Let $\pi (t)$ be the number of primes not exceeding $t$. Let $1<c<d$ be two relatively prime integers and $g_{c,d}=cd-c-d$. We confirm, by combining the Hardy–Littlewood method with the Siegel–Walfisz theorem, a 2020 conjecture of Ramírez Alfonsín and Skałba which states that
| \[ \#\left\lbrace p\le g_{c,d}:p\in \mathcal{P},~p=cx+dy,~x,y\in \mathbb{Z}_{\geqslant 0}\right\rbrace \sim \frac{1}{2}\pi \left(g_{c,d}\right) \] |
as $c\rightarrow \infty ,$ where $\mathcal{P}$ and $\mathbb{Z}_{\geqslant 0}$ denote the sets of primes and nonnegative integers, respectively.
Soit $\pi (t)$ le nombre de nombres premiers inférieurs ou égaux à $t.$ Soient $1<c<d$ deux entiers premiers entre eux et $g_{c,d}=cd-c-d$. En combinant la méthode de Hardy–Littlewood avec le théorème de Siegel–Walfisz, nous démontrons la conjecture, énoncée en 2020 par Ramírez Alfonsín et Skałba, qui affirme que
| \[ \#\left\lbrace p\le g_{c,d}:p\in \mathcal{P},~p=cx+dy,~x,y\in \mathbb{Z}_{\geqslant 0}\right\rbrace \sim \frac{1}{2}\pi \left(g_{c,d}\right) \] |
quand $c\rightarrow \infty ,$ où $\mathcal{P}$ et $\mathbb{Z}_{\geqslant 0}$ désignent l’ensemble des nombres premiers et l’ensemble des entiers non négatifs respectivement.
Révisé le :
Accepté le :
Publié le :
Keywords: Frobenius–type problems, Hardy–Littlewood method, primes, Siegel–Walfisz theorem
Yuchen Ding 1 ; Wenguang Zhai 2 ; Lilu Zhao 3
CC-BY-ND 4.0
@article{JTNB_2025__37_1_357_0,
author = {Yuchen Ding and Wenguang Zhai and Lilu Zhao},
title = {On a conjecture of {Ram{\'\i}rez} {Alfons{\'\i}n} and {Ska{\l}ba} {II}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {357--371},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {1},
doi = {10.5802/jtnb.1324},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1324/}
}
TY - JOUR AU - Yuchen Ding AU - Wenguang Zhai AU - Lilu Zhao TI - On a conjecture of Ramírez Alfonsín and Skałba II JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 357 EP - 371 VL - 37 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1324/ DO - 10.5802/jtnb.1324 LA - en ID - JTNB_2025__37_1_357_0 ER -
%0 Journal Article %A Yuchen Ding %A Wenguang Zhai %A Lilu Zhao %T On a conjecture of Ramírez Alfonsín and Skałba II %J Journal de théorie des nombres de Bordeaux %D 2025 %P 357-371 %V 37 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1324/ %R 10.5802/jtnb.1324 %G en %F JTNB_2025__37_1_357_0
Yuchen Ding; Wenguang Zhai; Lilu Zhao. On a conjecture of Ramírez Alfonsín and Skałba II. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 357-371. doi: 10.5802/jtnb.1324
[1] On infinite arithmetic progressions in sumsets, Sci. China, Math., Volume 66 (2023) no. 12, pp. 2669-2682 | DOI | Zbl
[2] On a conjecture of Ramírez Alfonsín and Skałba, J. Number Theory, Volume 245 (2023), pp. 292-302 | DOI | MR | Zbl
[3] Additive number theory: The classical bases, Graduate Texts in Mathematics, 164, Springer, 1996, xiv+342 pages | MR | Zbl
[4] The Diophantine Frobenius Problem, Oxford Lecture Series in Mathematics and its Applications, 30, Oxford University Press, 2005, xvi+243 pages | DOI | MR | Zbl
[5] Primes in numerical semigroups, C. R. Math., Volume 358 (2020) no. 9-10, pp. 1001-1004 | DOI | Numdam | Zbl
[6] On subinvariants i.e. semi-invariants to binary quantics of an unlimited order, Am. J. Math., Volume 5 (1882) no. 1, pp. 79-136 | Zbl | DOI | MR
[7] The Hardy–Littlewood Method, Cambridge Tracts in Mathematics, 125, Cambridge University Press, 1997 | DOI | Zbl
Cité par Sources :