An ergodic approach towards an equidistribution result of Ferrero–Washington
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 805-833.

An important ingredient in the Ferrero–Washington proof of the vanishing of cyclotomic μ-invariant for Kubota–Leopoldt p-adic L-functions is an equidistribution result which they established using the Weyl criterion. The purpose of our manuscript is to provide an alternative proof by adopting a dynamical approach. A key ingredient to our methods is studying an ergodic skew-product map on p×[0,1], which is then suitably identified as a factor of the 2-sided Bernoulli shift on the sample space {0,1,2,,p-1}.

Un ingrédient important de la preuve de Ferrero et Washington de la nullité de l’invariant cyclotomique μ pour les fonctions L p-adiques de Kubota–Leopoldt est un résultat d’équidistribution qu’ils ont établi en utilisant le critère de Weyl. Le but de notre manuscrit est de fournir une preuve alternative en adoptant une approche dynamique. L’une des idées clés de notre méthode est l’étude d’une application semi-directe ergodique sur p×[0,1], qui est ensuite identifiée de manière appropriée comme un facteur du décalage de Bernoulli bilatéral sur l’espace {0,1,2,,p-1}.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1296
Classification : 11R23, 37A05, 37A44, 11K06, 11K41
Mots-clés : Iwasawa theory, Ergodic theory, Bernoulli shifts, Equidistribution modulo 1

Jungwon Lee 1 ; Bharathwaj Palvannan 2

1 Mathematics Institute University of Warwick Coventry CV4 7AL, UK
2 Department of Mathematics Indian Institute of Science CV Raman Road Bangalore 560012, India
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_3_805_0,
     author = {Jungwon Lee and Bharathwaj Palvannan},
     title = {An ergodic approach towards an equidistribution result of {Ferrero{\textendash}Washington}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {805--833},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {3},
     year = {2024},
     doi = {10.5802/jtnb.1296},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1296/}
}
TY  - JOUR
AU  - Jungwon Lee
AU  - Bharathwaj Palvannan
TI  - An ergodic approach towards an equidistribution result of Ferrero–Washington
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 805
EP  - 833
VL  - 36
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1296/
DO  - 10.5802/jtnb.1296
LA  - en
ID  - JTNB_2024__36_3_805_0
ER  - 
%0 Journal Article
%A Jungwon Lee
%A Bharathwaj Palvannan
%T An ergodic approach towards an equidistribution result of Ferrero–Washington
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 805-833
%V 36
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1296/
%R 10.5802/jtnb.1296
%G en
%F JTNB_2024__36_3_805_0
Jungwon Lee; Bharathwaj Palvannan. An ergodic approach towards an equidistribution result of Ferrero–Washington. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 805-833. doi : 10.5802/jtnb.1296. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1296/

[1] Patrick Billingsley Convergence of probability measures, Wiley Series in Probability and Statistics, John Wiley & Sons, 1999, x+277 pages (A Wiley-Interscience Publication) | DOI | MR

[2] Patrick Billingsley Probability and measure, Wiley Series in Probability and Statistics, John Wiley & Sons, 2012, xviii+624 pages (Anniversary edition [of MR1324786], with a foreword by Steve Lalley and a brief biography of Billingsley by Steve Koppes) | MR

[3] Vladimir I. Bogachev Measure theory. Vol. I, II, Springer, 2007, xviii+500; xiv+575 pages | DOI | MR

[4] Rufus Bowen; Caroline Series Markov maps associated with Fuchsian groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 153-170 | DOI | Numdam | MR | Zbl

[5] Christophe Cornut Mazur’s conjecture on higher Heegner points, Invent. Math., Volume 148 (2002) no. 3, pp. 495-523 | DOI | MR | Zbl

[6] Manfred Einsiedler; Thomas Ward Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, 259, Springer, 2011 | DOI | MR

[7] Bruce Ferrero; Lawrence C. Washington The Iwasawa invariant μp vanishes for abelian number fields, Ann. Math. (2), Volume 109 (1979) no. 2, pp. 377-395 | DOI | MR | Zbl

[8] Hillel Furstenberg Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, Princeton University Press, 1981, xi+203 pages | DOI | MR

[9] Kenkichi Iwasawa On some invariants of cyclotomic fields, Am. J. Math., Volume 80 (1958), pp. 773-783 erratum in ibid 81 (1958), p. 280 | DOI | MR | Zbl

[10] Kenkichi Iwasawa On the theory of cyclotomic fields, Ann. Math. (2), Volume 70 (1959), pp. 530-561 | DOI | Zbl

[11] Kenkichi Iwasawa Lectures on p-adic L-functions, Annals of Mathematics Studies, 74, Princeton University Press; University of Tokyo Press, 1972 | DOI | MR

[12] Jungwon Lee; Hae-Sang Sun Dynamics of continued fractions and distribution of modular symbols (2019) | arXiv

[13] Elon Lindenstrauss p-adic foliation and equidistribution, Isr. J. Math., Volume 122 (2001), pp. 29-42 | DOI | MR | Zbl

[14] Barry Mazur; Karl Rubin Arithmetic conjectures suggested by the statistical behavior of modular symbols, Exp. Math., Volume 32 (2023) no. 4, pp. 657-672 | DOI | MR | Zbl

[15] Alain M. Robert A course in p-adic analysis, Graduate Texts in Mathematics, 198, Springer, 2000 | DOI | MR

[16] Halsey L. Royden Real analysis, Macmillan Publishing Company, 1988, xx+444 pages | MR

[17] Warren Sinnott On the μ-invariant of the Γ-transform of a rational function, Invent. Math., Volume 75 (1984) no. 2, pp. 273-282 | DOI | MR

[18] Vinayak Vatsal Uniform distribution of Heegner points, Invent. Math., Volume 148 (2002) no. 1, pp. 1-46 | DOI | MR | Zbl

[19] Vinayak Vatsal Special values of anticyclotomic L-functions, Duke Math. J., Volume 116 (2003) no. 2, pp. 219-261 | DOI | MR | Zbl

[20] Vinayak Vatsal Special values of L-functions modulo p, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 501-514 | MR | Zbl

[21] Peter Walters An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer, 1982, ix+250 pages | DOI | MR

[22] Lawrence C. Washington On Sinnott’s proof of the vanishing of the Iwasawa invariant μp, Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press Inc., 1989, pp. 457-462 | DOI | MR | Zbl

Cité par Sources :