On a conjecture of Ramírez Alfonsín and Skałba II
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 357-371

Let $\pi (t)$ be the number of primes not exceeding $t$. Let $1<c<d$ be two relatively prime integers and $g_{c,d}=cd-c-d$. We confirm, by combining the Hardy–Littlewood method with the Siegel–Walfisz theorem, a 2020 conjecture of Ramírez Alfonsín and Skałba which states that

\[ \#\left\lbrace p\le g_{c,d}:p\in \mathcal{P},~p=cx+dy,~x,y\in \mathbb{Z}_{\geqslant 0}\right\rbrace \sim \frac{1}{2}\pi \left(g_{c,d}\right) \]

as $c\rightarrow \infty ,$ where $\mathcal{P}$ and $\mathbb{Z}_{\geqslant 0}$ denote the sets of primes and nonnegative integers, respectively.

Soit $\pi (t)$ le nombre de nombres premiers inférieurs ou égaux à $t.$ Soient $1<c<d$ deux entiers premiers entre eux et $g_{c,d}=cd-c-d$. En combinant la méthode de Hardy–Littlewood avec le théorème de Siegel–Walfisz, nous démontrons la conjecture, énoncée en 2020 par Ramírez Alfonsín et Skałba, qui affirme que

\[ \#\left\lbrace p\le g_{c,d}:p\in \mathcal{P},~p=cx+dy,~x,y\in \mathbb{Z}_{\geqslant 0}\right\rbrace \sim \frac{1}{2}\pi \left(g_{c,d}\right) \]

quand $c\rightarrow \infty ,$$\mathcal{P}$ et $\mathbb{Z}_{\geqslant 0}$ désignent l’ensemble des nombres premiers et l’ensemble des entiers non négatifs respectivement.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1324
Classification : 11N05, 11P55
Keywords: Frobenius–type problems, Hardy–Littlewood method, primes, Siegel–Walfisz theorem

Yuchen Ding 1 ; Wenguang Zhai 2 ; Lilu Zhao 3

1 School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, People’s Republic of China
2 China University of Mining and Technology, Beijing 100083, People’s Republic of China
3 School of Mathematics, Shandong University, Jinan 250100, People’s Republic of China
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_1_357_0,
     author = {Yuchen Ding and Wenguang Zhai and Lilu Zhao},
     title = {On a conjecture of {Ram{\'\i}rez} {Alfons{\'\i}n} and {Ska{\l}ba} {II}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {357--371},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {1},
     doi = {10.5802/jtnb.1324},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1324/}
}
TY  - JOUR
AU  - Yuchen Ding
AU  - Wenguang Zhai
AU  - Lilu Zhao
TI  - On a conjecture of Ramírez Alfonsín and Skałba II
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 357
EP  - 371
VL  - 37
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1324/
DO  - 10.5802/jtnb.1324
LA  - en
ID  - JTNB_2025__37_1_357_0
ER  - 
%0 Journal Article
%A Yuchen Ding
%A Wenguang Zhai
%A Lilu Zhao
%T On a conjecture of Ramírez Alfonsín and Skałba II
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 357-371
%V 37
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1324/
%R 10.5802/jtnb.1324
%G en
%F JTNB_2025__37_1_357_0
Yuchen Ding; Wenguang Zhai; Lilu Zhao. On a conjecture of Ramírez Alfonsín and Skałba II. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 357-371. doi: 10.5802/jtnb.1324

[1] Yong-Gao Chen; Quan-Hui Yang; Lilu Zhao On infinite arithmetic progressions in sumsets, Sci. China, Math., Volume 66 (2023) no. 12, pp. 2669-2682 | DOI | Zbl

[2] Yuchen Ding On a conjecture of Ramírez Alfonsín and Skałba, J. Number Theory, Volume 245 (2023), pp. 292-302 | DOI | MR | Zbl

[3] Melvyn B. Nathanson Additive number theory: The classical bases, Graduate Texts in Mathematics, 164, Springer, 1996, xiv+342 pages | MR | Zbl

[4] Jorge L. Ramírez Alfonsín The Diophantine Frobenius Problem, Oxford Lecture Series in Mathematics and its Applications, 30, Oxford University Press, 2005, xvi+243 pages | DOI | MR | Zbl

[5] Jorge L. Ramírez Alfonsín; Mariusz Skałba Primes in numerical semigroups, C. R. Math., Volume 358 (2020) no. 9-10, pp. 1001-1004 | DOI | Numdam | Zbl

[6] J. J. Sylvester On subinvariants i.e. semi-invariants to binary quantics of an unlimited order, Am. J. Math., Volume 5 (1882) no. 1, pp. 79-136 | Zbl | DOI | MR

[7] Robert C. Vaughan The Hardy–Littlewood Method, Cambridge Tracts in Mathematics, 125, Cambridge University Press, 1997 | DOI | Zbl

Cité par Sources :