locally analytic representations, J. Reine Angew. Math., Volume 2011 (2011) no. 651, pp. 187-240 | MR | Zbl | DOI
[8] Herr-complexes in the Lubin–Tate setting, Mathematika, Volume 68 (2022) no. 1, pp. 74-147 | DOI | MR | Zbl
[9] Groupes analytiques -adiques, Publ. Math., Inst. Hautes Étud. Sci., Volume 26 (1965), pp. 5-219 | Numdam
[10] Cohomology and duality for (, )-modules over the Robba ring, Int. Math. Res. Not., Volume 2008 (2008), rnm150, 32 pages | MR | Zbl
[11] -isomorphisms for rank one -modules over Lubin-Tate Robba rings (2024) | arXiv | Zbl
[12] Theory of categories, Pure and Applied Mathematics, 17, Academic Press Inc., 1965, xi+273 pages | MR | Zbl
[13] Basic examples and computations in -adic Hodge theory (unpublished notes)
[14] Galois Representations and ()-Modules, Cambridge Studies in Advanced Mathematics, 164, Cambridge University Press, 2017, vii+148 pages | MR | DOI | Zbl
[15] Compairing categories of Lubin–Tate -modules, Results Math., Volume 78 (2023) no. 6, 230, 36 pages | MR | Zbl
[16] Reciprocity laws for -modules over Lubin–Tate extensions (2023) | arXiv
[17] The Stacks project, https://stacks.math.columbia.edu, 2021
[18] Finiteness of analytic cohomology of Lubin–Tate -modules, J. Number Theory, Volume 263 (2024), pp. 24-78 | DOI | MR | Zbl
[19] Iwasawa cohomology of analytic -modules, Acta Arith., Volume 216 (2024) no. 2, pp. 123-176 | DOI | MR | Zbl
[20] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1995, xiv+450 pages | Zbl
Cité par Sources :