Radical Dynamical Monogenicity
Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 153-169

Let $a$ be an integer and $p$ a prime so that $f(x)=x^p-a$ is irreducible. Write $f^n(x)$ to indicate the $n$-fold composition of $f(x)$ with itself. We study the monogenicity of number fields defined by roots of $f^n(x)$ and give necessary and sufficient conditions for a root of $f^n(x)$ to yield a power integral basis for each $n\ge 1$. Further, we generalize these criteria to an arbitrary number field.

Soient $a$ un entier et $p$ un nombre premier tel que $f(x)=x^p-a$ est irréductible. On note $f^n(x)$ l’itéré $n$-ième de $f(x)$. Nous étudions la monogénéité des corps de nombres définis par les racines de $f^n(x)$ et donnons des conditions nécessaires et suffisantes pour qu’une racine de $f^n(x)$ génère une base entière de puissances pour chaque $n\ge 1 $. De plus, nous généralisons ces critères à un corps de nombres quelconque.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1317
Classification : 11R04, 11R21, 37P05
Keywords: Monogenic, Power integral basis, Radical extension, Iteration

Hanson Smith 1

1 Department of Mathematics California State University San Marcos 333 S. Twin Oaks Valley Rd. San Marcos, CA 92096
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2025__37_1_153_0,
     author = {Hanson Smith},
     title = {Radical {Dynamical} {Monogenicity}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {153--169},
     year = {2025},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {37},
     number = {1},
     doi = {10.5802/jtnb.1317},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1317/}
}
TY  - JOUR
AU  - Hanson Smith
TI  - Radical Dynamical Monogenicity
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2025
SP  - 153
EP  - 169
VL  - 37
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1317/
DO  - 10.5802/jtnb.1317
LA  - en
ID  - JTNB_2025__37_1_153_0
ER  - 
%0 Journal Article
%A Hanson Smith
%T Radical Dynamical Monogenicity
%J Journal de théorie des nombres de Bordeaux
%D 2025
%P 153-169
%V 37
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1317/
%R 10.5802/jtnb.1317
%G en
%F JTNB_2025__37_1_153_0
Hanson Smith. Radical Dynamical Monogenicity. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 153-169. doi: 10.5802/jtnb.1317

[1] Wayne Aitken; Farshid Hajir; Christian Maire Finitely ramified iterated extensions, Int. Math. Res. Not., Volume 2005 (2005) no. 14, pp. 855-880 | MR | Zbl | DOI

[2] Andrew Bridy; John R. Doyle; Dragos Ghioca; Liang-Chung Hsia; Thomas J. Tucker Finite index theorems for iterated Galois groups of unicritical polynomials, Trans. Am. Math. Soc., Volume 374 (2021) no. 1, pp. 733-752 | Zbl | DOI | MR

[3] Marianela Castillo A dynamical characterization for monogenity at every level of some infinite 2-towers, Can. Math. Bull., Volume 65 (2022) no. 3, pp. 806-814 | Zbl | DOI | MR

[4] Lynda Danielson; Burton Fein On the irreducibility of the iterates of x n -b, Proc. Am. Math. Soc., Volume 130 (2002) no. 6, pp. 1589-1596 | Zbl | DOI | MR

[5] Jan-Hendrik Evertse; Kálmán Győry Discriminant equations in Diophantine number theory, New Mathematical Monographs, 32, Cambridge University Press, 2017, xviii+457 pages | Zbl | DOI | MR

[6] Lhoussain El Fadil; Jesús Montes; Enric Nart Newton polygons and p-integral bases of quartic number fields, J. Algebra Appl., Volume 11 (2012) no. 4, 1250073, 33 pages | MR | DOI | Zbl

[7] Burton Fein; Murray Schacher Properties of iterates and composites of polynomials, J. Lond. Math. Soc. (2), Volume 54 (1996) no. 3, pp. 489-497 | Zbl | DOI | MR

[8] István Gaál Diophantine equations and power integral bases, Birkhäuser/Springer, 2019, xxii+326 pages | Zbl | DOI | MR

[9] T. Alden Gassert Discriminants of Chebyshev radical extensions, J. Théor. Nombres Bordeaux, Volume 26 (2014) no. 3, pp. 607-633 (Accessed 2024-05-10) | MR | Numdam | Zbl | DOI

[10] T. Alden Gassert A note on the monogeneity of power maps, Albanian J. Math., Volume 11 (2017) no. 1, pp. 3-12 | Zbl | DOI | MR

[11] Jordi Guàrdia; Jesús Montes; Enric Nart Newton polygons of higher order in algebraic number theory, Trans. Am. Math. Soc., Volume 364 (2012) no. 1, pp. 361-416 | Zbl | DOI | MR

[12] Anuj Jakhar; Sudesh K. Khanduja; Neeraj Sangwan Characterization of primes dividing the index of a trinomial, Int. J. Number Theory, Volume 13 (2017) no. 10, pp. 2505-2514 | Zbl | DOI | MR

[13] Lenny Jones Monogenically stable polynomials, Albanian J. Math., Volume 15 (2021) no. 2, pp. 85-98 | Zbl | DOI | MR

[14] Joachim König; Hanson Smith; Zack Wolske Critical Point Criteria and Dynamically Monogenic Polynomials (2024) | arXiv | Zbl

[15] Ruofan Li On number fields towers defined by iteration of polynomials, Arch. Math., Volume 119 (2022) no. 4, pp. 371-379 | Zbl | DOI | MR

[16] John Myron Masley Class numbers of real cyclic number fields with small conductor, Compos. Math., Volume 37 (1978) no. 3, pp. 297-319 | Numdam | Zbl | MR

[17] Øystein Ore Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann., Volume 99 (1928) no. 1, pp. 84-117 | Zbl | DOI | MR

[18] Himanshu Sharma; Ritumoni Sarma; Shanta Laishram Monogenity of iterates of irreducible binomials, Commun. Algebra, Volume 52 (2024) no. 11, pp. 4678-4684 | MR | Zbl | DOI

[19] Hanson Smith The monogeneity of radical extensions, Acta Arith., Volume 198 (2021) no. 3, pp. 313-327 | Zbl | DOI | MR

[20] Hanson Smith; Zack Wolske Iterates of Quadratics and Monogenicity (2024) | arXiv

[21] Jacob Westlund On the fundamental number of the algebraic number-field k(m p), Trans. Am. Math. Soc., Volume 11 (1910) no. 4, pp. 388-392 | Zbl | DOI | MR

Cité par Sources :