Dans cet article, nous considérons la théorie des systèmes de Kolyvagin lorsque
In this paper, we consider the theory of Kolyvagin systems when
Révisé le :
Accepté le :
Publié le :
Mots-clés : Kolyvagin systems, modular symbols, Kurihara conjecture
Ryotaro Sakamoto 1

@article{JTNB_2024__36_3_919_0, author = {Ryotaro Sakamoto}, title = {The theory of {Kolyvagin} systems for $p=3$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {919--946}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {3}, year = {2024}, doi = {10.5802/jtnb.1300}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/} }
TY - JOUR AU - Ryotaro Sakamoto TI - The theory of Kolyvagin systems for $p=3$ JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 919 EP - 946 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/ DO - 10.5802/jtnb.1300 LA - en ID - JTNB_2024__36_3_919_0 ER -
%0 Journal Article %A Ryotaro Sakamoto %T The theory of Kolyvagin systems for $p=3$ %J Journal de théorie des nombres de Bordeaux %D 2024 %P 919-946 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/ %R 10.5802/jtnb.1300 %G en %F JTNB_2024__36_3_919_0
Ryotaro Sakamoto. The theory of Kolyvagin systems for $p=3$. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 919-946. doi : 10.5802/jtnb.1300. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1300/
[1] On the theory of higher rank Euler, Kolyvagin and Stark systems, II | arXiv
[2] On the theory of higher rank Euler, Kolyvagin and Stark systems, Int. Math. Res. Not., Volume 2021 (2021) no. 13, pp. 10118-10206 | DOI | MR | Zbl
[3] Kolyvagin systems of Stark units, J. Reine Angew. Math., Volume 631 (2009), pp. 85-107 | DOI | MR | Zbl
[4] Stark units and the main conjectures for totally real fields, Compos. Math., Volume 145 (2009) no. 5, pp. 1163-1195 | DOI | MR | Zbl
[5]
[6] Stickelberger elements and Kolyvagin systems, Nagoya Math. J., Volume 203 (2011), pp. 123-173 | DOI | MR | Zbl
[7] Main conjectures for CM fields and a Yager-type theorem for Rubin-Stark elements, Int. Math. Res. Not., Volume 2014 (2014) no. 21, pp. 5832-5873 | DOI | MR | Zbl
[8] Deformations of Kolyvagin systems, Ann. Math. Qué., Volume 40 (2016) no. 2, pp. 251-302 | DOI | MR | Zbl
[9] On the Iwasawa theory of CM fields for supersingular primes, Trans. Am. Math. Soc., Volume 370 (2018) no. 2, pp. 927-966 | DOI | MR | Zbl
[10] Coleman-adapted Rubin-Stark Kolyvagin systems and supersingular Iwasawa theory of CM abelian varieties, Proc. Lond. Math. Soc. (3), Volume 111 (2015) no. 6, pp. 1338-1378 | DOI | MR | Zbl
[11] Elliptic curves with 3-adic Galois representation surjective mod 3 but not mod 9 (2006) | arXiv
[12]
[13] The structure of Selmer groups and the Iwasawa main conjecture for elliptic curves (2022) | arXiv
[14] The structure of Selmer groups of elliptic curves and modular symbols, Iwasawa theory 2012 (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2014, pp. 317-356 | DOI | MR | Zbl
[15] Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 19-66 | MR | Zbl
[16] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages (translated from the Japanese by M. Reid) | MR
[17] Kolyvagin systems, Mem. Am. Math. Soc., Volume 168 (2004) no. 799, p. viii+96 | DOI | MR | Zbl
[18] Controlling Selmer groups in the higher core rank case, J. Théor. Nombres Bordeaux, Volume 28 (2016) no. 1, pp. 145-183 | DOI | Numdam | MR | Zbl
[19] Refined class number formulas for
[20] Images of mod
[21] Euler systems. (Hermann Weyl Lectures), Annals of Mathematics Studies, 147, Princeton University Press, 2000, xii+227 pages | DOI | MR
[22] Stark systems over Gorenstein local rings, Algebra Number Theory, Volume 12 (2018) no. 10, pp. 2295-2326 | DOI | MR | Zbl
[23] On the theory of higher rank Euler, Kolyvagin and Stark systems: a research announcement, RIMS Kôkyûroku Bessatsu, Volume B83 (2020), pp. 141-159 | MR | Zbl
[24] On the theory of Kolyvagin systems of rank 0, J. Théor. Nombres Bordeaux, Volume 33 (2021) no. 3, pp. 1077-1102 | DOI | Numdam | MR | Zbl
[25]
[26] The Iwasawa main conjectures for
[27] On
Cité par Sources :