New portions of $M\setminus L$ and a lower bound on the Hausdorff distance between $L$ and $M$
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 599-646

Let $M$ and $L$ be the Markov and Lagrange spectra, respectively. It is known that $L$ is contained in $M$ and Freiman showed in 1968 that $M\setminus L\ne \emptyset $. In 2018 the first region of $M\setminus L$ above $\sqrt{12}$ was discovered by C. Matheus and C. G. Moreira, thus disproving a conjecture of Cusick of 1975. In 2022, the same authors together with L. Jeffreys discovered a new region near 3.938. In this paper, we will study two new regions of $M\setminus L$ above $\sqrt{12}$, in the vicinity of the Markov value of two periodic words of odd length that are non semisymmetric, which are $\overline{212332111}$ and $\overline{123332112}$. We will demonstrate that for both cases, there is a maximal gap of $L$ and a Gauss–Cantor set inside this gap that is contained in $M$. Moreover we show that at the right endpoint of those gaps we have local Hausdorff dimension equal to $1$.

After studying the mentioned examples, we will provide a lower bound for the value of $d_H(M,L)$ (the Hausdorff distance between $M$ and $L$).

Soient $M$ et $L$ les spectres de Markov et de Lagrange respectivement. Il est connu que $L$ est contenu dans $M$, et Freiman démontra en 1968 que $M\setminus L\ne \emptyset $. En 2018, la première région de $M\setminus L$ fut découverte par C. Matheus et C. G. Moreira, réfutant ainsi une conjecture faite par Cusick en 1975. En 2022, les mêmes auteurs, avec L. Jeffreys, découvrirent une nouvelle région près de 3.938. Dans ce papier, nous étudions deux nouvelles régions de $M\setminus L$ au-dessus de $\sqrt{12}$, au voisinage de la valeur de Markov de deux mots périodiques non semi-symétriques de longueurs impaires, à savoir $\overline{212332111}$ et $\overline{123332112}$. Dans les deux cas, nous démontrons qu’il existe une lacune maximale de $L$ et un ensemble de Gauss–Cantor à l’intérieur de cette lacune qui est contenu dans $M$. En outre, nous montrons que la dimension de Hausdorff locale à l’extrémité droite de ces lacunes est égale à 1. Après avoir étudié ces exemples, nous donnerons une minoration pour la distance de Hausdorff $d_H(M,L)$ entre $M$ et $L$.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1334
Classification : 11J06, 11A55
Keywords: Lagrange and Markov spectra, Hausdorff dimension, Hausdorff distance.

Clément Rieutord 1 ; Carlos Gustavo Moreira 2, 3 ; Harold Erazo 3

1 Ecole Polytechnique, Rte de Saclay, 91120 Palaiseau, France
2 SUSTech International Center for Mathematics, Shenzhen, Guangdong, People’s Republic of China
3 IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_2_599_0,
     author = {Cl\'ement Rieutord and Carlos Gustavo Moreira and Harold Erazo},
     title = {New portions of $M\setminus L$ and a lower bound on the {Hausdorff} distance between $L$ and $M$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {599--646},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {2},
     doi = {10.5802/jtnb.1334},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1334/}
}
TY  - JOUR
AU  - Clément Rieutord
AU  - Carlos Gustavo Moreira
AU  - Harold Erazo
TI  - New portions of $M\setminus L$ and a lower bound on the Hausdorff distance between $L$ and $M$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 599
EP  - 646
VL  - 37
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1334/
DO  - 10.5802/jtnb.1334
LA  - en
ID  - JTNB_2025__37_2_599_0
ER  - 
%0 Journal Article
%A Clément Rieutord
%A Carlos Gustavo Moreira
%A Harold Erazo
%T New portions of $M\setminus L$ and a lower bound on the Hausdorff distance between $L$ and $M$
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 599-646
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1334/
%R 10.5802/jtnb.1334
%G en
%F JTNB_2025__37_2_599_0
Clément Rieutord; Carlos Gustavo Moreira; Harold Erazo. New portions of $M\setminus L$ and a lower bound on the Hausdorff distance between $L$ and $M$. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 599-646. doi: 10.5802/jtnb.1334

[1] A. A. Bershteĭn The connections between the Markov and Lagrange spectra, Number-theoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), Kalinin. Gosudarstv. Univ., 1973, p. 16-49, 121–125 | MR | Zbl

[2] Thomas W. Cusick The connection between the Lagrange and Markoff spectra, Duke Math. J., Volume 42 (1975) no. 3, pp. 507-517 | Zbl | MR

[3] Thomas W. Cusick; Mary E. Flahive The Markoff and Lagrange spectra, Mathematical Surveys and Monographs, 30, American Mathematical Society, 1989, x+97 pages | DOI | MR | Zbl

[4] G. A. Freĭman Non-coincidence of the spectra of Markov and of Lagrange, Mat. Zametki, Volume 3 (1968), pp. 195-200 | MR

[5] G. A. Freĭman The initial point of Hall’s ray, Number-theoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), Kalinin. Gosudarstv. Univ., 1973, p. 87-120, 121–125 | Zbl | MR

[6] G. A. Freĭman Diophantine approximation and geometry of numbers (The Markoff spectrum), Kalinin. Gosudarstv. Univ., 1975, 144 pages | Zbl | MR

[7] Mary E. Gbur Accumulation points of the Lagrange and Markov spectra, Monatsh. Math., Volume 84 (1977) no. 2, pp. 91-108 | Zbl | DOI | MR

[8] Marshall Hall On the sum and product of continued fractions, Ann. Math. (2), Volume 48 (1947), pp. 966-993 | Zbl | DOI | MR

[9] Luke Jeffreys; Carlos Matheus; Carlos G. Moreira New gaps on the Lagrange and Markov spectra, J. Théor. Nombres Bordeaux, Volume 36 (2024) no. 1, pp. 311-338 | DOI | Zbl | MR

[10] Luke Jeffreys; Carlos Matheus; Carlos G. Moreira; Clément Rieutord Corrigendum and addendum to Appendix A of “Fractal geometry of the complement of Lagrange spectrum in Markov spectrum”, Comment. Math. Helv., Volume 98 (2023) no. 2, pp. 425-430 | Zbl | DOI | MR

[11] Davi Lima; Carlos Matheus; Carlos G. Moreira; Sergio Romaña Classical and dynamical Markov and Lagrange spectra—dynamical, fractal and arithmetic aspects, World Scientific, 2021, xiii+213 pages | Zbl | MR

[12] Davi Lima; Carlos Matheus; Carlos G. Moreira; Sandoel Vieira 𝕄𝕃 near 3, Mosc. Math. J., Volume 21 (2021) no. 4, pp. 767-788 | Zbl | DOI | MR

[13] Davi Lima; Carlos Matheus; Carlos G. Moreira; Sandoel Vieira ML is not closed, Int. Math. Res. Not., Volume 2022 (2022) no. 1, pp. 265-311 | Zbl | DOI | MR

[14] Andreĭ Markoff Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 17 (1880) no. 3, pp. 379-399 | Zbl | DOI | MR

[15] Carlos Matheus; Carlos G. Moreira HD (ML)>0.353, Acta Arith., Volume 188 (2019) no. 2, pp. 183-208 | Zbl | DOI | MR

[16] Carlos Matheus; Carlos G. Moreira Markov spectrum near Freiman’s isolated points in ML, J. Number Theory, Volume 194 (2019), pp. 390-408 | Zbl | DOI | MR

[17] Carlos Matheus; Carlos G. Moreira Fractal geometry of the complement of Lagrange spectrum in Markov spectrum, Comment. Math. Helv., Volume 95 (2020) no. 3, pp. 593-633 | Zbl | DOI | MR

[18] Carlos Matheus; Carlos G. Moreira Diophantine approximation, Lagrange and Markov spectra, and dynamical Cantor sets, Notices Am. Math. Soc., Volume 68 (2021) no. 8, pp. 1301-1311 | Zbl | DOI | MR

[19] Carlos Matheus; Carlos G. Moreira; Mark Pollicott; Polina Vytnova Hausdorff dimension of Gauss-Cantor sets and two applications to classical Lagrange and Markov spectra, Adv. Math., Volume 409 (2022) no. part B, 108693, 70 pages | Zbl | DOI | MR

[20] Carlos G. Moreira Geometric properties of the Markov and Lagrange spectra, Ann. Math. (2), Volume 188 (2018) no. 1, pp. 145-170 | Zbl | DOI | MR

[21] Carlos G. Moreira Geometric properties of images of cartesian products of regular Cantor sets by differentiable real maps, Math. Z., Volume 303 (2023) no. 1, 3, 19 pages | DOI | MR | Zbl

[22] Oskar Perron Über die Approximation irrationaler Zahlen durch rationale II, Sitzungsber. Heidelb. Akad. Wiss., Volume 1921 (1921) no. 8, 12 pages | Zbl

[23] Hanno Schecker Über die Menge der Zahlen, die als Minima quadratischer Formen auftreten, J. Number Theory, Volume 9 (1977) no. 1, pp. 121-141 | Zbl | DOI | MR

[24] Yuan-Chwen You Role of the rationals in the Markov and Lagrange spectra, Ph. D. Thesis, Michigan State university (1976), iii+38 pages | DOI

Cité par Sources :