Genus one half stacky curves violating the local-global principle
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 835-841.

For any number field, we prove that there exists a stacky curve of genus 1/2 defined over the ring of its integers violating the local-global principle for integral points.

Pour un corps de nombres quelconque, nous prouvons qu’il existe un champs algébrique de Deligne–Mumford propre, lisse, géométriquement connexe de dimension 1 et de genre 1/2, défini sur l’anneau des entiers du corps et violant le principe local-global pour les points entiers.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1297
Classification : 11G30, 14A20, 14G25, 14H25
Mots-clés : stacky curves, local points, integral points, local-global principle for integral points

Han Wu 1 ; Chang Lv 2

1 Laboratory of Applied Mathematics Faculty of Mathematics and Statistics, Hubei University No. 368, Friendship Avenue Wuchang District, Wuhan, Hubei, 430062, P.R. China
2 State Key Laboratory of Cyberspace Security Defense Institute of Information Engineering Chinese Academy of Sciences Beijing 100093, P.R. China
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_835_0,
     author = {Han Wu and Chang Lv},
     title = {Genus one half stacky curves violating the local-global principle},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {835--841},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     year = {2024},
     doi = {10.5802/jtnb.1297},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1297/}
}
TY  - JOUR
AU  - Han Wu
AU  - Chang Lv
TI  - Genus one half stacky curves violating the local-global principle
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 835
EP  - 841
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1297/
DO  - 10.5802/jtnb.1297
LA  - en
ID  - JTNB_2024__36_3_835_0
ER  - 
%0 Journal Article
%A Han Wu
%A Chang Lv
%T Genus one half stacky curves violating the local-global principle
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 835-841
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1297/
%R 10.5802/jtnb.1297
%G en
%F JTNB_2024__36_3_835_0
Han Wu; Chang Lv. Genus one half stacky curves violating the local-global principle. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 835-841. doi : 10.5802/jtnb.1297. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1297/

[1] Manjul Bhargava; Bjorn Poonen The local-global principle for integral points on stacky curves, J. Algebr. Geom., Volume 31 (2022) no. 4, pp. 773-782 | DOI | MR | Zbl

[2] Atticus Christensen A topology on points on stacks, Ph. D. Thesis, Massachusetts Institute of Technology (USA) (2020)

[3] Henri Darmon; Andrew Granville On the equations zm=F(x,y) and Axp+Byq=Czr, Bull. Lond. Math. Soc., Volume 27 (1995) no. 6, pp. 513-543 | MR | Zbl

[4] Seán Keel; Shigefumi Mori Quotients by groupoids, Ann. Math., Volume 145 (1995) no. 1, pp. 193-213 | DOI | Zbl

[5] Martin Olsson Algebraic spaces and stacks, Colloquium Publications, 62, American Mathematical Society, 2016, xi+298 pages | MR | Zbl

[6] Bjorn Poonen; José Felipe Voloch The Brauer–Manin obstruction for subvarieties of abelian varieties over function fields, Ann. Math., Volume 171 (2010) no. 1, pp. 511-532 | DOI | Zbl

[7] Jean-Pierre Serre A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, 1973, viii+115 pages | DOI | MR | Zbl

[8] John Voight; David Zureick-Brown The canonical ring of a stacky curve, Memoirs of the American Mathematical Society, 1362, American Mathematical Society, 2022, v+144 pages | Zbl

[9] Han Wu Non-invariance of the Brauer–Manin obstruction for surfaces (2021) | arXiv

[10] Han Wu On genus one curves violating the local-global principle, J. Number Theory, Volume 242 (2023), pp. 235-243 | MR | Zbl

Cité par Sources :