We exhibit sufficient and necessary conditions under which, over a field of characteristic zero, an
Nous présentons des conditions nécessaires et suffisantes sous lesquelles, sur un corps de caractéristique zéro, une
Révisé le :
Accepté le :
Publié le :
Keywords: split Jacobian, elliptic curve, isogeny, binary quadratic form
Martin Djukanović 1

@article{JTNB_2025__37_1_49_0, author = {Martin Djukanovi\'c}, title = {Families of split {Jacobians} with isogenous components}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {49--77}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {37}, number = {1}, year = {2025}, doi = {10.5802/jtnb.1312}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1312/} }
TY - JOUR AU - Martin Djukanović TI - Families of split Jacobians with isogenous components JO - Journal de théorie des nombres de Bordeaux PY - 2025 SP - 49 EP - 77 VL - 37 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1312/ DO - 10.5802/jtnb.1312 LA - en ID - JTNB_2025__37_1_49_0 ER -
%0 Journal Article %A Martin Djukanović %T Families of split Jacobians with isogenous components %J Journal de théorie des nombres de Bordeaux %D 2025 %P 49-77 %V 37 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1312/ %R 10.5802/jtnb.1312 %G en %F JTNB_2025__37_1_49_0
Martin Djukanović. Families of split Jacobians with isogenous components. Journal de théorie des nombres de Bordeaux, Tome 37 (2025) no. 1, pp. 49-77. doi : 10.5802/jtnb.1312. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1312/
[1] Isogenous components of Jacobian surfaces, Eur. J. Math., Volume 6 (2020) no. 4, pp. 1276-1302 | DOI | MR | Zbl
[2] Computing classical modular forms, Arithmetic geometry, number theory, and computation (Simons Symposia), Springer, 2021, pp. 131-213 | DOI | Zbl
[3] Modular functions of one variable. IV. Proceedings of the International Summer School on Modular Functions of One Variable and Arithmetical Applications, RUCA, University of Antwerp, Antwerp, July 17–August 3, 1972 (Bryan J. Birch; Willem Kuyk, eds.), Lecture Notes in Mathematics, 476, Springer, 1975
[4] On Binary Sextics with Linear Transformations into Themselves, Am. J. Math., Volume 10 (1887) no. 1, pp. 47-70 | DOI | MR | Zbl
[5] The Magma Algebra System I: The Use Language, J. Symb. Comput., Volume 24 (1997), pp. 235-265 (Magma’s homepage is at http://magma.maths.usyd.edu.au/magma) | DOI | MR | Zbl
[6] The arithmetic of genus two curves with
[7] Prolegomena to a middlebrow arithmetic of curves of genus
[8] Primes of the form
[9] Introduction to the Theory of Numbers, University of Chicago Press, 1929 | Zbl
[10] split-jacobians (GitHub repository, https://github.com/martin-djukanovic/split-jacobians)
[11] Families of (3,3)-split Jacobians, Rocky Mt. J. Math., Volume 54 (2024) no. 6, pp. 1621-1654 | DOI | MR | Zbl
[12] Curves of genus
[13] Large torsion subgroups of split Jacobians of curves of genus two or three, Forum Math., Volume 12 (2000) no. 3, pp. 315-364 | DOI | MR | Zbl
[14] Review of Legendre’s ‘Traité des fonctions elliptiques, troisième supplément’, J. Reine Angew. Math., Volume 8 (1832), pp. 413-417
[15] The number of curves of genus two with elliptic differentials, J. Reine Angew. Math., Volume 485 (1997), pp. 93-121 | DOI | MR | Zbl
[16] Lehrbuch der Thetafunktionen, Chelsea Publishing Company, 1970 | Zbl
[17] Universal bounds on the torsion of elliptic curves, Compos. Math., Volume 38 (1979) no. 1, pp. 121-128 | DOI | Numdam | MR | Zbl
[18] Curves of genus
[19] Hilbert modular surfaces for square discriminants and elliptic subfields of genus 2 function fields, Res. Math. Sci., Volume 2 (2015), 24, 46 pages | DOI | MR | Zbl
[20] Elliptic functions, Graduate Texts in Mathematics, 112, Springer, 1987 | DOI | MR | Zbl
[21] Rational isogenies of prime degree, Invent. Math., Volume 44 (1978), pp. 129-162 | DOI | Zbl
[22] Rational points on varieties, Graduate Studies in Mathematics, 186, American Mathematical Society, 2017 | DOI | MR | Zbl
Cité par Sources :