Amoroso and Masser proved that for every real $\epsilon > 0$, there exists a constant $c(\epsilon )>0$, with the property that, for every algebraic number $\alpha $ such that $\mathbb{Q}(\alpha )/\mathbb{Q}$ is a Galois extension, the height of $\alpha $ is either 0 or at least $c(\epsilon ) [\mathbb{Q}(\alpha ):\mathbb{Q}]^{-\epsilon }$. In the present article, we establish an explicit version of the aforementioned theorem.
Amoroso et Masser ont prouvé que, pour tout réel $\epsilon > 0$, il existe une constante $c(\epsilon ) > 0$, avec la propriété suivante : pour tout nombre algébrique $\alpha $ tel que $\mathbb{Q}(\alpha )/\mathbb{Q}$ est une extension galoisienne, la hauteur de $\alpha $ est soit nulle, soit au moins $c(\epsilon ) [\mathbb{Q}(\alpha ) : \mathbb{Q}]^{-\epsilon }$. Dans le présent article, nous établissons une version explicite de ce théorème.
Révisé le :
Accepté le :
Publié le :
Keywords: Height bounds, Galois extensions, Lehmer’s problem
Jonathan Jenvrin 1
CC-BY-ND 4.0
@article{JTNB_2025__37_2_469_0,
author = {Jonathan Jenvrin},
title = {Explicit lower bounds for the height in {Galois} extensions of number fields},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {469--477},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1329},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1329/}
}
TY - JOUR AU - Jonathan Jenvrin TI - Explicit lower bounds for the height in Galois extensions of number fields JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 469 EP - 477 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1329/ DO - 10.5802/jtnb.1329 LA - en ID - JTNB_2025__37_2_469_0 ER -
%0 Journal Article %A Jonathan Jenvrin %T Explicit lower bounds for the height in Galois extensions of number fields %J Journal de théorie des nombres de Bordeaux %D 2025 %P 469-477 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1329/ %R 10.5802/jtnb.1329 %G en %F JTNB_2025__37_2_469_0
Jonathan Jenvrin. Explicit lower bounds for the height in Galois extensions of number fields. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 469-477. doi: 10.5802/jtnb.1329
[1] Mahler measure on Galois extensions, Int. J. Number Theory, Volume 14 (2018) no. 6, pp. 1605-1617 | Zbl | MR | DOI
[2] Le problème de Lehmer en dimension supérieure, J. Reine Angew. Math., Volume 513 (1999), pp. 145-179 | Zbl | DOI | MR
[3] On fields with property (B), Proc. Am. Math. Soc., Volume 142 (2014) no. 6, pp. 1893-1910 | DOI | MR | Zbl
[4] Une minoration relative explicite pour la hauteur dans une extension d’une extension abélienne, Diophantine geometry (Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series (Nuova Serie)), Volume 4, Edizioni della Normale, 2007, pp. 1-24 | Zbl
[5] A lower bound for the height in abelian extensions, J. Number Theory, Volume 80 (2000) no. 2, pp. 260-272 | DOI | MR | Zbl
[6] Lower bounds for the height in Galois extensions, Bull. Lond. Math. Soc., Volume 48 (2016) no. 6, pp. 1008-1012 erratum in ibid. 48 (2016), no 6, p. 1050 | DOI | MR | Zbl
[7] Small points on rational subvarieties of tori., Comment. Math. Helv., Volume 87 (2012) no. 2, pp. 355-383 | DOI | MR | Zbl
[8] A uniform relative Dobrowolski’s lower bound over Abelian extensions, Bull. Lond. Math. Soc., Volume 42 (2010) no. 3, pp. 489-498 | DOI | MR | Zbl
[9] Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006, xvi+652 pages | MR | Zbl
[10] A note on heights in certain infinite extensions of , Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 12 (2001) no. 1, pp. 5-14 | MR | Zbl
[11] On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith., Volume 34 (1979), pp. 391-401 | DOI | MR | Zbl
[12] On the height of some generators of galois extensions with big galois group (2024) | arXiv
[13] Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | DOI | MR | Zbl
[14] Factorization of certain cyclotomic functions, Ann. Math. (2), Volume 34 (1933), pp. 461-479 | DOI | Zbl
[15] Degré de définition des endomorphismes d’une variété abélienne, J. Eur. Math. Soc., Volume 22 (2020) no. 9, pp. 3059-3099 | DOI | MR | Zbl
[16] A remark on Stirling’s formula, Am. Math. Mon., Volume 62 (1955), pp. 26-29 | DOI | MR | Zbl
[17] Approximate formulas for some functions of prime numbers, Ill. J. Math., Volume 6 (1962), pp. 64-94 | MR | Zbl
[18] On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith., Volume 24 (1973), pp. 385-399 | DOI | MR | Zbl
[19] On the product of the conjugates outside the unit circle of an algebraic integer, Bull. Lond. Math. Soc., Volume 3 (1971), pp. 169-175 | DOI | MR | Zbl
[20] An effective lower bound for the height of algebraic numbers, Acta Arith., Volume 74 (1996) no. 1, pp. 81-95 | DOI | MR | Zbl
Cité par Sources :