Estimates for a three-dimensional exponential sum with monomials
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 725-766.

Nous calculons une collection de moments mixtes de la fonction zêta de Riemann à l’aide d’une équation fonctionnelle approximative pour le produit des fonctions zêta. Comme application, nous fournissons des estimations pour des sommes exponentielles tridimensionnelles à phase monomiale qui sont dans certains cas plus précises que celles provenant des approches nécessitant l’utilisation des estimations existantes des sommes analogues.

We compute a collection of mixed moments of the Riemann-zeta function by means of an approximate functional equation for the product of zeta functions. As an application we provide estimates for three-dimensional exponential sums with monomials which are in some instances sharper than those stemming from approaches entailing the use of existing bounds pertaining to analogous sums.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1294
Classification : 11M06, 11L03
Mots clés : Exponential sums, Riemann zeta function, moments of zeta
Javier Pliego 1

1 Department of Mathematics, KTH Royal Institute of Technology, Lindstedtsvägen 25, 10044 Stockholm, Sweden
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_725_0,
     author = {Javier Pliego},
     title = {Estimates for a three-dimensional exponential sum with monomials},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {725--766},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     year = {2024},
     doi = {10.5802/jtnb.1294},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1294/}
}
TY  - JOUR
AU  - Javier Pliego
TI  - Estimates for a three-dimensional exponential sum with monomials
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 725
EP  - 766
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1294/
DO  - 10.5802/jtnb.1294
LA  - en
ID  - JTNB_2024__36_2_725_0
ER  - 
%0 Journal Article
%A Javier Pliego
%T Estimates for a three-dimensional exponential sum with monomials
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 725-766
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1294/
%R 10.5802/jtnb.1294
%G en
%F JTNB_2024__36_2_725_0
Javier Pliego. Estimates for a three-dimensional exponential sum with monomials. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 725-766. doi : 10.5802/jtnb.1294. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1294/

[1] Jean Bourgain Decoupling, exponential sums and the Riemann zeta function, J. Am. Math. Soc., Volume 30 (2017) no. 1, pp. 205-224 | DOI | Zbl

[2] Etienne Fouvry; Henryk Iwaniec Exponential sums with monomials, J. Number Theory, Volume 33 (1989) no. 3, pp. 311-333 | DOI | Zbl

[3] Sidney Graham; Grigori Kolesnik Van der Corput’s method for exponential sums, London Mathematical Society Lecture Note Series, 126, London Mathematical Society, 1991, 120 pages | DOI

[4] Godfrey H. Hardy; John E. Littlewood Contributions to the theory of the Riemann zeta function and the theory of the distribution of primes, Acta Math., Volume 41 (1918), pp. 119-196 | DOI | Zbl

[5] D. Roger Heath-Brown The fourth power moment of the Riemann zeta function, Proc. Lond. Math. Soc., Volume 38 (1979), pp. 385-422 | DOI | Zbl

[6] Albert E. Ingham Mean-value theorems in the theory of the Riemann zeta-function, Proc. Lond. Math. Soc., Volume 27 (1926), pp. 273-300 | Zbl

[7] Hong Q. Liu The distribution of 4-full numbers, Acta Arith., Volume 67 (1994) no. 2, pp. 165-176 | Zbl

[8] Hong Q. Liu Exponential sums and the abelian group problem, Funct. Approximatio, Comment. Math., Volume 42 (2010) no. 2, pp. 113-129 | Zbl

[9] Javier Pliego Mixed moments of the Riemann zeta function (2022) | arXiv

[10] Olivier Robert; Patrick Sargos Three-dimensional exponential sums with monomials, J. Reine Angew. Math., Volume 591 (2006), pp. 1-20 | DOI | Zbl

[11] Patrick Sargos; Jie Wu Multiple exponential sums with monomials and their applications in number theory, Acta Math., Volume 87 (2000) no. 4, pp. 333-354 | Zbl

[12] Edward C. Titchmarsh The theory of the Riemann zeta-function, Oxford Science Publications, Clarendon Press, 1986, x+412 pages

[13] Edmund T. Whittaker; George N. Watson A course of Modern Analysis, Cambridge University Press, 1927, vi+608 pages

[14] Jie Wu Nombres -libres dans les petits intervalles, Acta Arith., Volume 65 (1993) no. 2, pp. 97-116 | Zbl

Cité par Sources :