Watkins’s conjecture asserts that the rank of an elliptic curve is upper bounded by the $2$-adic valuation of its modular degree. We show that this conjecture is satisfied when $E$ is any quadratic twist of an elliptic curve with a rational point of order $2$ and prime power conductor, in particular, for the congruent number elliptic curves. Furthermore, we give a lower bound for the congruence number for elliptic curves of the form $y^2=x^3-dx$, with $d$ a fourth power free integer.
La conjecture de Watkins affirme que le rang d’une courbe elliptique est borné par la valuation $2$-adique de son degré modulaire. Nous montrons que cette conjecture est vraie lorsque $E$ est une tordue quadratique d’une courbe elliptique avec un point rationnel d’ordre $2$ et de conducteur une puissance de nombre premier, en particulier pour les courbes elliptiques associées aux nombres congruents. De plus, nous donnons une borne inférieure pour le congruence number des courbes elliptiques de la forme $y^2=x^3-dx$, où $d$ est un entier sans facteur biquadratique.
Révisé le :
Accepté le :
Publié le :
Keywords: Watkins’s conjecture, elliptic curves, modular degree, Mordell–Weil rank
Jerson Caro 1
CC-BY-ND 4.0
@article{JTNB_2025__37_2_647_0,
author = {Jerson Caro},
title = {Watkins{\textquoteright}s conjecture for quadratic twists of {Elliptic} {Curves} with {Prime} {Power} {Conductor}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {647--663},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1335},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1335/}
}
TY - JOUR AU - Jerson Caro TI - Watkins’s conjecture for quadratic twists of Elliptic Curves with Prime Power Conductor JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 647 EP - 663 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1335/ DO - 10.5802/jtnb.1335 LA - en ID - JTNB_2025__37_2_647_0 ER -
%0 Journal Article %A Jerson Caro %T Watkins’s conjecture for quadratic twists of Elliptic Curves with Prime Power Conductor %J Journal de théorie des nombres de Bordeaux %D 2025 %P 647-663 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1335/ %R 10.5802/jtnb.1335 %G en %F JTNB_2025__37_2_647_0
Jerson Caro. Watkins’s conjecture for quadratic twists of Elliptic Curves with Prime Power Conductor. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 647-663. doi: 10.5802/jtnb.1335
[1] A propos de la conjecture de Manin pour les courbes elliptiques modulaires, Compos. Math., Volume 103 (1996) no. 3, pp. 269-286 | Numdam | Zbl
[2] The modular degree, congruence primes, and multiplicity one, Number theory, analysis and geometry. In memory of Serge Lang, Springer, 2012, pp. 19-49 | DOI | Zbl
[3] Elliptic curves of maximal rank, Proceedings of the “Segundas Jornadas de Teoría de Números”, Madrid, Spain, July 16–19, 2007 (Biblioteca de la Revista Matemática Iberoamericana), Revista Matemática Iberoamericana, 2008, pp. 1-28 | MR | Zbl
[4] On the modularity of elliptic curves over : wild -adic exercises, J. Am. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939 | DOI | MR | Zbl
[5] Elliptic curves of odd modular degree, Isr. J. Math., Volume 169 (2009) no. 1, pp. 417-444 | DOI | Zbl
[6] Watkins’s conjecture for elliptic curves with non-split multiplicative reduction, Proc. Am. Math. Soc., Volume 150 (2022) no. 8, pp. 3245-3251 | DOI | MR | Zbl
[7] The modular degree and the congruence number of a weight cusp form, Acta Arith., Volume 114 (2004) no. 2, pp. 159-167 | DOI | MR | Zbl
[8] On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1, Proc. Lond. Math. Soc. (3), Volume 118 (2019) no. 5, pp. 1245-1276 | DOI | Zbl
[9] Computing modular degrees using -functions, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 3, pp. 673-682 | DOI | MR | Numdam | Zbl
[10] On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Progress in Mathematics), Volume 89, Birkhäuser (1991), pp. 25-39 | DOI | Zbl
[11] A conjecture of Watkins for quadratic twists, Proc. Am. Math. Soc., Volume 149 (2021) no. 6, pp. 2381-2385 | DOI | MR | Zbl
[12] Links between solutions of and elliptic curves, Number theory. Proceedings of the 15th journées arithmétiques held in Ulm, FRG, September 14-18, 1987 (Lecture Notes in Mathematics), Volume 1380, Springer, 1989, pp. 31-62 | MR | Zbl
[13] Conductor of elliptic curves with complex multiplication and elliptic curves of prime conductor, Proc. Japan Acad., Volume 51 (1975) no. 2, pp. 92-95 | MR | Zbl
[14] On a special case of Watkins’ conjecture, Proc. Am. Math. Soc., Volume 146 (2018) no. 2, pp. 541-545 | DOI | MR | Zbl
[15] Corrigendum to: “On a special case of Watkins’ conjecture”, Proc. Am. Math. Soc., Volume 147 (2019) no. 10, p. 4563 | DOI | MR | Zbl
[16] Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, 97, Springer, 2012, x+248 pages | MR | Zbl
[17] The L-functions and Modular Forms Database, 2021 (https://www.lmfdb.org)
[18] Rational isogenies of prime degree, Invent. Math., Volume 44 (1978), pp. 129-162 | DOI | Zbl
[19] Courbes de Weil semi-stables de discriminant une puissance m-ième, J. Reine Angew. Math., Volume 400 (1989), pp. 173-184 | MR | Zbl
[20] Elliptic curves with rational -torsion and related ternary Diophantine equations, Ph. D. Thesis, University of British Columbia, Canada (2006)
[21] Periods of quadratic twists of elliptic curves, Proc. Am. Math. Soc., Volume 140 (2012) no. 5, pp. 1513-1525 | MR | Zbl
[22] Polynomials, Algorithms and Computation in Mathematics, 11, Springer, 2004, xiv+301 pages | DOI | MR | Zbl
[23] Elliptic curves of prime conductor, J. Lond. Math. Soc. (2), Volume 10 (1975), pp. 367-378 | DOI | MR | Zbl
[24] The special values of the zeta functions associated with cusp forms, Commun. Pure Appl. Math., Volume 29 (1976), pp. 783-804 | DOI | MR | Zbl
[25] Advanced topics in the arithmetic of elliptic curves, Graduate Studies in Mathematics, 151, Springer, 1994, xiii+525 pages | DOI | MR | Zbl
[26] The arithmetic of elliptic curves, Graduate Studies in Mathematics, 106, Springer, 2009, xx+513 pages | DOI | MR
[27] Ring-theoretic properties of certain Hecke algebras, Ann. Math. (2), Volume 141 (1995) no. 3, pp. 553-572 | DOI | Zbl
[28] Computing the modular degree of an elliptic curve, Exp. Math., Volume 11 (2002) no. 4, pp. 487-502 | DOI | MR | Zbl
[29] Modular elliptic curves and Fermat’s last theorem, Ann. Math. (2), Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
[30] Modular abelian varieties of odd modular degree, Algebra Number Theory, Volume 5 (2011) no. 1, pp. 37-62 | DOI | MR | Zbl
Cité par Sources :