We establish the stability of Rankin–Selberg local $\gamma $-factors attached to generic representations of symplectic groups and general linear groups over $p$-adic fields. Our approach uses the Langlands–Shahidi method and provides a new proof that does not rely on previously known stability results. The key innovations involve handling the geometry of orbit spaces with non-trivial stabilizers and developing new techniques for analyzing partial Bessel integrals in this setting. The results have important implications for the Langlands program, particularly for local converse theorems and the functoriality conjecture.
Nous établissons la stabilité des facteurs $\gamma $ locaux de Rankin–Selberg attachés aux représentations génériques des groupes symplectiques et des groupes généraux linéaires sur les corps $p$-adiques. Notre approche utilise la méthode de Langlands–Shahidi et fournit une nouvelle preuve qui ne repose pas sur les résultats de stabilité précédemment connus. Les innovations clés incluent la maîtrise de la géométrie des espaces d’orbites avec des stabilisateurs non triviaux et le développement de nouvelles techniques pour analyser les intégrales de Bessel partielles dans ce cadre. Ces résultats ont des implications importantes pour le programme de Langlands, en particulier pour les théorèmes de réciprocité locaux et la conjecture de fonctorialité.
Accepté le :
Accepté après révision le :
Publié le :
Keywords: Langlands–Shahidi method, L-functions, $\epsilon $-factors, $\gamma $-factors, partial Bessel integrals
Taiwang Deng 1 ; Dongming She 1
CC-BY-ND 4.0
@article{JTNB_2025__37_2_479_0,
author = {Taiwang Deng and Dongming She},
title = {Stability of {Rankin{\textendash}Selberg} local $\gamma $-factors for split classical groups: {The} symplectic case},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {479--533},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1330},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1330/}
}
TY - JOUR AU - Taiwang Deng AU - Dongming She TI - Stability of Rankin–Selberg local $\gamma $-factors for split classical groups: The symplectic case JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 479 EP - 533 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1330/ DO - 10.5802/jtnb.1330 LA - en ID - JTNB_2025__37_2_479_0 ER -
%0 Journal Article %A Taiwang Deng %A Dongming She %T Stability of Rankin–Selberg local $\gamma $-factors for split classical groups: The symplectic case %J Journal de théorie des nombres de Bordeaux %D 2025 %P 479-533 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1330/ %R 10.5802/jtnb.1330 %G en %F JTNB_2025__37_2_479_0
Taiwang Deng; Dongming She. Stability of Rankin–Selberg local $\gamma $-factors for split classical groups: The symplectic case. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 479-533. doi: 10.5802/jtnb.1330
[1] Elements of mathematics. Lie groups and Lie algebras. Chapters 4–6., Springer, 2008, xi+300 pages | MR | Zbl
[2] The generalized doubling method: local theory, Geom. Funct. Anal., Volume 32 (2022), pp. 1233-1333 https://api.semanticscholar.org/corpusid:252629978 | MR | Zbl
[3] Stability of gamma factors for ., Manuscr. Math., Volume 95 (1998) no. 4, pp. 437-462 http://eudml.org/doc/156387 | DOI | MR | Zbl
[4] Partial Bessel functions for quasi-split groups, Automorphic representations, -functions and applications: progress and prospects (Ohio State University Mathematical Research Institute Publications), Volume 11, Walter de Gruyter, 2005, pp. 95-128 | Zbl | DOI | MR
[5] Stability of -factors for quasi-split groups, J. Inst. Math. Jussieu, Volume 7 (2008) no. 1, pp. 27-66 | Zbl | DOI | MR
[6] Local Langlands correspondence for and the exterior and symmetric square -factors, Duke Math. J., Volume 166 (2017) no. 11, pp. 2053-2132 | DOI | MR | Zbl
[7] Les constantes des équations fonctionnelles des fonctions , Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 349, Springer (1973), pp. 501-597 | MR
[8] A lemma on highly ramified -factors, Math. Ann., Volume 271 (1985) no. 3, pp. 319-332 | Zbl | DOI | MR
[9] Stability of the local gamma factor arising from the doubling method, Math. Ann., Volume 333 (2005) no. 2, pp. 291-313 | Zbl | DOI | MR
[10] A proof of Langlands’ conjecture on Plancherel measures; complementary series for -adic groups, Ann. Math. (2), Volume 132 (1990) no. 2, pp. 273-330 | Zbl | DOI | MR
[11] Local coefficients as Mellin transforms of Bessel functions: towards a general stability, Int. Math. Res. Not., Volume 2002 (2002) no. 39, pp. 2075-2119 | DOI | Zbl | MR
[12] Eisenstein series and automorphic -functions, Colloquium Publications, 58, American Mathematical Society, 2010, vi+210 pages | Zbl | DOI | MR
[13] Local Langlands correspondence for Asai functions and -factors (2018) | arXiv | Zbl
[14] Stability of symmetric cube gamma factors for (2019) | arXiv | Zbl
[15] Local Langlands correspondence for the twisted exterior and symmetric square -factors of , Manuscr. Math., Volume 173 (2024) no. 1-2, pp. 155-201 | MR | Zbl
[16] Some structural results for the stability of root numbers, Int. Math. Res. Not., Volume 2008 (2008) no. 2, rnm141, 22 pages | DOI | MR
[17] Stability of local gamma factors arising from the doubling method for general spin groups (2021) | arXiv
[18] Stability of Rankin–Selberg gamma factors for , and , Int. J. Number Theory, Volume 13 (2017) no. 9, pp. 2393-2432 | Zbl | DOI | MR
Cité par Sources :