Let
Soit
Révisé le :
Accepté le :
Publié le :
Keywords: Local conditions of adjoint representations, Gorenstein Hecke algebras, patching, congruences of
Byoung Du (BD) Kim 1

@article{JTNB_2025__37_1_325_0, author = {Byoung Du (BD) Kim}, title = {Local conditions of adjoint representations with supersingular reduction, and representable functors of deformations with higher weight liftings}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {325--355}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {37}, number = {1}, year = {2025}, doi = {10.5802/jtnb.1323}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1323/} }
TY - JOUR AU - Byoung Du (BD) Kim TI - Local conditions of adjoint representations with supersingular reduction, and representable functors of deformations with higher weight liftings JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 325 EP - 355 VL - 37 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1323/ DO - 10.5802/jtnb.1323 LA - en ID - JTNB_2025__37_1_325_0 ER -
%0 Journal Article %A Byoung Du (BD) Kim %T Local conditions of adjoint representations with supersingular reduction, and representable functors of deformations with higher weight liftings %J Journal de théorie des nombres de Bordeaux %D 2025 %P 325-355 %V 37 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1323/ %R 10.5802/jtnb.1323 %G en %F JTNB_2025__37_1_325_0
Byoung Du (BD) Kim. Local conditions of adjoint representations with supersingular reduction, and representable functors of deformations with higher weight liftings. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 325-355. doi : 10.5802/jtnb.1323. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1323/
[1] Congruences of two-variable
[2] Explicit construction of universal deformation rings, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, 1997, pp. 313-326 | DOI | MR | Zbl
[3] The Taylor–Wiles construction and multiplicity one, Invent. Math., Volume 128 (1997) no. 2, pp. 379-391 | DOI | MR | Zbl
[4] Groupes
[5] Construction de representations
[6] Theory of p-adic Galois Representations (lecture notes)
[7] Congruences of algebraic
[8] Geometric deformations of modular Galois representations, Invent. Math., Volume 157 (2004) no. 2, pp. 275-328 | DOI | MR | Zbl
[9] Deforming Galois representations, Galois groups over
[10] An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, 1997, pp. 243-311 | DOI | MR | Zbl
[11] Theorie d’Iwasawa
[12] Theorie d’Iwasawa des representations
[13] On a variation of Mazur’s deformation functor, Compos. Math., Volume 87 (1993) no. 3, pp. 269-286 | Numdam | MR | Zbl
[14] Functors of Artin rings, Trans. Am. Math. Soc., Volume 130 (1968), pp. 208-222 | DOI | MR | Zbl
[15] On certain Galois representations related to the modular curve
[16] Hecke rings, and universal deformation rings, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, 1997, pp. 421-445 | DOI | MR | Zbl
[17] Ring-theoretic properties of certain Hecke algebras, Ann. Math. (2), Volume 141 (1995) no. 3, pp. 553-572 | DOI | Zbl
[18] Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. (2), Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
Cité par Sources :