In [4], the authors proved that the zero set of a uniqueness polynomial, satisfying some additional conditions, becomes a unique range set for
Dans [4], les auteurs ont démontré que l’ensemble des zéros d’un polynôme d’unicité, satisfaisant certaines conditions supplémentaires, est un ensemble d’unicité pour les fonctions
Révisé le :
Accepté le :
Publié le :
Mots-clés : Meromorphic functions, uniqueness, shared sets, small functions,
Abhijit Banerjee 1 ; Ha Huy Khoai 2 ; Arpita Kundu 1

@article{JTNB_2024__36_3_967_0, author = {Abhijit Banerjee and Ha Huy Khoai and Arpita Kundu}, title = {Uniqueness of $L$-functions and meromorphic functions under sharing of sets}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {967--985}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {3}, year = {2024}, doi = {10.5802/jtnb.1302}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1302/} }
TY - JOUR AU - Abhijit Banerjee AU - Ha Huy Khoai AU - Arpita Kundu TI - Uniqueness of $L$-functions and meromorphic functions under sharing of sets JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 967 EP - 985 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1302/ DO - 10.5802/jtnb.1302 LA - en ID - JTNB_2024__36_3_967_0 ER -
%0 Journal Article %A Abhijit Banerjee %A Ha Huy Khoai %A Arpita Kundu %T Uniqueness of $L$-functions and meromorphic functions under sharing of sets %J Journal de théorie des nombres de Bordeaux %D 2024 %P 967-985 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1302/ %R 10.5802/jtnb.1302 %G en %F JTNB_2024__36_3_967_0
Abhijit Banerjee; Ha Huy Khoai; Arpita Kundu. Uniqueness of $L$-functions and meromorphic functions under sharing of sets. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 967-985. doi : 10.5802/jtnb.1302. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1302/
[1] Strong uniqueness polynomials: the complex case, Complex Variables, Theory Appl., Volume 49 (2004) no. 1, pp. 25-54 | MR | Zbl
[2] A simple proof and strengthening of a uniqueness theorem for
[3] Uniqueness theorems for Dirichlet series, Bull. Aust. Math. Soc., Volume 91 (2015) no. 3, pp. 389-399 | MR | Zbl
[4] Determining an
[5] A remark on the uniqueness of the Dirichlet series with a Riemann-type function equation, Adv. Math., Volume 231 (2012) no. 5, pp. 2484-2490 | MR | Zbl
[6] Weighted value sharing and uniqueness of meromorphic functions, Complex Variables, Theory Appl., Volume 46 (2001) no. 3, pp. 241-253 | MR | Zbl
[7] A result on value distribution of
[8] Results on value distribution of
[9] Value distribution of
[10] On the Nevanlinna characteristics of some meromorphic functions, Theory of functions, functional analysis and their applications. Vol. 14, Izd-vo Khar’kovsk, 1971, pp. 83-87
[11] Old and new conjectures and results about a class of Dirichlet series, Proceedings of the Amalfi conference on analytic number theory, held at Maiori, Amalfi, Italy, from 25 to 29 September, 1989, Universitá di Salerno, 1992, pp. 367-385 | Zbl
[12] Value Distribution of
[13] The second main theorem for small functions and related problems, Acta Math., Volume 192 (2004) no. 2, pp. 225-294 | DOI | MR | Zbl
[14] Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications (Dordrecht), 557, Kluwer Academic Publishers, 2003, viii+569 pages | DOI | MR
[15] Unicity theorems for meromorphic or entire functions III, Bull. Aust. Math. Soc., Volume 53 (1996) no. 1, pp. 71-82 | MR | Zbl
[16] Value distribution of
[17] The uniqueness of meromorphic functions with their derivative, Kodai Math. J., Volume 32 (1998) no. 2, pp. 179-184 | MR | Zbl
Cité par Sources :