A semicommutative finite group scheme is a finite group scheme which can be obtained from commutative finite group schemes by iterated performing semidirect products with commutative kernels and taking quotients by normal subgroups. In this article, for an étale tame semicommutative finite group scheme
Un schéma en groupes fini est dit semi-commutatif s’il peut être obtenu à partir de schémas en groupes finis commutatifs en effectuant de manière itérative des produits semi-directs avec des noyaux commutatifs et en prenant des quotients par des sous-groupes normaux. Dans cet article, pour un schéma en groupes fini semi-commutatif étale et modéré
Révisé le :
Accepté le :
Publié le :
Keywords: Inverse Galois problem, Malle conjecture,
Ratko Darda 1 ; Takehiko Yasuda 2

@article{JTNB_2025__37_1_105_0, author = {Ratko Darda and Takehiko Yasuda}, title = {Quantitative inverse {Galois} problem for semicommutative finite group schemes}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {105--123}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {37}, number = {1}, year = {2025}, doi = {10.5802/jtnb.1314}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1314/} }
TY - JOUR AU - Ratko Darda AU - Takehiko Yasuda TI - Quantitative inverse Galois problem for semicommutative finite group schemes JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 105 EP - 123 VL - 37 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1314/ DO - 10.5802/jtnb.1314 LA - en ID - JTNB_2025__37_1_105_0 ER -
%0 Journal Article %A Ratko Darda %A Takehiko Yasuda %T Quantitative inverse Galois problem for semicommutative finite group schemes %J Journal de théorie des nombres de Bordeaux %D 2025 %P 105-123 %V 37 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1314/ %R 10.5802/jtnb.1314 %G en %F JTNB_2025__37_1_105_0
Ratko Darda; Takehiko Yasuda. Quantitative inverse Galois problem for semicommutative finite group schemes. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 105-123. doi : 10.5802/jtnb.1314. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1314/
[1] Statistics of the first Galois cohomology group: a refinement of Malle’s conjecture, Algebra Number Theory, Volume 15 (2021) no. 10, pp. 2513-2569 | DOI | MR | Zbl
[2] The density of discriminants of quartic rings and fields, Ann. Math. (2), Volume 162 (2005) no. 2, pp. 1031-1063 | DOI | MR | Zbl
[3] The density of discriminants of quintic rings and fields, Ann. Math. (2), Volume 172 (2010) no. 3, pp. 1559-1591 | DOI | MR | Zbl
[4] Éléments de mathématique, Masson, 1981, vii+422 pages (Algèbre. Chapitres 4 à 7) | MR | Zbl
[5] Counting cubic extensions with given quadratic resolvent, J. Algebra, Volume 325 (2011), pp. 461-478 | DOI | MR | Zbl
[6] Dirichlet series associated to quartic fields with given cubic resolvent, Res. Number Theory, Volume 2 (2016), 29, 40 pages | DOI | MR | Zbl
[7] On
[8] The Brauer–Grothendieck group, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 71, Springer, 2021, xv+453 pages | DOI | MR | Zbl
[9] Rational points of bounded height on weighted projective stacks, Ph. D. Thesis, Université Paris Cité (2021) (2021UNIP7094, https://tel.archives-ouvertes.fr/tel-03682761)
[10] Torsors for finite group schemes of bounded height, J. Lond. Math. Soc. (2), Volume 108 (2023) no. 3, pp. 1275-1331 | DOI | MR | Zbl
[11] The Batyrev–Manin conjecture for DM stacks, J. Eur. Math. Soc. (2024) (Online First) | DOI
[12] On the density of discriminants of cubic fields. II, Proc. R. Soc. Lond., Ser. A, Volume 322 (1971) no. 1551, pp. 405-420 | DOI | MR | Zbl
[13] Heights on stacks and a generalized Batyrev–Manin–Malle conjecture, Forum Math. Sigma, Volume 11 (2023), e14, 54 pages | DOI | MR | Zbl
[14] Quelques propriétés d’approximation reliées à la cohomologie galoisienne d’un groupe algébrique fini, Bull. Soc. Math. Fr., Volume 135 (2007) no. 4, pp. 549-564 | DOI | Numdam | MR | Zbl
[15] Zéro-cycles sur les espaces homogènes et problème de Galois inverse, J. Am. Math. Soc., Volume 33 (2020) no. 3, pp. 775-805 | DOI | MR | Zbl
[16] A counterexample to Malle’s conjecture on the asymptotics of discriminants, C. R. Math., Volume 340 (2005) no. 6, pp. 411-414 | DOI | MR | Zbl
[17] On the distribution of Galois groups. II, Exp. Math., Volume 13 (2004) no. 2, pp. 129-135 | DOI | MR | Zbl
[18] Inverse Galois theory, Springer Monographs in Mathematics, Springer, 1999, xvi+436 pages | DOI | MR | Zbl
[19] Algebraic groups. The theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017, xvi+644 pages | DOI | MR | Zbl
[20] Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 1999, xviii+571 pages (translated from the 1992 German original and with a note by Norbert Schappacher, with a foreword by G. Harder) | DOI | MR
[21] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008, xvi+825 pages | DOI | MR | Zbl
[22] Appendix 3: Questions in arithmetic algebraic geometry, Open problems in arithmetic algebraic geometry (Advanced Lectures in Mathematics), Volume 46, International Press, 2019, pp. 295-331 | MR | Zbl
[23] Cohomologie galoisienne, Lecture Notes in Mathematics, 5, Springer, 1994, x+181 pages | DOI | MR | Zbl
[24] Distribution of discriminants of abelian extensions, Proc. Lond. Math. Soc. (3), Volume 58 (1989) no. 1, pp. 17-50 | DOI | MR | Zbl
Cité par Sources :