The genus of division algebras over discrete valued fields
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 535-567

Given a field with a set of discrete valuations $V$, we show how the genus of a division algebra over the field is related to the genus of the residue algebras at various valuations in $V$ and the ramification data. When the division algebra is a quaternion, we show the triviality of genus over many fields which include higher local fields, function fields of curves over higher local fields and function fields of curves over real closed fields. We also consider function fields of curves over global fields with a rational point and show how the genus problem is related to the $2$-torsion of the Tate–Shafarevich group of its Jacobian. As a special case, we show how the methods developed yield better bounds on the size of the genus over function fields of elliptic curves and demonstrate how they can be computed directly using arithmetic data of the elliptic curve with a number of examples.

Étant donné un corps muni d’un ensemble de valuations discrètes $V$, nous montrons comment le genre d’une algèbre à division sur ce corps est lié aux genres des algèbres résiduelles par rapport à $V$ et à des propriétés de ramification. Nous démontrons la trivialité du genre pour les algèbres de quaternions sur une large classe de corps, y compris les corps locaux multidimensionnels et les corps de fonctions des courbes définies sur un corps local multidimensionnel ou sur un corps réel clos. En outre, nous considérons le cas du corps de fonctions d’une courbe ayant un point rationnel sur un corps global et établissons un lien entre le problème de genre sur ce corps et la $2$-torsion du groupe de Tate–Shafarevich de sa jacobienne. En particulier, nous montrons que sur les corps de fonctions des courbes elliptiques, les méthodes développées donnent de meilleurs bornes pour le genre et expliquons comment elles peuvent être calculées directement en utilisant des informations arithmétiques, en donnant des exemples.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1331
Classification : 14F22, 11G05, 16K50, 12G05
Keywords: Brauer groups, genus of division algebras, quaternions, elliptic curves, Tate–Shafarevich group, discrete valued fields, higher local fields, semi-global fields

Srinivasan Srimathy 1

1 School of Mathematics, Tata Institute of Fundamental Research, Mumbai- 400005, India
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_2_535_0,
     author = {Srinivasan Srimathy},
     title = {The genus of division algebras over discrete valued fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {535--567},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {2},
     doi = {10.5802/jtnb.1331},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1331/}
}
TY  - JOUR
AU  - Srinivasan Srimathy
TI  - The genus of division algebras over discrete valued fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 535
EP  - 567
VL  - 37
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1331/
DO  - 10.5802/jtnb.1331
LA  - en
ID  - JTNB_2025__37_2_535_0
ER  - 
%0 Journal Article
%A Srinivasan Srimathy
%T The genus of division algebras over discrete valued fields
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 535-567
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1331/
%R 10.5802/jtnb.1331
%G en
%F JTNB_2025__37_2_535_0
Srinivasan Srimathy. The genus of division algebras over discrete valued fields. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 535-567. doi: 10.5802/jtnb.1331

[1] A. Adrian Albert Structure of algebras, Colloquium Publications, XXIV, American Mathematical Society, 1961, xi+210 pages (revised printing) | MR

[2] Gorô Azumaya On maximally central algebras, Nagoya Math. J., Volume 2 (1951), pp. 119-150 | DOI | Zbl | MR

[3] John W. S. Cassels Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung, J. Reine Angew. Math., Volume 211 (1962), pp. 95-112 | Zbl | DOI | MR

[4] Kęstutis Česnavičius Purity for the Brauer group, Duke Math. J., Volume 168 (2019) no. 8, pp. 1461-1486 | DOI | MR | Zbl

[5] Adam Chapman; Andrew Dolphin; Ahmed Laghribi Total linkage of quaternion algebras and Pfister forms in characteristic two, J. Pure Appl. Algebra, Volume 220 (2016) no. 11, pp. 3676-3691 | MR | Zbl | DOI

[6] Vladimir I. Chernousov; Andrei S. Rapinchuk; Igor A. Rapinchuk The genus of a division algebra and the unramified Brauer group, Bull. Math. Sci., Volume 3 (2013) no. 2, pp. 211-240 | Zbl | DOI | MR

[7] Vladimir I. Chernousov; Andrei S. Rapinchuk; Igor A. Rapinchuk Division algebras with the same maximal subfields, Usp. Mat. Nauk, Volume 70 (2015) no. 1(421), pp. 89-122 | Zbl | DOI | MR

[8] Vladimir I. Chernousov; Andrei S. Rapinchuk; Igor A. Rapinchuk On the size of the genus of a division algebra, Tr. Mat. Inst. Steklova, Volume 292 (2016), pp. 69-99 | DOI | MR | Zbl

[9] Jean-Louis Colliot-Thélène; Raman Parimala Real components of algebraic varieties and étale cohomology, Invent. Math., Volume 101 (1990) no. 1, pp. 81-99 | Zbl | DOI | MR

[10] Jean-Louis Colliot-Thélène; Raman Parimala; Venapally Suresh Patching and local-global principles for homogeneous spaces over function fields of p-adic curves, Comment. Math. Helv., Volume 87 (2012) no. 4, pp. 1011-1033 | DOI | MR | Zbl

[11] Jean-Louis Colliot-Thélène; Alexei N. Skorobogatov The Brauer-Grothendieck group, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 71, Springer, 2021, xv+453 pages | MR | Zbl | DOI

[12] Michael D. Fried; Moshe Jarden Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 11, Springer, 2005, xxiv+780 pages | DOI | Zbl | MR

[13] Skip Garibaldi; David J. Saltman Quaternion algebras with the same subfields, Quadratic forms, linear algebraic groups, and cohomology (Developments in Mathematics), Volume 18, Springer, 2010, pp. 225-238 | Zbl | DOI | MR

[14] Philippe Gille; Tamás Szamuely Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, 101, Cambridge University Press, 2006, xii+343 pages | Zbl | DOI | MR

[15] Alexander Grothendieck Le groupe de Brauer. III. Exemples et compléments, Dix exposés sur la cohomologie des schémas (Advanced Studies in Pure Mathematics), Volume 3, North-Holland, 1968, pp. 88-188 | Zbl | MR

[16] Alexander Grothendieck Le groupe de Brauer. II. Théorie cohomologique, Séminaire Bourbaki, Vol. 9, Société Mathématique de France, 1995, pp. 287-307 (Exp. No. 297) | MR

[17] Bill Jacob; Adrian R. Wadsworth Division algebras over Henselian fields, J. Algebra, Volume 128 (1990) no. 1, pp. 126-179 | Zbl | DOI | MR

[18] Daniel Krashen; Eliyahu Matzri; Andrei S. Rapinchuk; Louis Rowen; David Saltman Division algebras with common subfields, Manuscr. Math., Volume 169 (2022) no. 1-2, pp. 209-249 | Zbl | DOI | MR

[19] Daniel Krashen; Kelly McKinnie Distinguishing division algebras by finite splitting fields, Manuscr. Math., Volume 134 (2011) no. 1-2, pp. 171-182 | Zbl | DOI | MR

[20] Franz-Viktor Kuhlmann The defect, Commutative algebra—Noetherian and non-Noetherian perspectives, Springer, 2011, pp. 277-318 | Zbl | DOI | MR

[21] Serge Lang Algebraic number theory, Graduate Texts in Mathematics, 110, Springer, 1994, xiv+357 pages | Zbl | DOI | MR

[22] Qing Liu Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002, xvi+576 pages (translated from the French by Reinie Erné, Oxford Science Publications) | Zbl | MR

[23] Pascal Mammone; Alexander Merkurjev On the corestriction of p n -symbol, Isr. J. Math., Volume 76 (1991) no. 1-2, pp. 73-79 | DOI | MR | Zbl

[24] James S. Milne Algebraic Number Theory (v3.08), 2020, p. 166 (available at www.jmilne.org/math/)

[25] Pat Morandi The Henselization of a valued division algebra, J. Algebra, Volume 122 (1989) no. 1, pp. 232-243 | Zbl | DOI | MR

[26] Patrick J. Morandi On defective division algebras, K-theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) (Proceedings of Symposia in Pure Mathematics), Volume 58, American Mathematical Society, 1995, pp. 359-367 | Zbl | MR

[27] Matthew Morrow An introduction to higher dimensional local fields and adeles (2012) | arXiv | Zbl | DOI

[28] Karim Mounirh Nicely semiramified division algebras over Henselian fields, Int. J. Math. Math. Sci., Volume 2005 (2005) no. 4, pp. 571-577 | Zbl | DOI | MR

[29] Raman Parimala; Ramdorai Sujatha Hasse principle for Witt groups of function fields with special reference to elliptic curves, Duke Math. J., Volume 85 (1996) no. 3, pp. 555-582 (with an appendix by J.-L. Colliot-Thélène) | Zbl | DOI | MR

[30] Richard S. Pierce Associative algebras, Studies in the History of Modern Science, 9, Springer, 1982, xii+436 pages | DOI | Zbl | MR

[31] Bjorn Poonen Rational points on varieties, Graduate Studies in Mathematics, 186, American Mathematical Society, 2017, xv+337 pages | Zbl | DOI | MR

[32] Gopal Prasad; Andrei S. Rapinchuk Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 109 (2009), pp. 113-184 | MR | Zbl | Numdam | DOI

[33] Gopal Prasad; Andrei S. Rapinchuk Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces, Thin groups and superstrong approximation (Mathematical Sciences Research Institute Publications), Volume 61, Cambridge University Press, 2014, pp. 211-252 | DOI | Zbl | MR

[34] Andrei S. Rapinchuk; Igor A. Rapinchuk On division algebras having the same maximal subfields, Manuscr. Math., Volume 132 (2010) no. 3-4, pp. 273-293 | Zbl | DOI | MR

[35] David Saltman Lectures on division algebras, CBMS Regional Conference Series in Mathematics, 94, American Mathematical Society, 1999, viii+120 pages | Zbl | DOI | MR

[36] Jean-Pierre Serre Local fields, Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages (translated from the French by Marvin Jay Greenberg) | DOI | Zbl | MR

[37] Joseph H. Silverman The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009, xx+513 pages | MR | Zbl | DOI

[38] The Stacks Project Authors The Stacks project, https://stacks.math.columbia.edu, 2022

[39] Oswald Teichmüller Zerfallende zyklische p-Algebren, J. Reine Angew. Math., Volume 176 (1937), pp. 157-160 | DOI | MR | Zbl

[40] Jean-Pierre Tignol; Adrian R. Wadsworth Totally ramified valuations on finite-dimensional division algebras, Trans. Am. Math. Soc., Volume 302 (1987) no. 1, pp. 223-250 | DOI | MR | Zbl

[41] Adrian R. Wadsworth Valuation theory on finite dimensional division algebras, Valuation theory and its applications, Vol. I (Saskatoon, SK, 1999) (Fields Institute Communications), Volume 32, American Mathematical Society, 2002, pp. 385-449 | DOI | MR | Zbl

[42] Ernst Witt Zyklische Körper und Algebren der Charakteristik p vom Grad p n . Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik p, J. Reine Angew. Math., Volume 176 (1937), pp. 126-140 | MR | DOI | Zbl

[43] Igor Zhukov Higher dimensional local fields, Invitation to higher local fields (Münster, 1999) (Geometry and Topology Monographs), Volume 3, Geometry and Topology Publications, 2000, pp. 5-18 | DOI | MR | Zbl

Cité par Sources :