The theory of Kolyvagin systems for p=3
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 919-946.

Dans cet article, nous considérons la théorie des systèmes de Kolyvagin lorsque p=3 et montrons que cette théorie fonctionne toujours dans un certain cadre qui a été exclu dans les études précédentes. Comme application de ce résultat, nous prouvons une conjecture de Kurihara concernant les symboles modulaires dans le cas p=3.

In this paper, we consider the theory of Kolyvagin systems when p=3 and show that this theory still works in a certain setting that has been excluded in previous studies. As an application of this result, we prove a conjecture of Kurihara concerning modular symbols in the case p=3.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1300
Classification : 11R23, 11G05, 11R34, 11S25
Mots-clés : Kolyvagin systems, modular symbols, Kurihara conjecture

Ryotaro Sakamoto 1

1 Department of Mathematics University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571, Japan
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_919_0,
     author = {Ryotaro Sakamoto},
     title = {The theory of {Kolyvagin} systems for $p=3$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {919--946},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     year = {2024},
     doi = {10.5802/jtnb.1300},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/}
}
TY  - JOUR
AU  - Ryotaro Sakamoto
TI  - The theory of Kolyvagin systems for $p=3$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 919
EP  - 946
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/
DO  - 10.5802/jtnb.1300
LA  - en
ID  - JTNB_2024__36_3_919_0
ER  - 
%0 Journal Article
%A Ryotaro Sakamoto
%T The theory of Kolyvagin systems for $p=3$
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 919-946
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/
%R 10.5802/jtnb.1300
%G en
%F JTNB_2024__36_3_919_0
Ryotaro Sakamoto. The theory of Kolyvagin systems for $p=3$. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 919-946. doi : 10.5802/jtnb.1300. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/

[1] David Burns; Ryotaro Sakamoto; Takamichi Sano On the theory of higher rank Euler, Kolyvagin and Stark systems, II | arXiv

[2] David Burns; Takamichi Sano On the theory of higher rank Euler, Kolyvagin and Stark systems, Int. Math. Res. Not., Volume 2021 (2021) no. 13, pp. 10118-10206 | DOI | MR | Zbl

[3] Kâzim Büyükboduk Kolyvagin systems of Stark units, J. Reine Angew. Math., Volume 631 (2009), pp. 85-107 | DOI | MR | Zbl

[4] Kâzim Büyükboduk Stark units and the main conjectures for totally real fields, Compos. Math., Volume 145 (2009) no. 5, pp. 1163-1195 | DOI | MR | Zbl

[5] Kâzim Büyükboduk Λ-adic Kolyvagin systems, Int. Math. Res. Not., Volume 2011 (2011) no. 14, pp. 3141-3206 | DOI | MR | Zbl

[6] Kâzim Büyükboduk Stickelberger elements and Kolyvagin systems, Nagoya Math. J., Volume 203 (2011), pp. 123-173 | DOI | MR | Zbl

[7] Kâzim Büyükboduk Main conjectures for CM fields and a Yager-type theorem for Rubin-Stark elements, Int. Math. Res. Not., Volume 2014 (2014) no. 21, pp. 5832-5873 | DOI | MR | Zbl

[8] Kâzim Büyükboduk Deformations of Kolyvagin systems, Ann. Math. Qué., Volume 40 (2016) no. 2, pp. 251-302 | DOI | MR | Zbl

[9] Kâzim Büyükboduk On the Iwasawa theory of CM fields for supersingular primes, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 927-966 | DOI | MR | Zbl

[10] Kâzim Büyükboduk; Antonio Lei Coleman-adapted Rubin-Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 6, pp. 1338-1378 | DOI | MR | Zbl

[11] Noam Elkies Elliptic curves with 3-adic Galois representation surjective mod 3 but not mod 9 (2006) | arXiv

[12] Kazuya Kato p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | MR | Zbl

[13] Chan-Ho Kim The structure of Selmer groups and the Iwasawa main conjecture for elliptic curves (2022) | arXiv

[14] Masato Kurihara The structure of Selmer groups of elliptic curves and modular symbols, Iwasawa theory 2012 (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2014, pp. 317-356 | DOI | MR | Zbl

[15] Ju. I. Manin Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 19-66 | MR | Zbl

[16] Hideyuki Matsumura Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages (translated from the Japanese by M. Reid) | MR

[17] Barry Mazur; Karl Rubin Kolyvagin systems, Mem. Am. Math. Soc., Volume 168 (2004) no. 799, p. viii+96 | DOI | MR | Zbl

[18] Barry Mazur; Karl Rubin Controlling Selmer groups in the higher core rank case, J. Théor. Nombres Bordeaux, Volume 28 (2016) no. 1, pp. 145-183 | DOI | Numdam | MR | Zbl

[19] Barry Mazur; Karl Rubin Refined class number formulas for 𝔾m, J. Théor. Nombres Bordeaux, Volume 28 (2016) no. 1, pp. 185-211 | DOI | MR | Zbl

[20] Amadeu Reverter; Núria Vila Images of mod p Galois representations associated to elliptic curves, Can. Math. Bull., Volume 44 (2001) no. 3, pp. 313-322 | DOI | MR | Zbl

[21] Karl Rubin Euler systems. (Hermann Weyl Lectures), Annals of Mathematics Studies, 147, Princeton University Press, 2000, xii+227 pages | DOI | MR

[22] Ryotaro Sakamoto Stark systems over Gorenstein local rings, Algebra Number Theory, Volume 12 (2018) no. 10, pp. 2295-2326 | DOI | MR | Zbl

[23] Ryotaro Sakamoto On the theory of higher rank Euler, Kolyvagin and Stark systems: a research announcement, RIMS Kôkyûroku Bessatsu, Volume B83 (2020), pp. 141-159 | MR | Zbl

[24] Ryotaro Sakamoto On the theory of Kolyvagin systems of rank 0, J. Théor. Nombres Bordeaux, Volume 33 (2021) no. 3, pp. 1077-1102 | DOI | Numdam | MR | Zbl

[25] Ryotaro Sakamoto p-Selmer group and modular symbols, Doc. Math., Volume 27 (2022), pp. 1891-1922 | DOI | MR | Zbl

[26] Christopher Skinner; Eric Urban The Iwasawa main conjectures for GL2, Invent. Math., Volume 195 (2014) no. 1, pp. 1-277 | DOI | MR | Zbl

[27] H. P. F. Swinnerton-Dyer On l-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 350, Springer, 1973, pp. 1-55 | MR | Zbl

Cité par Sources :