Local conditions of adjoint representations with supersingular reduction, and representable functors of deformations with higher weight liftings
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 325-355.

Let TE=W2 be a rank 2 crystalline GQp-representation of weights [0,1] with non-ordinary reduction where W is the ring of integers of some extension of Qp, and let T¯E be its residual representation. Suppose l2 and fix some big enough N which only depends on TE. We show that the group Extcr,[0,l1]1(T¯E,T¯E) (Definition 2.30) of extensions with crystalline liftings of weights [0,l1], which are themselves extensions of GQp-representations which are congruent to TE(modpN), is isomorphic to the group of finite flat extensions Extfl1(T¯E,T¯E) ([18, Chapter 1.1]). In addition, we construct a certain functor D of deformations of T¯E with liftings of certain type and weights [0,l1], satisfying certain congruences with TE, show D has a representable hull, and demonstrate some evidence that tDExtcr,[0,l1]1(T¯E,T¯E) and VTmW/mWD(TmW/mW) where T is the Hecke algebra Tl(Γ1(M)), m is its maximal ideal given by a weight l eigenform of level Γ1(M) whose Galois representation is congruent modulo pN to TE, and VTm is its associated Galois representation.

Soit W l’anneau des entiers d’une extension de Qp, et soit TE=W2 une représentation cristalline de rang 2 de GQp à poids de Hodge–Tate [0,1] ayant réduction non ordinaire. On note T¯E la représentation résiduelle de TE. Soit l2 et soit N un entier fixé suffisamment grand, qui ne dépend que de TE. Nous montrons que le groupe Extcr,[0,l1]1(T¯E,T¯E) d’extensions admettant des relèvements cristallins de poids [0,l1] qui sont eux-mêmes extensions de représentations de GQp congrues à TE modulo pN (cf. Définition 2.30), est isomorphe au groupe d’extensions finies plates Extfl1(T¯E,T¯E) (cf. [18, Chapitre 1.1]). En outre, nous construisons le foncteur D des déformations de T¯E de poids [0,l1] ayant relèvements d’un certain type et satisfaisant certaines congruences avec TE et montrons que D admet une enveloppe représentable. Nous conjecturons que tDExtcr,[0,l1]1(T¯E,T¯E) et VTmW/mWD(TmW/mW), où T est l’algèbre de Hecke Tl(Γ1(M)), m son idéal maximal donné par une forme propre de poids l et de niveau Γ1(M) dont la représentation galoisienne est congrue à TE modulo pN, et VTm la représentation galoisienne associée. Enfin, nous donnons des résultats à l’appui de cette conjecture.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1323
Classification : 11S25, 11R34, 12G05, 11F85, 11G99
Keywords: Local conditions of adjoint representations, Gorenstein Hecke algebras, patching, congruences of p-adic L-functions

Byoung Du (BD) Kim 1

1 School of Mathematics and Statistics Victoria University of Wellington Wellington, New Zealand
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_1_325_0,
     author = {Byoung Du (BD) Kim},
     title = {Local conditions of adjoint representations with supersingular reduction, and representable functors of deformations with higher weight liftings},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {325--355},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {1},
     year = {2025},
     doi = {10.5802/jtnb.1323},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1323/}
}
TY  - JOUR
AU  - Byoung Du (BD) Kim
TI  - Local conditions of adjoint representations with supersingular reduction, and representable functors of deformations with higher weight liftings
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 325
EP  - 355
VL  - 37
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1323/
DO  - 10.5802/jtnb.1323
LA  - en
ID  - JTNB_2025__37_1_325_0
ER  - 
%0 Journal Article
%A Byoung Du (BD) Kim
%T Local conditions of adjoint representations with supersingular reduction, and representable functors of deformations with higher weight liftings
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 325-355
%V 37
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1323/
%R 10.5802/jtnb.1323
%G en
%F JTNB_2025__37_1_325_0
Byoung Du (BD) Kim. Local conditions of adjoint representations with supersingular reduction, and representable functors of deformations with higher weight liftings. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 325-355. doi : 10.5802/jtnb.1323. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1323/

[1] Suh Hyun Choi; Byoung Du Kim Congruences of two-variable p-adic L-functions of congruent modular forms of different weights, Ramanujan J., Volume 43 (2017) no. 1, pp. 163-195 | DOI | MR | Zbl

[2] Bart De Smit; Hendrik W. Lenstra Explicit construction of universal deformation rings, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, 1997, pp. 313-326 | DOI | MR | Zbl

[3] Fred Diamond The Taylor–Wiles construction and multiplicity one, Invent. Math., Volume 128 (1997) no. 2, pp. 379-391 | DOI | MR | Zbl

[4] Jean-Marc Fontaine Groupes p-divisibles sur les corps locaux, Astérisque, 47-48, Société Mathématique de France, 1977, 262 pages | Numdam | MR | Zbl

[5] Jean-Marc Fontaine; Guy Laffaille Construction de representations p-adiques, Ann. Sci. Éc. Norm. Supér. (4), Volume 15 (1982) no. 4, pp. 547-608 | DOI | Numdam | MR | Zbl

[6] Jean-Marc Fontaine; Yi Ouyang Theory of p-adic Galois Representations (lecture notes)

[7] Byoung Du Kim Congruences of algebraic p-adic L-functions and the Main Conjecture of Iwasawa Theory, J. Number Theory, Volume 226 (2021), pp. 168-212 | MR | Zbl

[8] Mark Kisin Geometric deformations of modular Galois representations, Invent. Math., Volume 157 (2004) no. 2, pp. 275-328 | DOI | MR | Zbl

[9] Barry Mazur Deforming Galois representations, Galois groups over (Mathematical Sciences Research Institute Publications), Volume 15, Springer, 1989, pp. 385-437 | DOI | Zbl

[10] Barry Mazur An introduction to the deformation theory of Galois representations, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, 1997, pp. 243-311 | DOI | MR | Zbl

[11] Bernadette Perrin-Riou Theorie d’Iwasawa p-adique locale et globale, Invent. Math., Volume 99 (1990) no. 2, pp. 247-292 | DOI | MR | Zbl

[12] Bernadette Perrin-Riou Theorie d’Iwasawa des representations p-adiques sur un corps local, Invent. Math., Volume 115 (1994) no. 1, pp. 81-149 | DOI | MR | Zbl

[13] Ravi Ramakrishna On a variation of Mazur’s deformation functor, Compos. Math., Volume 87 (1993) no. 3, pp. 269-286 | Numdam | MR | Zbl

[14] Michael Schlessinger Functors of Artin rings, Trans. Am. Math. Soc., Volume 130 (1968), pp. 208-222 | DOI | MR | Zbl

[15] Ehud de Shalit On certain Galois representations related to the modular curve X1(p), Compos. Math., Volume 95 (1995) no. 1, pp. 69-100 | MR | Zbl

[16] Ehud de Shalit Hecke rings, and universal deformation rings, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, 1997, pp. 421-445 | DOI | MR | Zbl

[17] Richard Taylor; Andrew Wiles Ring-theoretic properties of certain Hecke algebras, Ann. Math. (2), Volume 141 (1995) no. 3, pp. 553-572 | DOI | Zbl

[18] Andrew Wiles Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. (2), Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl

Cité par Sources :