Etant donné un nombre irrationnel
L’ensemble
où
Given an irrational number
The set of all values of
where
Révisé le :
Accepté le :
Publié le :
Mots-clés : Continued fractions, Diophantine approximation
Dmitry Gayfulin 1, 2

@article{JTNB_2024__36_3_1039_0, author = {Dmitry Gayfulin}, title = {Approximation by non-convergents and second {Lagrange} spectrum}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1039--1051}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {3}, year = {2024}, doi = {10.5802/jtnb.1306}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1306/} }
TY - JOUR AU - Dmitry Gayfulin TI - Approximation by non-convergents and second Lagrange spectrum JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 1039 EP - 1051 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1306/ DO - 10.5802/jtnb.1306 LA - en ID - JTNB_2024__36_3_1039_0 ER -
%0 Journal Article %A Dmitry Gayfulin %T Approximation by non-convergents and second Lagrange spectrum %J Journal de théorie des nombres de Bordeaux %D 2024 %P 1039-1051 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1306/ %R 10.5802/jtnb.1306 %G en %F JTNB_2024__36_3_1039_0
Dmitry Gayfulin. Approximation by non-convergents and second Lagrange spectrum. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 1039-1051. doi : 10.5802/jtnb.1306. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1306/
[1] The Markoff and Lagrange Spectra, Mathematical Surveys and Monographs, 30, American Mathematical Society, 1989, ix+97 pages | DOI | MR | Zbl
[2] Sur les approximations diophantiennes à une dimension, Ph. D. Thesis, Université de Grenoble (France) (1968) (Doctorat d’État)
[3]
[4] Sur les formes quadratiques binaires indéfinies, Math. Ann., Volume 15 (1879), pp. 381-406 | DOI | MR | Zbl
[5] Sur les formes quadratiques binaires indéfinies. II, Math. Ann., Volume 17 (1880), pp. 379-399 | DOI | Zbl
[6] Fractal geometry of the complement of Lagrange spectrum in Markov spectrum, Comment. Math. Helv., Volume 95 (2020) no. 3, pp. 593-633 | DOI | MR | Zbl
[7] Diophantine approximation, Lagrange and Markov spectra, and dynamical Cantor sets, Notices Am. Math. Soc., Volume 68 (2021) no. 8, pp. 1301-1311 | MR | Zbl
[8] Zur Theorie der Approximation einer irrationalen Zahl durch rationale Zahlen, Tôhoku Math. J., Volume 45 (1938), pp. 177-187 | Zbl
[9] Über die Funktionen des Irrationalitatsmaßes, Analytic and probabilistic methods in number theory. Proceedings of the sixth international conference, Palanga, Lithuania, September 11–17, 2016, Vilnius University Publishing House (2017), pp. 123-148 | MR | Zbl
[10] Continued fractions, World Scientific, 1992, ix+188 pages | DOI | MR | Zbl
[11] On a problem related to “second” best approximations to a real number, Mosc. J. Comb. Number Theory, Volume 12 (2023) no. 2, pp. 175-180 | DOI | MR | Zbl
Cité par Sources :