On Periodicity of Continued Fractions with Partial Quotients in Quadratic Number Fields
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1053-1076.

In this paper, we fix a real quadratic field K and take an ultimately periodic continued fraction with partial quotients in 𝒪K. We examine the convergence of the sequence and the increase in the sizes of both the numerators and denominators of the convergent fractions. Additionally, we establish necessary and sufficient conditions for a real quartic irrational to possess an ultimately periodic continued fraction that converges to it, with partial quotients belonging to 𝒪K. Finally, we analyze a specific example with K=(5). By the obtained results, we give a continued fraction expansion algorithm for those real quartic irrationals ξ belonging to a quadratic extension of K whose algebraic conjugates are all real. We prove that the expansion obtained from the algorithm is ultimately periodic and converges to the specified ξ.

Dans cet article, nous fixons un corps quadratique réel K et considérons une fraction continue ultimement périodique à quotients partiels dans 𝒪K. Nous étudions le problème de convergence et examinons l’augmentation de la taille des numérateurs et dénominateurs partiels des fractions convergentes. En outre, nous établissons des conditions nécessaires et suffisantes pour qu’un nombre irrationnel quartique réel admette un développement en fraction continue ultimement périodique à quotients partiels dans 𝒪K. Enfin, nous analysons l’exemple du corps K=(5). À partir des résultats obtenus, nous proposons un algorithme de développement en fraction continue des irrationnels quartiques réels ξ appartenant à une extension quadratique de K dont les conjugués algébriques sont tous réels. Nous démontrons que la fraction continue obtenue à partir de l’algorithme est ultimement périodique et converge vers ξ.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1307
Classification : 11J70, 11Y65
Mots-clés : Continued fractions, quadratic fields, periodicity, Weil height

Zhaonan Wang 1, 2 ; Yingpu Deng 1, 2

1 Key Laboratory of Mathematics Mechanization, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
2 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_1053_0,
     author = {Zhaonan Wang and Yingpu Deng},
     title = {On {Periodicity} of {Continued} {Fractions} with {Partial} {Quotients} in {Quadratic} {Number} {Fields}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1053--1076},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     year = {2024},
     doi = {10.5802/jtnb.1307},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1307/}
}
TY  - JOUR
AU  - Zhaonan Wang
AU  - Yingpu Deng
TI  - On Periodicity of Continued Fractions with Partial Quotients in Quadratic Number Fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 1053
EP  - 1076
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1307/
DO  - 10.5802/jtnb.1307
LA  - en
ID  - JTNB_2024__36_3_1053_0
ER  - 
%0 Journal Article
%A Zhaonan Wang
%A Yingpu Deng
%T On Periodicity of Continued Fractions with Partial Quotients in Quadratic Number Fields
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 1053-1076
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1307/
%R 10.5802/jtnb.1307
%G en
%F JTNB_2024__36_3_1053_0
Zhaonan Wang; Yingpu Deng. On Periodicity of Continued Fractions with Partial Quotients in Quadratic Number Fields. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1053-1076. doi : 10.5802/jtnb.1307. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1307/

[1] Julien Bernat Continued fractions and numeration in the fibonacci base, Discrete Math., Volume 306 (2006) no. 22, pp. 2828-2850 | DOI | MR | Zbl

[2] Enrico Bombieri; Walter Gubler Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2007, xvi+652 pages | MR

[3] Bradley W. Brock; Noam D. Elkies; Bruce W. Jordan Periodic continued fractions over S-integers in number fields and skolem’s p-adic method, Acta Arith., Volume 197 (2021) no. 4, pp. 379-420 | DOI | MR | Zbl

[4] Shrikrishna G. Dani; Arnaldo Nogueira Continued fractions for complex numbers and values of binary quadratic forms, Trans. Am. Math. Soc., Volume 366 (2014) no. 7, pp. 3553-3583 | DOI | MR | Zbl

[5] Ronald L. Graham; Donald E. Knuth; Oren Patashnik; Stanley Liu Concrete mathematics: a foundation for computer science, Comput. Phys., Volume 3 (1989) no. 4, pp. 106-107 | DOI

[6] Marc Hindry; Joseph H. Silverman Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiii+558 pages | DOI | MR | Zbl

[7] Gerald J. Janusz Algebraic number fields, Graduate Studies in Mathematics, 7, American Mathematical Society, 1996, x+276 pages | MR | Zbl

[8] Yupeng Jiang; Yingpu Deng; Yanbin Pan Covering radius of two-dimensional lattices, J. Syst. Sci. Math. Sci., Volume 32 (2012) no. 7, pp. 908-914 | MR | Zbl

[9] A Ya. Khinchin; T. Teichmann Continued fractions, Phys. Today, Volume 17 (1964) no. 11, pp. 70-71 | DOI | Zbl

[10] Joseph Louis de Lagrange Démonstration d’un théorème d’arithmétique, Nouv. Mém.Acad. Roy. Sc. de Berlin (1770), pp. 123-133

[11] Richard B. Lakein Approximation properties of some complex continued fractions, Monatsh. Math., Volume 77 (1973), pp. 396-403 | DOI | MR | Zbl

[12] Zuzana Masakova; Tomas Vavra; Francesco Veneziano Finiteness and periodicity of continued fractions over quadratic number fields, Bull. Soc. Math. Fr., Volume 150 (2022) no. 1, pp. 77-109 | MR | Zbl

[13] William Parry On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung., Volume 11 (1960), pp. 401-416 | DOI | MR | Zbl

[14] Alfréd Rényi Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., Volume 8 (1957) no. 3-4, pp. 477-493 | DOI | MR | Zbl

[15] David Rosen Continued fractions in algebraic number fields, Am. Math. Mon., Volume 84 (1977), pp. 37-39 | DOI | MR | Zbl

Cité par Sources :