Uniqueness of L-functions and meromorphic functions under sharing of sets
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 967-985.

In [4], the authors proved that the zero set of a uniqueness polynomial, satisfying some additional conditions, becomes a unique range set for L-functions. They also determined the conditions under which a polynomial becomes a strong uniqueness polynomial for L-functions. These results are the improved version of one result of [3]. In this paper we obtain a number of uniqueness theorems for L-functions in the extended Selberg class, which significantly extend the results of [3] and [4] in a new direction and improve them in some cases. From our results we can show some classes of unique range sets for L-functions which cannot be found by the results of [3] and [4].

Dans [4], les auteurs ont démontré que l’ensemble des zéros d’un polynôme d’unicité, satisfaisant certaines conditions supplémentaires, est un ensemble d’unicité pour les fonctions L. Ils ont également déterminé les conditions sous lesquelles un polynôme est un polynôme d’unicité forte pour les fonctions L. Ces résultats sont une version améliorée d’un résultat de [3]. Dans cet article, nous obtenons un certain nombre de théorèmes d’unicité pour les fonctions L appartenant à la classe de Selberg étendue, qui étendent, de manière significative, les résultats de [3] et [4] dans une nouvelle direction et les améliorons dans certains cas. En utilisant ces résultats, nous pouvons exhiber certaines classes d’ensembles d’unicité pour les fonctions L, qui ne peuvent pas être trouvées avec les résultats de [3] et [4].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1302
Classification : 11M36, 30D35
Mots-clés : Meromorphic functions, uniqueness, shared sets, small functions, L-functions.

Abhijit Banerjee 1 ; Ha Huy Khoai 2 ; Arpita Kundu 1

1 Department of Mathematics, University of Kalyani, West Bengal India
2 Thang Long Institute of Mathematics and Applied Sciences, Hanoi Vietnam
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_967_0,
     author = {Abhijit Banerjee and Ha Huy Khoai and Arpita Kundu},
     title = {Uniqueness of $L$-functions and meromorphic functions under sharing of sets},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {967--985},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     year = {2024},
     doi = {10.5802/jtnb.1302},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1302/}
}
TY  - JOUR
AU  - Abhijit Banerjee
AU  - Ha Huy Khoai
AU  - Arpita Kundu
TI  - Uniqueness of $L$-functions and meromorphic functions under sharing of sets
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 967
EP  - 985
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1302/
DO  - 10.5802/jtnb.1302
LA  - en
ID  - JTNB_2024__36_3_967_0
ER  - 
%0 Journal Article
%A Abhijit Banerjee
%A Ha Huy Khoai
%A Arpita Kundu
%T Uniqueness of $L$-functions and meromorphic functions under sharing of sets
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 967-985
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1302/
%R 10.5802/jtnb.1302
%G en
%F JTNB_2024__36_3_967_0
Abhijit Banerjee; Ha Huy Khoai; Arpita Kundu. Uniqueness of $L$-functions and meromorphic functions under sharing of sets. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 967-985. doi : 10.5802/jtnb.1302. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1302/

[1] Ta Thi Hoai An; Julie Tzu-Yueh Wang; Pit-Mann Wong Strong uniqueness polynomials: the complex case, Complex Variables, Theory Appl., Volume 49 (2004) no. 1, pp. 25-54 | MR | Zbl

[2] Pei-Chu Hu; Bao Qin Li A simple proof and strengthening of a uniqueness theorem for L-functions, Can. Math. Bull., Volume 59 (2016) no. 1, pp. 119-122 | MR | Zbl

[3] Pei-Chu Hu; Ai-Di Wu Uniqueness theorems for Dirichlet series, Bull. Aust. Math. Soc., Volume 91 (2015) no. 3, pp. 389-399 | MR | Zbl

[4] Ha Huy Khoai; Vu Hoai An Determining an L-function in the extended Selberg class by its preimages of subsets, Ramanujan J., Volume 58 (2022) no. 1, pp. 253-267 | DOI | MR | Zbl

[5] Haseo Ki A remark on the uniqueness of the Dirichlet series with a Riemann-type function equation, Adv. Math., Volume 231 (2012) no. 5, pp. 2484-2490 | MR | Zbl

[6] Indrajit Lahiri Weighted value sharing and uniqueness of meromorphic functions, Complex Variables, Theory Appl., Volume 46 (2001) no. 3, pp. 241-253 | MR | Zbl

[7] Bao Qin Li A result on value distribution of L-functions, Proc. Am. Math. Soc., Volume 138 (2010) no. 6, pp. 2071-2077 | MR | Zbl

[8] Xiao-Min Li; Hong-Xun Yi Results on value distribution of L-functions, Math. Nachr., Volume 286 (2013) no. 13, pp. 1326-1336 | MR | Zbl

[9] Peiqiang Lin; Weichuan Lin Value distribution of L-functions concerning sharing sets, Filomat, Volume 30 (2016) no. 14, pp. 3795-3806 | MR | Zbl

[10] Anatolii Z. Mokhonʼko On the Nevanlinna characteristics of some meromorphic functions, Theory of functions, functional analysis and their applications. Vol. 14, Izd-vo Khar’kovsk, 1971, pp. 83-87

[11] Atle Selberg Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi conference on analytic number theory, held at Maiori, Amalfi, Italy, from 25 to 29 September, 1989, Universitá di Salerno, 1992, pp. 367-385 | Zbl

[12] Jörn Steuding Value Distribution of L-Functions, Lecture Notes in Mathematics, 1877, Springer, 2007, vii+317 pages | MR | Zbl

[13] Katsutoshi Yamanoi The second main theorem for small functions and related problems, Acta Math., Volume 192 (2004) no. 2, pp. 225-294 | DOI | MR | Zbl

[14] Chung-Chun Yang; Hong-Xun Yi Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications (Dordrecht), 557, Kluwer Academic Publishers, 2003, viii+569 pages | DOI | MR

[15] Hong-Xun Yi Unicity theorems for meromorphic or entire functions III, Bull. Aust. Math. Soc., Volume 53 (1996) no. 1, pp. 71-82 | MR | Zbl

[16] Qian-Qian Yuan; Xiao-Min Li; Hong-Xun Yi Value distribution of L-functions and uniqueness questions of F. Gross, Lith. Math. J., Volume 58 (2018) no. 2, pp. 249-262 | DOI | MR | Zbl

[17] Qing Cai Zhang The uniqueness of meromorphic functions with their derivative, Kodai Math. J., Volume 32 (1998) no. 2, pp. 179-184 | MR | Zbl

Cité par Sources :