In this paper, we continue the study of unit reducible fields as introduced in [10] for the special case of cyclotomic fields. Specifically, we deduce that the cyclotomic fields of conductors $3,4,5,7,8,9,12,15$ are all unit reducible, and show that any cyclotomic field of conductor $N$ is not unit reducible if $2^4, 3^3, 5^2, 7^2, 11^2$ or any prime $p \ge 13$ divide $N$, meaning the unit reducible cyclotomic fields are finite in number. Finally, if $a$ is a totally positive element of a cyclotomic field, we show that for all equivalent $a^\prime $, the discrepancy between $\mathrm{Tr}_{K/\mathbb{Q}}(a^\prime )$ and the shortest nonzero element of the quadratic form $\mathrm{Tr}_{K/\mathbb{Q}}(axx^*)$ where $x$ is taken from the ring of integers tends to infinity as the conductor $N$ goes to infinity.
Disclaimer:Due to an error during submission not caught in proofs, this article was initially published with the wrong title “Unit Reducible Fields and Perfect Unary Forms”.
Dans cet article, nous poursuivons l’étude des corps réductibles à l’unité, telle qu’introduite dans [10] pour le cas particulier des corps cyclotomiques. Plus précisément, nous en déduisons que les corps cyclotomiques des conducteurs $3,4,5,7,8,9,12,15$ sont tous réductibles à l’unité, et montrons que tout corps cyclotomique de conducteur $N$ n’est pas réductible à l’unité si $2^4$, $3^3$, $5^2, 7^2, 11^2$ ou tout nombre premier $p \ge 13$ divise $N$, ce qui signifie que les corps cyclotomiques réductibles à l’unité sont en nombre fini. Enfin, si $a$ est un élément totalement positif d’un corps cyclotomique, nous montrons que pour tout $a^\prime $ équivalent, l’écart entre $\mathrm{Tr}_{K/\mathbb{Q}}(a^\prime )$ et le plus court élément non nul de la forme quadratique $\mathrm{Tr}_{K/\mathbb{Q}}(axx^*)$ où $x$ est tiré de l’anneau des entiers tend vers l’infini lorsque le conducteur $N$ tend vers l’infini.
Avertissement :En raison d’une erreur dans la soumission qui n’a pas été détectée lors de la mise en page, cet article a d’abord été publié sous le titre erroné « Unit Reducible Fields and Perfect Unary Forms ».
Révisé le :
Accepté le :
Publié le :
Keywords: Reduction Theory, Quadratic Forms, Algebraic Number Theory
Christian Porter 1 ; Cong Ling 1 ; Piero Sarti 1 ; Alar Leibak 2
CC-BY-ND 4.0
@article{JTNB_2025__37_2_443_0,
author = {Christian Porter and Cong Ling and Piero Sarti and Alar Leibak},
title = {Unit {Reducible} {Fields} and {Perfect} {Unary} {Forms} {II.} {Cyclotomic} {Fields}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {443--456},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {2},
doi = {10.5802/jtnb.1327},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1327/}
}
TY - JOUR AU - Christian Porter AU - Cong Ling AU - Piero Sarti AU - Alar Leibak TI - Unit Reducible Fields and Perfect Unary Forms II. Cyclotomic Fields JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 443 EP - 456 VL - 37 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1327/ DO - 10.5802/jtnb.1327 LA - en ID - JTNB_2025__37_2_443_0 ER -
%0 Journal Article %A Christian Porter %A Cong Ling %A Piero Sarti %A Alar Leibak %T Unit Reducible Fields and Perfect Unary Forms II. Cyclotomic Fields %J Journal de théorie des nombres de Bordeaux %D 2025 %P 443-456 %V 37 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1327/ %R 10.5802/jtnb.1327 %G en %F JTNB_2025__37_2_443_0
Christian Porter; Cong Ling; Piero Sarti; Alar Leibak. Unit Reducible Fields and Perfect Unary Forms II. Cyclotomic Fields. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 2, pp. 443-456. doi: 10.5802/jtnb.1327
[1] The minimum values of positive quadratic forms in six, seven and eight variables, Math. Z., Volume 39 (1935), pp. 1-15 | Zbl | DOI | MR
[2] Soliloquy: A cautionary tale, 2014 (ETSI 2nd Quantum-Safe Crypto Workshop)
[3] Recovering short generators of principal ideals in cyclotomic rings, Advances in cryptology – EUROCRYPT 2016 (Lecture Notes in Computer Science), Volume 9666, Springer (2016), pp. 559-585 | Zbl | DOI | MR
[4] Candidate multilinear maps from ideal lattices, Advances in cryptology – EUROCRYPT 2013 (Lecture Notes in Computer Science), Volume 7881, Springer (2013), pp. 1-17 | DOI | MR | Zbl
[5] Lattice reduction over Euclidean rings with applications to cryptanalysis, Cryptography and Coding – IMACC 2017 (Lecture Notes in Computer Science), Volume 10655, Springer (2017), pp. 371-391 | MR
[6] Sur les formes quadratiques, Math. Ann., Volume 6 (1873), pp. 366-389 | DOI | MR | Zbl
[7] GGHLite: More efficient multilinear maps from ideal lattices, Advances in cryptology – EUROCRYPT 2014 (Lecture Notes in Computer Science), Volume 8441, Springer (2014), pp. 239-256 | DOI | MR | Zbl
[8] An LLL algorithm for module lattices, Advances in cryptology – ASIACRYPT 2019 (Lecture Notes in Computer Science), Volume 11922, Springer (2019), pp. 59-90 | MR | Zbl
[9] On additive generalization of Voronoï’s theory for algebraic number fields, Proc. Est. Acad. Sci., Phys. Math., Volume 54 (2005) no. 4, pp. 195-211 | MR | Zbl
[10] Unit reducible fields and perfect unary forms, J. Théor. Nombres Bordeaux, Volume 35 (2023) no. 3, pp. 867-895 | Zbl | DOI | MR | Numdam
[11] Euclid’s algorithm in cyclotomic fields, J. Lond. Math. Soc. (2), Volume 10 (1975) no. 4, pp. 457-465 | DOI | MR | Zbl
[12] On ideal lattices and learning with errors over rings, Advances in cryptology – EUROCRYPT 2010 (Lecture Notes in Computer Science), Volume 6110, Springer (2010), pp. 1-23 | DOI | MR | Zbl
[13] Algebraic Number Theory, 2020 (e-book, https://www.jmilne.org/math/CourseNotes/ANT.pdf)
[14] Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process, NIST Interagency/Internal Report (NISTIR), NIST Pubs, 2020 | DOI
[15] Cyclotomic quadratic forms, J. Théor. Nombres Bordeaux, Volume 12 (2000) no. 2, pp. 519-530 | DOI | MR | Numdam | Zbl
[16] Fully homomorphic encryption with relatively small key and ciphertext sizes, Public key cryptography – PKC 2010 (Lecture Notes in Computer Science), Volume 6056, Springer, 2010, pp. 420-443 | DOI | MR | Zbl
[17] Making NTRU as secure as worst-case problems over ideal lattices, Advances in cryptology – EUROCRYPT 2011 (Lecture Notes in Computer Science), Volume 6632, Springer (2011), pp. 27-47 | DOI | MR | Zbl
Cité par Sources :