Watkins’s conjecture for quadratic twists of Elliptic Curves with Prime Power Conductor
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 647-663

Watkins’s conjecture asserts that the rank of an elliptic curve is upper bounded by the $2$-adic valuation of its modular degree. We show that this conjecture is satisfied when $E$ is any quadratic twist of an elliptic curve with a rational point of order $2$ and prime power conductor, in particular, for the congruent number elliptic curves. Furthermore, we give a lower bound for the congruence number for elliptic curves of the form $y^2=x^3-dx$, with $d$ a fourth power free integer.

La conjecture de Watkins affirme que le rang d’une courbe elliptique est borné par la valuation $2$-adique de son degré modulaire. Nous montrons que cette conjecture est vraie lorsque $E$ est une tordue quadratique d’une courbe elliptique avec un point rationnel d’ordre $2$ et de conducteur une puissance de nombre premier, en particulier pour les courbes elliptiques associées aux nombres congruents. De plus, nous donnons une borne inférieure pour le congruence number des courbes elliptiques de la forme $y^2=x^3-dx$, où $d$ est un entier sans facteur biquadratique.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1335
Classification : 11G05, 11G18, 11G40
Keywords: Watkins’s conjecture, elliptic curves, modular degree, Mordell–Weil rank

Jerson Caro 1

1 Department of Mathematics & Statistics, Boston University, 665 Commonwealth Avenue, Boston, MA 02215, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_2_647_0,
     author = {Jerson Caro},
     title = {Watkins{\textquoteright}s conjecture for quadratic twists of {Elliptic} {Curves} with {Prime} {Power} {Conductor}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {647--663},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {2},
     doi = {10.5802/jtnb.1335},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1335/}
}
TY  - JOUR
AU  - Jerson Caro
TI  - Watkins’s conjecture for quadratic twists of Elliptic Curves with Prime Power Conductor
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 647
EP  - 663
VL  - 37
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1335/
DO  - 10.5802/jtnb.1335
LA  - en
ID  - JTNB_2025__37_2_647_0
ER  - 
%0 Journal Article
%A Jerson Caro
%T Watkins’s conjecture for quadratic twists of Elliptic Curves with Prime Power Conductor
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 647-663
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1335/
%R 10.5802/jtnb.1335
%G en
%F JTNB_2025__37_2_647_0
Jerson Caro. Watkins’s conjecture for quadratic twists of Elliptic Curves with Prime Power Conductor. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 647-663. doi: 10.5802/jtnb.1335

[1] Ahmed Abbes; Emmanuel Ullmo A propos de la conjecture de Manin pour les courbes elliptiques modulaires, Compos. Math., Volume 103 (1996) no. 3, pp. 269-286 | Numdam | Zbl

[2] Amod Agashe; Kenneth A. Ribet; William A. Stein The modular degree, congruence primes, and multiplicity one, Number theory, analysis and geometry. In memory of Serge Lang, Springer, 2012, pp. 19-49 | DOI | Zbl

[3] Julián Aguirre; Álvaro Lozano-Robledo; Juan Carlos Peral Elliptic curves of maximal rank, Proceedings of the “Segundas Jornadas de Teoría de Números”, Madrid, Spain, July 16–19, 2007 (Biblioteca de la Revista Matemática Iberoamericana), Revista Matemática Iberoamericana, 2008, pp. 1-28 | MR | Zbl

[4] Christophe Breuil; Brian Conrad; Fred Diamond; Richard Taylor On the modularity of elliptic curves over : wild 3-adic exercises, J. Am. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939 | DOI | MR | Zbl

[5] Frank Calegari; Matthew Emerton Elliptic curves of odd modular degree, Isr. J. Math., Volume 169 (2009) no. 1, pp. 417-444 | DOI | Zbl

[6] Jerson Caro; Hector Pasten Watkins’s conjecture for elliptic curves with non-split multiplicative reduction, Proc. Am. Math. Soc., Volume 150 (2022) no. 8, pp. 3245-3251 | DOI | MR | Zbl

[7] Alina Carmen Cojocaru; Ernst Kani The modular degree and the congruence number of a weight 2 cusp form, Acta Arith., Volume 114 (2004) no. 2, pp. 159-167 | DOI | MR | Zbl

[8] John Cremona; Ariel Pacetti On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1, Proc. Lond. Math. Soc. (3), Volume 118 (2019) no. 5, pp. 1245-1276 | DOI | Zbl

[9] Christophe Delaunay Computing modular degrees using L-functions, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 3, pp. 673-682 | DOI | MR | Numdam | Zbl

[10] Bas Edixhoven On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Progress in Mathematics), Volume 89, Birkhäuser (1991), pp. 25-39 | DOI | Zbl

[11] Jose A. Esparza-Lozano; Hector Pasten A conjecture of Watkins for quadratic twists, Proc. Am. Math. Soc., Volume 149 (2021) no. 6, pp. 2381-2385 | DOI | MR | Zbl

[13] Toshihiro Hadano Conductor of elliptic curves with complex multiplication and elliptic curves of prime conductor, Proc. Japan Acad., Volume 51 (1975) no. 2, pp. 92-95 | MR | Zbl

[14] Matija Kazalicki; Daniel Kohen On a special case of Watkins’ conjecture, Proc. Am. Math. Soc., Volume 146 (2018) no. 2, pp. 541-545 | DOI | MR | Zbl

[15] Matija Kazalicki; Daniel Kohen Corrigendum to: “On a special case of Watkins’ conjecture”, Proc. Am. Math. Soc., Volume 147 (2019) no. 10, p. 4563 | DOI | MR | Zbl

[16] Neal I. Koblitz Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, 97, Springer, 2012, x+248 pages | MR | Zbl

[17] The LMFDB Collaboration The L-functions and Modular Forms Database, 2021 (https://www.lmfdb.org)

[18] Barry Mazur; Dorian Goldfed Rational isogenies of prime degree, Invent. Math., Volume 44 (1978), pp. 129-162 | DOI | Zbl

[19] Jean-François Mestre; Joseph Oesterlé Courbes de Weil semi-stables de discriminant une puissance m-ième, J. Reine Angew. Math., Volume 400 (1989), pp. 173-184 | MR | Zbl

[20] Jamie T. Mulholland Elliptic curves with rational 2-torsion and related ternary Diophantine equations, Ph. D. Thesis, University of British Columbia, Canada (2006)

[21] Vivek Pal Periods of quadratic twists of elliptic curves, Proc. Am. Math. Soc., Volume 140 (2012) no. 5, pp. 1513-1525 | MR | Zbl

[22] Victor V. Prasolov Polynomials, Algorithms and Computation in Mathematics, 11, Springer, 2004, xiv+301 pages | DOI | MR | Zbl

[23] Bennett Setzer Elliptic curves of prime conductor, J. Lond. Math. Soc. (2), Volume 10 (1975), pp. 367-378 | DOI | MR | Zbl

[24] Goro Shimura The special values of the zeta functions associated with cusp forms, Commun. Pure Appl. Math., Volume 29 (1976), pp. 783-804 | DOI | MR | Zbl

[25] Joseph H. Silverman Advanced topics in the arithmetic of elliptic curves, Graduate Studies in Mathematics, 151, Springer, 1994, xiii+525 pages | DOI | MR | Zbl

[26] Joseph H. Silverman The arithmetic of elliptic curves, Graduate Studies in Mathematics, 106, Springer, 2009, xx+513 pages | DOI | MR

[27] Richard Taylor; Andrew Wiles Ring-theoretic properties of certain Hecke algebras, Ann. Math. (2), Volume 141 (1995) no. 3, pp. 553-572 | DOI | Zbl

[28] Mark Watkins Computing the modular degree of an elliptic curve, Exp. Math., Volume 11 (2002) no. 4, pp. 487-502 | DOI | MR | Zbl

[29] Andrew Wiles Modular elliptic curves and Fermat’s last theorem, Ann. Math. (2), Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl

[30] Soroosh Yazdani Modular abelian varieties of odd modular degree, Algebra Number Theory, Volume 5 (2011) no. 1, pp. 37-62 | DOI | MR | Zbl

Cité par Sources :