Given a field with a set of discrete valuations $V$, we show how the genus of a division algebra over the field is related to the genus of the residue algebras at various valuations in $V$ and the ramification data. When the division algebra is a quaternion, we show the triviality of genus over many fields which include higher local fields, function fields of curves over higher local fields and function fields of curves over real closed fields. We also consider function fields of curves over global fields with a rational point and show how the genus problem is related to the $2$-torsion of the Tate–Shafarevich group of its Jacobian. As a special case, we show how the methods developed yield better bounds on the size of the genus over function fields of elliptic curves and demonstrate how they can be computed directly using arithmetic data of the elliptic curve with a number of examples.
Étant donné un corps muni d’un ensemble de valuations discrètes $V$, nous montrons comment le genre d’une algèbre à division sur ce corps est lié aux genres des algèbres résiduelles par rapport à $V$ et à des propriétés de ramification. Nous démontrons la trivialité du genre pour les algèbres de quaternions sur une large classe de corps, y compris les corps locaux multidimensionnels et les corps de fonctions des courbes définies sur un corps local multidimensionnel ou sur un corps réel clos. En outre, nous considérons le cas du corps de fonctions d’une courbe ayant un point rationnel sur un corps global et établissons un lien entre le problème de genre sur ce corps et la $2$-torsion du groupe de Tate–Shafarevich de sa jacobienne. En particulier, nous montrons que sur les corps de fonctions des courbes elliptiques, les méthodes développées donnent de meilleurs bornes pour le genre et expliquons comment elles peuvent être calculées directement en utilisant des informations arithmétiques, en donnant des exemples.
Révisé le :
Accepté le :
Publié le :
Keywords: Brauer groups, genus of division algebras, quaternions, elliptic curves, Tate–Shafarevich group, discrete valued fields, higher local fields, semi-global fields
Srinivasan Srimathy 1
CC-BY-ND 4.0
@article{JTNB_2025__37_2_535_0,
author = {Srinivasan Srimathy},
title = {The genus of division algebras over discrete valued fields},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {535--567},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1331},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1331/}
}
TY - JOUR AU - Srinivasan Srimathy TI - The genus of division algebras over discrete valued fields JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 535 EP - 567 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1331/ DO - 10.5802/jtnb.1331 LA - en ID - JTNB_2025__37_2_535_0 ER -
%0 Journal Article %A Srinivasan Srimathy %T The genus of division algebras over discrete valued fields %J Journal de théorie des nombres de Bordeaux %D 2025 %P 535-567 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1331/ %R 10.5802/jtnb.1331 %G en %F JTNB_2025__37_2_535_0
Srinivasan Srimathy. The genus of division algebras over discrete valued fields. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 535-567. doi: 10.5802/jtnb.1331
[1] Structure of algebras, Colloquium Publications, XXIV, American Mathematical Society, 1961, xi+210 pages (revised printing) | MR
[2] On maximally central algebras, Nagoya Math. J., Volume 2 (1951), pp. 119-150 | DOI | Zbl | MR
[3] Arithmetic on curves of genus . IV. Proof of the Hauptvermutung, J. Reine Angew. Math., Volume 211 (1962), pp. 95-112 | Zbl | DOI | MR
[4] Purity for the Brauer group, Duke Math. J., Volume 168 (2019) no. 8, pp. 1461-1486 | DOI | MR | Zbl
[5] Total linkage of quaternion algebras and Pfister forms in characteristic two, J. Pure Appl. Algebra, Volume 220 (2016) no. 11, pp. 3676-3691 | MR | Zbl | DOI
[6] The genus of a division algebra and the unramified Brauer group, Bull. Math. Sci., Volume 3 (2013) no. 2, pp. 211-240 | Zbl | DOI | MR
[7] Division algebras with the same maximal subfields, Usp. Mat. Nauk, Volume 70 (2015) no. 1(421), pp. 89-122 | Zbl | DOI | MR
[8] On the size of the genus of a division algebra, Tr. Mat. Inst. Steklova, Volume 292 (2016), pp. 69-99 | DOI | MR | Zbl
[9] Real components of algebraic varieties and étale cohomology, Invent. Math., Volume 101 (1990) no. 1, pp. 81-99 | Zbl | DOI | MR
[10] Patching and local-global principles for homogeneous spaces over function fields of -adic curves, Comment. Math. Helv., Volume 87 (2012) no. 4, pp. 1011-1033 | DOI | MR | Zbl
[11] The Brauer-Grothendieck group, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 71, Springer, 2021, xv+453 pages | MR | Zbl | DOI
[12] Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 11, Springer, 2005, xxiv+780 pages | DOI | Zbl | MR
[13] Quaternion algebras with the same subfields, Quadratic forms, linear algebraic groups, and cohomology (Developments in Mathematics), Volume 18, Springer, 2010, pp. 225-238 | Zbl | DOI | MR
[14] Central simple algebras and Galois cohomology, Cambridge Studies in Advanced Mathematics, 101, Cambridge University Press, 2006, xii+343 pages | Zbl | DOI | MR
[15] Le groupe de Brauer. III. Exemples et compléments, Dix exposés sur la cohomologie des schémas (Advanced Studies in Pure Mathematics), Volume 3, North-Holland, 1968, pp. 88-188 | Zbl | MR
[16] Le groupe de Brauer. II. Théorie cohomologique, Séminaire Bourbaki, Vol. 9, Société Mathématique de France, 1995, pp. 287-307 (Exp. No. 297) | MR
[17] Division algebras over Henselian fields, J. Algebra, Volume 128 (1990) no. 1, pp. 126-179 | Zbl | DOI | MR
[18] Division algebras with common subfields, Manuscr. Math., Volume 169 (2022) no. 1-2, pp. 209-249 | Zbl | DOI | MR
[19] Distinguishing division algebras by finite splitting fields, Manuscr. Math., Volume 134 (2011) no. 1-2, pp. 171-182 | Zbl | DOI | MR
[20] The defect, Commutative algebra—Noetherian and non-Noetherian perspectives, Springer, 2011, pp. 277-318 | Zbl | DOI | MR
[21] Algebraic number theory, Graduate Texts in Mathematics, 110, Springer, 1994, xiv+357 pages | Zbl | DOI | MR
[22] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002, xvi+576 pages (translated from the French by Reinie Erné, Oxford Science Publications) | Zbl | MR
[23] On the corestriction of -symbol, Isr. J. Math., Volume 76 (1991) no. 1-2, pp. 73-79 | DOI | MR | Zbl
[24] Algebraic Number Theory (v3.08), 2020, p. 166 (available at www.jmilne.org/math/)
[25] The Henselization of a valued division algebra, J. Algebra, Volume 122 (1989) no. 1, pp. 232-243 | Zbl | DOI | MR
[26] On defective division algebras, -theory and algebraic geometry: connections with quadratic forms and division algebras (Santa Barbara, CA, 1992) (Proceedings of Symposia in Pure Mathematics), Volume 58, American Mathematical Society, 1995, pp. 359-367 | Zbl | MR
[27] An introduction to higher dimensional local fields and adeles (2012) | arXiv | Zbl | DOI
[28] Nicely semiramified division algebras over Henselian fields, Int. J. Math. Math. Sci., Volume 2005 (2005) no. 4, pp. 571-577 | Zbl | DOI | MR
[29] Hasse principle for Witt groups of function fields with special reference to elliptic curves, Duke Math. J., Volume 85 (1996) no. 3, pp. 555-582 (with an appendix by J.-L. Colliot-Thélène) | Zbl | DOI | MR
[30] Associative algebras, Studies in the History of Modern Science, 9, Springer, 1982, xii+436 pages | DOI | Zbl | MR
[31] Rational points on varieties, Graduate Studies in Mathematics, 186, American Mathematical Society, 2017, xv+337 pages | Zbl | DOI | MR
[32] Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 109 (2009), pp. 113-184 | MR | Zbl | Numdam | DOI
[33] Generic elements in Zariski-dense subgroups and isospectral locally symmetric spaces, Thin groups and superstrong approximation (Mathematical Sciences Research Institute Publications), Volume 61, Cambridge University Press, 2014, pp. 211-252 | DOI | Zbl | MR
[34] On division algebras having the same maximal subfields, Manuscr. Math., Volume 132 (2010) no. 3-4, pp. 273-293 | Zbl | DOI | MR
[35] Lectures on division algebras, CBMS Regional Conference Series in Mathematics, 94, American Mathematical Society, 1999, viii+120 pages | Zbl | DOI | MR
[36] Local fields, Graduate Texts in Mathematics, 67, Springer, 1979, viii+241 pages (translated from the French by Marvin Jay Greenberg) | DOI | Zbl | MR
[37] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009, xx+513 pages | MR | Zbl | DOI
[38] The Stacks project, https://stacks.math.columbia.edu, 2022
[39] Zerfallende zyklische -Algebren, J. Reine Angew. Math., Volume 176 (1937), pp. 157-160 | DOI | MR | Zbl
[40] Totally ramified valuations on finite-dimensional division algebras, Trans. Am. Math. Soc., Volume 302 (1987) no. 1, pp. 223-250 | DOI | MR | Zbl
[41] Valuation theory on finite dimensional division algebras, Valuation theory and its applications, Vol. I (Saskatoon, SK, 1999) (Fields Institute Communications), Volume 32, American Mathematical Society, 2002, pp. 385-449 | DOI | MR | Zbl
[42] Zyklische Körper und Algebren der Charakteristik vom Grad . Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik , J. Reine Angew. Math., Volume 176 (1937), pp. 126-140 | MR | DOI | Zbl
[43] Higher dimensional local fields, Invitation to higher local fields (Münster, 1999) (Geometry and Topology Monographs), Volume 3, Geometry and Topology Publications, 2000, pp. 5-18 | DOI | MR | Zbl
Cité par Sources :