Let $M$ and $L$ be the Markov and Lagrange spectra, respectively. It is known that $L$ is contained in $M$ and Freiman showed in 1968 that $M\setminus L\ne \emptyset $. In 2018 the first region of $M\setminus L$ above $\sqrt{12}$ was discovered by C. Matheus and C. G. Moreira, thus disproving a conjecture of Cusick of 1975. In 2022, the same authors together with L. Jeffreys discovered a new region near 3.938. In this paper, we will study two new regions of $M\setminus L$ above $\sqrt{12}$, in the vicinity of the Markov value of two periodic words of odd length that are non semisymmetric, which are $\overline{212332111}$ and $\overline{123332112}$. We will demonstrate that for both cases, there is a maximal gap of $L$ and a Gauss–Cantor set inside this gap that is contained in $M$. Moreover we show that at the right endpoint of those gaps we have local Hausdorff dimension equal to $1$.
After studying the mentioned examples, we will provide a lower bound for the value of $d_H(M,L)$ (the Hausdorff distance between $M$ and $L$).
Soient $M$ et $L$ les spectres de Markov et de Lagrange respectivement. Il est connu que $L$ est contenu dans $M$, et Freiman démontra en 1968 que $M\setminus L\ne \emptyset $. En 2018, la première région de $M\setminus L$ fut découverte par C. Matheus et C. G. Moreira, réfutant ainsi une conjecture faite par Cusick en 1975. En 2022, les mêmes auteurs, avec L. Jeffreys, découvrirent une nouvelle région près de 3.938. Dans ce papier, nous étudions deux nouvelles régions de $M\setminus L$ au-dessus de $\sqrt{12}$, au voisinage de la valeur de Markov de deux mots périodiques non semi-symétriques de longueurs impaires, à savoir $\overline{212332111}$ et $\overline{123332112}$. Dans les deux cas, nous démontrons qu’il existe une lacune maximale de $L$ et un ensemble de Gauss–Cantor à l’intérieur de cette lacune qui est contenu dans $M$. En outre, nous montrons que la dimension de Hausdorff locale à l’extrémité droite de ces lacunes est égale à 1. Après avoir étudié ces exemples, nous donnerons une minoration pour la distance de Hausdorff $d_H(M,L)$ entre $M$ et $L$.
Révisé le :
Accepté le :
Publié le :
Keywords: Lagrange and Markov spectra, Hausdorff dimension, Hausdorff distance.
Clément Rieutord 1 ; Carlos Gustavo Moreira 2, 3 ; Harold Erazo 3
CC-BY-ND 4.0
@article{JTNB_2025__37_2_599_0,
author = {Cl\'ement Rieutord and Carlos Gustavo Moreira and Harold Erazo},
title = {New portions of $M\setminus L$ and a lower bound on the {Hausdorff} distance between $L$ and $M$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {599--646},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1334},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1334/}
}
TY - JOUR AU - Clément Rieutord AU - Carlos Gustavo Moreira AU - Harold Erazo TI - New portions of $M\setminus L$ and a lower bound on the Hausdorff distance between $L$ and $M$ JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 599 EP - 646 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1334/ DO - 10.5802/jtnb.1334 LA - en ID - JTNB_2025__37_2_599_0 ER -
%0 Journal Article %A Clément Rieutord %A Carlos Gustavo Moreira %A Harold Erazo %T New portions of $M\setminus L$ and a lower bound on the Hausdorff distance between $L$ and $M$ %J Journal de théorie des nombres de Bordeaux %D 2025 %P 599-646 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1334/ %R 10.5802/jtnb.1334 %G en %F JTNB_2025__37_2_599_0
Clément Rieutord; Carlos Gustavo Moreira; Harold Erazo. New portions of $M\setminus L$ and a lower bound on the Hausdorff distance between $L$ and $M$. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 599-646. doi: 10.5802/jtnb.1334
[1] The connections between the Markov and Lagrange spectra, Number-theoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), Kalinin. Gosudarstv. Univ., 1973, p. 16-49, 121–125 | MR | Zbl
[2] The connection between the Lagrange and Markoff spectra, Duke Math. J., Volume 42 (1975) no. 3, pp. 507-517 | Zbl | MR
[3] The Markoff and Lagrange spectra, Mathematical Surveys and Monographs, 30, American Mathematical Society, 1989, x+97 pages | DOI | MR | Zbl
[4] Non-coincidence of the spectra of Markov and of Lagrange, Mat. Zametki, Volume 3 (1968), pp. 195-200 | MR
[5] The initial point of Hall’s ray, Number-theoretic studies in the Markov spectrum and in the structural theory of set addition (Russian), Kalinin. Gosudarstv. Univ., 1973, p. 87-120, 121–125 | Zbl | MR
[6] Diophantine approximation and geometry of numbers (The Markoff spectrum), Kalinin. Gosudarstv. Univ., 1975, 144 pages | Zbl | MR
[7] Accumulation points of the Lagrange and Markov spectra, Monatsh. Math., Volume 84 (1977) no. 2, pp. 91-108 | Zbl | DOI | MR
[8] On the sum and product of continued fractions, Ann. Math. (2), Volume 48 (1947), pp. 966-993 | Zbl | DOI | MR
[9] New gaps on the Lagrange and Markov spectra, J. Théor. Nombres Bordeaux, Volume 36 (2024) no. 1, pp. 311-338 | DOI | Zbl | MR
[10] Corrigendum and addendum to Appendix A of “Fractal geometry of the complement of Lagrange spectrum in Markov spectrum”, Comment. Math. Helv., Volume 98 (2023) no. 2, pp. 425-430 | Zbl | DOI | MR
[11] Classical and dynamical Markov and Lagrange spectra—dynamical, fractal and arithmetic aspects, World Scientific, 2021, xiii+213 pages | Zbl | MR
[12] near 3, Mosc. Math. J., Volume 21 (2021) no. 4, pp. 767-788 | Zbl | DOI | MR
[13] is not closed, Int. Math. Res. Not., Volume 2022 (2022) no. 1, pp. 265-311 | Zbl | DOI | MR
[14] Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 17 (1880) no. 3, pp. 379-399 | Zbl | DOI | MR
[15] , Acta Arith., Volume 188 (2019) no. 2, pp. 183-208 | Zbl | DOI | MR
[16] Markov spectrum near Freiman’s isolated points in , J. Number Theory, Volume 194 (2019), pp. 390-408 | Zbl | DOI | MR
[17] Fractal geometry of the complement of Lagrange spectrum in Markov spectrum, Comment. Math. Helv., Volume 95 (2020) no. 3, pp. 593-633 | Zbl | DOI | MR
[18] Diophantine approximation, Lagrange and Markov spectra, and dynamical Cantor sets, Notices Am. Math. Soc., Volume 68 (2021) no. 8, pp. 1301-1311 | Zbl | DOI | MR
[19] Hausdorff dimension of Gauss-Cantor sets and two applications to classical Lagrange and Markov spectra, Adv. Math., Volume 409 (2022) no. part B, 108693, 70 pages | Zbl | DOI | MR
[20] Geometric properties of the Markov and Lagrange spectra, Ann. Math. (2), Volume 188 (2018) no. 1, pp. 145-170 | Zbl | DOI | MR
[21] Geometric properties of images of cartesian products of regular Cantor sets by differentiable real maps, Math. Z., Volume 303 (2023) no. 1, 3, 19 pages | DOI | MR | Zbl
[22] Über die Approximation irrationaler Zahlen durch rationale II, Sitzungsber. Heidelb. Akad. Wiss., Volume 1921 (1921) no. 8, 12 pages | Zbl
[23] Über die Menge der Zahlen, die als Minima quadratischer Formen auftreten, J. Number Theory, Volume 9 (1977) no. 1, pp. 121-141 | Zbl | DOI | MR
[24] Role of the rationals in the Markov and Lagrange spectra, Ph. D. Thesis, Michigan State university (1976), iii+38 pages | DOI
Cité par Sources :