Let $a$ be an integer and $p$ a prime so that $f(x)=x^p-a$ is irreducible. Write $f^n(x)$ to indicate the $n$-fold composition of $f(x)$ with itself. We study the monogenicity of number fields defined by roots of $f^n(x)$ and give necessary and sufficient conditions for a root of $f^n(x)$ to yield a power integral basis for each $n\ge 1$. Further, we generalize these criteria to an arbitrary number field.
Soient $a$ un entier et $p$ un nombre premier tel que $f(x)=x^p-a$ est irréductible. On note $f^n(x)$ l’itéré $n$-ième de $f(x)$. Nous étudions la monogénéité des corps de nombres définis par les racines de $f^n(x)$ et donnons des conditions nécessaires et suffisantes pour qu’une racine de $f^n(x)$ génère une base entière de puissances pour chaque $n\ge 1 $. De plus, nous généralisons ces critères à un corps de nombres quelconque.
Révisé le :
Accepté le :
Publié le :
Keywords: Monogenic, Power integral basis, Radical extension, Iteration
Hanson Smith 1
CC-BY-ND 4.0
@article{JTNB_2025__37_1_153_0,
author = {Hanson Smith},
title = {Radical {Dynamical} {Monogenicity}},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {153--169},
year = {2025},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {37},
number = {1},
doi = {10.5802/jtnb.1317},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1317/}
}
TY - JOUR AU - Hanson Smith TI - Radical Dynamical Monogenicity JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 153 EP - 169 VL - 37 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1317/ DO - 10.5802/jtnb.1317 LA - en ID - JTNB_2025__37_1_153_0 ER -
Hanson Smith. Radical Dynamical Monogenicity. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 153-169. doi: 10.5802/jtnb.1317
[1] Finitely ramified iterated extensions, Int. Math. Res. Not., Volume 2005 (2005) no. 14, pp. 855-880 | MR | Zbl | DOI
[2] Finite index theorems for iterated Galois groups of unicritical polynomials, Trans. Am. Math. Soc., Volume 374 (2021) no. 1, pp. 733-752 | Zbl | DOI | MR
[3] A dynamical characterization for monogenity at every level of some infinite -towers, Can. Math. Bull., Volume 65 (2022) no. 3, pp. 806-814 | Zbl | DOI | MR
[4] On the irreducibility of the iterates of , Proc. Am. Math. Soc., Volume 130 (2002) no. 6, pp. 1589-1596 | Zbl | DOI | MR
[5] Discriminant equations in Diophantine number theory, New Mathematical Monographs, 32, Cambridge University Press, 2017, xviii+457 pages | Zbl | DOI | MR
[6] Newton polygons and -integral bases of quartic number fields, J. Algebra Appl., Volume 11 (2012) no. 4, 1250073, 33 pages | MR | DOI | Zbl
[7] Properties of iterates and composites of polynomials, J. Lond. Math. Soc. (2), Volume 54 (1996) no. 3, pp. 489-497 | Zbl | DOI | MR
[8] Diophantine equations and power integral bases, Birkhäuser/Springer, 2019, xxii+326 pages | Zbl | DOI | MR
[9] Discriminants of Chebyshev radical extensions, J. Théor. Nombres Bordeaux, Volume 26 (2014) no. 3, pp. 607-633 (Accessed 2024-05-10) | MR | Numdam | Zbl | DOI
[10] A note on the monogeneity of power maps, Albanian J. Math., Volume 11 (2017) no. 1, pp. 3-12 | Zbl | DOI | MR
[11] Newton polygons of higher order in algebraic number theory, Trans. Am. Math. Soc., Volume 364 (2012) no. 1, pp. 361-416 | Zbl | DOI | MR
[12] Characterization of primes dividing the index of a trinomial, Int. J. Number Theory, Volume 13 (2017) no. 10, pp. 2505-2514 | Zbl | DOI | MR
[13] Monogenically stable polynomials, Albanian J. Math., Volume 15 (2021) no. 2, pp. 85-98 | Zbl | DOI | MR
[14] Critical Point Criteria and Dynamically Monogenic Polynomials (2024) | arXiv | Zbl
[15] On number fields towers defined by iteration of polynomials, Arch. Math., Volume 119 (2022) no. 4, pp. 371-379 | Zbl | DOI | MR
[16] Class numbers of real cyclic number fields with small conductor, Compos. Math., Volume 37 (1978) no. 3, pp. 297-319 | Numdam | Zbl | MR
[17] Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann., Volume 99 (1928) no. 1, pp. 84-117 | Zbl | DOI | MR
[18] Monogenity of iterates of irreducible binomials, Commun. Algebra, Volume 52 (2024) no. 11, pp. 4678-4684 | MR | Zbl | DOI
[19] The monogeneity of radical extensions, Acta Arith., Volume 198 (2021) no. 3, pp. 313-327 | Zbl | DOI | MR
[20] Iterates of Quadratics and Monogenicity (2024) | arXiv
[21] On the fundamental number of the algebraic number-field , Trans. Am. Math. Soc., Volume 11 (1910) no. 4, pp. 388-392 | Zbl | DOI | MR
Cité par Sources :