An important ingredient in the Ferrero–Washington proof of the vanishing of cyclotomic
Un ingrédient important de la preuve de Ferrero et Washington de la nullité de l’invariant cyclotomique
Révisé le :
Accepté le :
Publié le :
Mots-clés : Iwasawa theory, Ergodic theory, Bernoulli shifts, Equidistribution modulo
Jungwon Lee 1 ; Bharathwaj Palvannan 2

@article{JTNB_2024__36_3_805_0, author = {Jungwon Lee and Bharathwaj Palvannan}, title = {An ergodic approach towards an equidistribution result of {Ferrero{\textendash}Washington}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {805--833}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {3}, year = {2024}, doi = {10.5802/jtnb.1296}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1296/} }
TY - JOUR AU - Jungwon Lee AU - Bharathwaj Palvannan TI - An ergodic approach towards an equidistribution result of Ferrero–Washington JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 805 EP - 833 VL - 36 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1296/ DO - 10.5802/jtnb.1296 LA - en ID - JTNB_2024__36_3_805_0 ER -
%0 Journal Article %A Jungwon Lee %A Bharathwaj Palvannan %T An ergodic approach towards an equidistribution result of Ferrero–Washington %J Journal de théorie des nombres de Bordeaux %D 2024 %P 805-833 %V 36 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1296/ %R 10.5802/jtnb.1296 %G en %F JTNB_2024__36_3_805_0
Jungwon Lee; Bharathwaj Palvannan. An ergodic approach towards an equidistribution result of Ferrero–Washington. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 3, pp. 805-833. doi : 10.5802/jtnb.1296. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1296/
[1] Convergence of probability measures, Wiley Series in Probability and Statistics, John Wiley & Sons, 1999, x+277 pages (A Wiley-Interscience Publication) | DOI | MR
[2] Probability and measure, Wiley Series in Probability and Statistics, John Wiley & Sons, 2012, xviii+624 pages (Anniversary edition [of MR1324786], with a foreword by Steve Lalley and a brief biography of Billingsley by Steve Koppes) | MR
[3] Measure theory. Vol. I, II, Springer, 2007, xviii+500; xiv+575 pages | DOI | MR
[4] Markov maps associated with Fuchsian groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 153-170 | DOI | Numdam | MR | Zbl
[5] Mazur’s conjecture on higher Heegner points, Invent. Math., Volume 148 (2002) no. 3, pp. 495-523 | DOI | MR | Zbl
[6] Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, 259, Springer, 2011 | DOI | MR
[7] The Iwasawa invariant
[8] Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, Princeton University Press, 1981, xi+203 pages | DOI | MR
[9] On some invariants of cyclotomic fields, Am. J. Math., Volume 80 (1958), pp. 773-783 erratum in ibid 81 (1958), p. 280 | DOI | MR | Zbl
[10] On the theory of cyclotomic fields, Ann. Math. (2), Volume 70 (1959), pp. 530-561 | DOI | Zbl
[11] Lectures on
[12] Dynamics of continued fractions and distribution of modular symbols (2019) | arXiv
[13]
[14] Arithmetic conjectures suggested by the statistical behavior of modular symbols, Exp. Math., Volume 32 (2023) no. 4, pp. 657-672 | DOI | MR | Zbl
[15] A course in
[16] Real analysis, Macmillan Publishing Company, 1988, xx+444 pages | MR
[17] On the
[18] Uniform distribution of Heegner points, Invent. Math., Volume 148 (2002) no. 1, pp. 1-46 | DOI | MR | Zbl
[19] Special values of anticyclotomic
[20] Special values of
[21] An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer, 1982, ix+250 pages | DOI | MR
[22] On Sinnott’s proof of the vanishing of the Iwasawa invariant
Cité par Sources :