Explicit lower bounds for the height in Galois extensions of number fields
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 469-477

Amoroso and Masser proved that for every real $\epsilon > 0$, there exists a constant $c(\epsilon )>0$, with the property that, for every algebraic number $\alpha $ such that $\mathbb{Q}(\alpha )/\mathbb{Q}$ is a Galois extension, the height of $\alpha $ is either 0 or at least $c(\epsilon ) [\mathbb{Q}(\alpha ):\mathbb{Q}]^{-\epsilon }$. In the present article, we establish an explicit version of the aforementioned theorem.

Amoroso et Masser ont prouvé que, pour tout réel $\epsilon > 0$, il existe une constante $c(\epsilon ) > 0$, avec la propriété suivante : pour tout nombre algébrique $\alpha $ tel que $\mathbb{Q}(\alpha )/\mathbb{Q}$ est une extension galoisienne, la hauteur de $\alpha $ est soit nulle, soit au moins $c(\epsilon ) [\mathbb{Q}(\alpha ) : \mathbb{Q}]^{-\epsilon }$. Dans le présent article, nous établissons une version explicite de ce théorème.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1329
Classification : 11G50
Keywords: Height bounds, Galois extensions, Lehmer’s problem

Jonathan Jenvrin 1

1 100 Rue des Mathématiques, 38610 Gières, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_2_469_0,
     author = {Jonathan Jenvrin},
     title = {Explicit lower bounds for the height in {Galois} extensions of number fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {469--477},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {2},
     doi = {10.5802/jtnb.1329},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1329/}
}
TY  - JOUR
AU  - Jonathan Jenvrin
TI  - Explicit lower bounds for the height in Galois extensions of number fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 469
EP  - 477
VL  - 37
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1329/
DO  - 10.5802/jtnb.1329
LA  - en
ID  - JTNB_2025__37_2_469_0
ER  - 
%0 Journal Article
%A Jonathan Jenvrin
%T Explicit lower bounds for the height in Galois extensions of number fields
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 469-477
%V 37
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1329/
%R 10.5802/jtnb.1329
%G en
%F JTNB_2025__37_2_469_0
Jonathan Jenvrin. Explicit lower bounds for the height in Galois extensions of number fields. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 469-477. doi: 10.5802/jtnb.1329

[1] Francesco Amoroso Mahler measure on Galois extensions, Int. J. Number Theory, Volume 14 (2018) no. 6, pp. 1605-1617 | Zbl | MR | DOI

[2] Francesco Amoroso; Sinnou David Le problème de Lehmer en dimension supérieure, J. Reine Angew. Math., Volume 513 (1999), pp. 145-179 | Zbl | DOI | MR

[3] Francesco Amoroso; Sinnou David; Umberto Zannier On fields with property (B), Proc. Am. Math. Soc., Volume 142 (2014) no. 6, pp. 1893-1910 | DOI | MR | Zbl

[4] Francesco Amoroso; Emmanuel Delsinne Une minoration relative explicite pour la hauteur dans une extension d’une extension abélienne, Diophantine geometry (Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series (Nuova Serie)), Volume 4, Edizioni della Normale, 2007, pp. 1-24 | Zbl

[5] Francesco Amoroso; Roberto Dvornicich A lower bound for the height in abelian extensions, J. Number Theory, Volume 80 (2000) no. 2, pp. 260-272 | DOI | MR | Zbl

[6] Francesco Amoroso; David Masser Lower bounds for the height in Galois extensions, Bull. Lond. Math. Soc., Volume 48 (2016) no. 6, pp. 1008-1012 erratum in ibid. 48 (2016), no 6, p. 1050 | DOI | MR | Zbl

[7] Francesco Amoroso; Evelina Viada Small points on rational subvarieties of tori., Comment. Math. Helv., Volume 87 (2012) no. 2, pp. 355-383 | DOI | MR | Zbl

[8] Francesco Amoroso; Umberto Zannier A uniform relative Dobrowolski’s lower bound over Abelian extensions, Bull. Lond. Math. Soc., Volume 42 (2010) no. 3, pp. 489-498 | DOI | MR | Zbl

[9] Enrico Bombieri; Walter Gubler Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006, xvi+652 pages | MR | Zbl

[10] Enrico Bombieri; Umberto Zannier A note on heights in certain infinite extensions of , Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 12 (2001) no. 1, pp. 5-14 | MR | Zbl

[11] Edward Dobrowolski On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith., Volume 34 (1979), pp. 391-401 | DOI | MR | Zbl

[12] Jonathan Jenvrin On the height of some generators of galois extensions with big galois group (2024) | arXiv

[13] Serge Lang Algebra, Graduate Texts in Mathematics, 211, Springer, 2002 | DOI | MR | Zbl

[14] Derrick Henry Lehmer Factorization of certain cyclotomic functions, Ann. Math. (2), Volume 34 (1933), pp. 461-479 | DOI | Zbl

[15] Gaël Rémon Degré de définition des endomorphismes d’une variété abélienne, J. Eur. Math. Soc., Volume 22 (2020) no. 9, pp. 3059-3099 | DOI | MR | Zbl

[16] Herbert Robbins A remark on Stirling’s formula, Am. Math. Mon., Volume 62 (1955), pp. 26-29 | DOI | MR | Zbl

[17] J. Barkley Rosser; Lowell Schoenfeld Approximate formulas for some functions of prime numbers, Ill. J. Math., Volume 6 (1962), pp. 64-94 | MR | Zbl

[18] Andrzej Schinzel On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith., Volume 24 (1973), pp. 385-399 | DOI | MR | Zbl

[19] Christopher James Smyth On the product of the conjugates outside the unit circle of an algebraic integer, Bull. Lond. Math. Soc., Volume 3 (1971), pp. 169-175 | DOI | MR | Zbl

[20] Paul M. Voutier An effective lower bound for the height of algebraic numbers, Acta Arith., Volume 74 (1996) no. 1, pp. 81-95 | DOI | MR | Zbl

Cité par Sources :