The $1$-Level Density for Zeros of Hecke $L$-Functions of Imaginary Quadratic Number Fields of Class Number $1$
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 237-283

Let $\mathbb{K} = \mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic number field of class number $1$ and $\mathcal{O}_\mathbb{K}$ its ring of integers. We study a family of Hecke $L$-functions associated to angular characters on the non-zero ideals of $\mathcal{O}_\mathbb{K}$. Using the powerful Ratios Conjecture (RC) due to Conrey, Farmer, and Zirnbauer, we compute a conditional asymptotic for the average $1$-level density of the zeros of this family, including terms of lower order than the main term in the Katz–Sarnak Density Conjecture coming from random matrix theory. We also prove an unconditional result about the $1$-level density, which agrees with the RC prediction when our test functions have Fourier transforms with support in $(-1,1)$.

Soient $\mathbb{K} = \mathbb{Q}(\sqrt{-d})$ un corps quadratique imaginaire de nombre de classes égal à $1$ et $\mathcal{O}_\mathbb{K}$ son anneau des entiers. On étudie une famille de fonctions $L$ de Hecke associées à des caractères angulaires sur les idéaux non nuls de $\mathcal{O}_\mathbb{K}$. En employant la puissante Ratios Conjecture (RC) de Conrey, Farmer et Zirnbauer, on calcule une expression asymptotique conditionnelle pour la densité moyenne de niveau $1$ des zéros de cette famille. Cette estimation comprend des termes d’ordre inférieur au terme principal dans la Density Conjecture de Katz et Sarnak. En outre, on démontre un résultat inconditionnel sur la densité de niveau $1$, qui concorde avec la prédiction de la RC à condition que les fonctions test soient telles que l’intervalle $(-1,1)$ contienne les supports de leurs transformées de Fourier.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1320
Classification : 11R42, 11M50, 11R11, 11M41
Keywords: $1$-level density, Hecke $L$-functions, the Ratios Conjecture, imaginary quadratic number fields

Kristian Holm 1

1 Mathematisches Seminar Christian-Albrechts-Universität zu Kiel Heinrich-Hecht-Platz 6, 24118 Kiel Germany
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_1_237_0,
     author = {Kristian Holm},
     title = {The $1${-Level} {Density} for {Zeros} of {Hecke} $L${-Functions} of {Imaginary} {Quadratic} {Number} {Fields} of {Class} {Number} $1$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {237--283},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {1},
     doi = {10.5802/jtnb.1320},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1320/}
}
TY  - JOUR
AU  - Kristian Holm
TI  - The $1$-Level Density for Zeros of Hecke $L$-Functions of Imaginary Quadratic Number Fields of Class Number $1$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 237
EP  - 283
VL  - 37
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1320/
DO  - 10.5802/jtnb.1320
LA  - en
ID  - JTNB_2025__37_1_237_0
ER  - 
%0 Journal Article
%A Kristian Holm
%T The $1$-Level Density for Zeros of Hecke $L$-Functions of Imaginary Quadratic Number Fields of Class Number $1$
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 237-283
%V 37
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1320/
%R 10.5802/jtnb.1320
%G en
%F JTNB_2025__37_1_237_0
Kristian Holm. The $1$-Level Density for Zeros of Hecke $L$-Functions of Imaginary Quadratic Number Fields of Class Number $1$. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 237-283. doi: 10.5802/jtnb.1320

[1] Alan Baker Transcendental number theory, Cambridge University Press, 1975, x+147 pages | Zbl | DOI | MR

[2] Patrick Billingsley Probability and Measure, Anniversary Edition, John Wiley & Sons, 2012, xvii+624 pages | MR | Zbl

[3] Emanuel Carneiro; Vorrapan Chandee; Micah B. Milinovich A note on the zeros of zeta and L-functions, Math. Z., Volume 281 (2015) no. 1-2, pp. 315-332 | Zbl | DOI | MR

[4] Ryan C. Chen; Yujin H. Kim; Jared D. Lichtman; Steven J. Miller; Alina Shubina; Shannon Sweitzer; Ezra Waxman; Eric Winsor; Jianing Yang A Refined Conjecture for the Variance of Gaussian Primes across Sectors, Exp. Math., Volume 32 (2023) no. 1, pp. 33-53 | DOI | Zbl

[5] Henri Cohen Number theory. Volume II: Analytic and modern tools, Graduate Texts in Mathematics, 240, Springer, 2007, xiii+596 pages | MR | Zbl

[6] J. Brian Conrey; David W. Farmer; Martin R. Zirnbauer Autocorrelation of ratios of L-functions, Commun. Number Theory Phys., Volume 2 (2008) no. 3, pp. 593-636 | DOI | MR | Zbl

[7] J. Brian Conrey; Nina C. Snaith Applications of the L‐functions ratios conjectures, Proc. Lond. Math. Soc., Volume 94 (2007) no. 3, pp. 594-646 | DOI | MR | Zbl

[8] David W. Farmer Long mollifiers of the Riemann zeta-function, Mathematika, Volume 40 (1993) no. 1, pp. 71-87 | DOI | MR | Zbl

[9] Daniel Fiorilli; James Parks; Anders Södergren Low-lying zeros of quadratic Dirichlet L-functions: A transition in the ratios conjecture, Q. J. Math., Volume 69 (2018) no. 4, pp. 1129-1149 | Zbl | MR

[10] Glyn Harman; Philip Lewis Gaussian primes in narrow sectors, Mathematika, Volume 48 (2001) no. 1-2, pp. 119-135 | Zbl | DOI | MR

[11] Erich Hecke Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. I, Math. Z., Volume 1 (1918) no. 4, pp. 357-376 | DOI | MR | Zbl

[12] Erich Hecke Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. II, Math. Z., Volume 6 (1920) no. 1-2, pp. 11-51 | DOI

[13] Henryk Iwaniec; Emmanuel Kowalski Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004, xi+615 pages | MR | Zbl

[14] Nicholas M. Katz; Peter Sarnak Random matrices, Frobenius eigenvalues, and monodromy, Colloquium Publications, 45, American Mathematical Society, 1999, xi+419 pages | MR | Zbl

[15] Nicholas M. Katz; Peter Sarnak Zeroes of zeta functions and symmetry, Bull. Am. Math. Soc., Volume 36 (1999) no. 1, pp. 1-26 | DOI | MR | Zbl

[16] Hugh L. Montgomery The pair correlation of zeros of the zeta function, Analytic number theory (Proceedings of Symposia in Pure Mathematics), Volume 24, American Mathematical Society, 1973, pp. 181-193 | DOI | Zbl

[17] Ali E. Özlük; C. Snyder Small zeros of quadratic L-functions, Bull. Aust. Math. Soc., Volume 47 (1993) no. 2, pp. 307-319 | Zbl | DOI | MR

[18] Zeév Rudnick; Ezra Waxman Angles of Gaussian Primes, Isr. J. Math., Volume 232 (2019) no. 1, pp. 159-199 | Zbl | DOI | MR

[19] Ezra Waxman Lower order terms for the one-level density of a symplectic family of Hecke L-functions, J. Number Theory, Volume 221 (2021), pp. 447-483 | Zbl | DOI | MR

Cité par Sources :