Estimates for a three-dimensional exponential sum with monomials
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 725-766.

We compute a collection of mixed moments of the Riemann-zeta function by means of an approximate functional equation for the product of zeta functions. As an application we provide estimates for three-dimensional exponential sums with monomials which are in some instances sharper than those stemming from approaches entailing the use of existing bounds pertaining to analogous sums.

Nous calculons une collection de moments mixtes de la fonction zêta de Riemann à l’aide d’une équation fonctionnelle approximative pour le produit des fonctions zêta. Comme application, nous fournissons des estimations pour des sommes exponentielles tridimensionnelles à phase monomiale qui sont dans certains cas plus précises que celles provenant des approches nécessitant l’utilisation des estimations existantes des sommes analogues.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1294
Classification : 11M06, 11L03
Mots-clés : Exponential sums, Riemann zeta function, moments of zeta

Javier Pliego 1

1 Department of Mathematics, KTH Royal Institute of Technology, Lindstedtsvägen 25, 10044 Stockholm, Sweden
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_725_0,
     author = {Javier Pliego},
     title = {Estimates for a three-dimensional exponential sum with monomials},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {725--766},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     year = {2024},
     doi = {10.5802/jtnb.1294},
     mrnumber = {4830948},
     zbl = {07948983},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1294/}
}
TY  - JOUR
AU  - Javier Pliego
TI  - Estimates for a three-dimensional exponential sum with monomials
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 725
EP  - 766
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1294/
DO  - 10.5802/jtnb.1294
LA  - en
ID  - JTNB_2024__36_2_725_0
ER  - 
%0 Journal Article
%A Javier Pliego
%T Estimates for a three-dimensional exponential sum with monomials
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 725-766
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1294/
%R 10.5802/jtnb.1294
%G en
%F JTNB_2024__36_2_725_0
Javier Pliego. Estimates for a three-dimensional exponential sum with monomials. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 725-766. doi : 10.5802/jtnb.1294. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1294/

[1] Jean Bourgain Decoupling, exponential sums and the Riemann zeta function, J. Am. Math. Soc., Volume 30 (2017) no. 1, pp. 205-224 | DOI | MR | Zbl

[2] Etienne Fouvry; Henryk Iwaniec Exponential sums with monomials, J. Number Theory, Volume 33 (1989) no. 3, pp. 311-333 | DOI | MR | Zbl

[3] Sidney Graham; Grigori Kolesnik Van der Corput’s method for exponential sums, London Mathematical Society Lecture Note Series, 126, London Mathematical Society, 1991, 120 pages | DOI

[4] Godfrey H. Hardy; John E. Littlewood Contributions to the theory of the Riemann zeta function and the theory of the distribution of primes, Acta Math., Volume 41 (1918), pp. 119-196 | DOI | MR | Zbl

[5] D. Roger Heath-Brown The fourth power moment of the Riemann zeta function, Proc. Lond. Math. Soc., Volume 38 (1979), pp. 385-422 | DOI | MR | Zbl

[6] Albert E. Ingham Mean-value theorems in the theory of the Riemann zeta-function, Proc. Lond. Math. Soc., Volume 27 (1926), pp. 273-300 | MR | Zbl

[7] Hong Q. Liu The distribution of 4-full numbers, Acta Arith., Volume 67 (1994) no. 2, pp. 165-176 | MR | Zbl

[8] Hong Q. Liu Exponential sums and the abelian group problem, Funct. Approximatio, Comment. Math., Volume 42 (2010) no. 2, pp. 113-129 | MR | Zbl

[9] Javier Pliego Mixed moments of the Riemann zeta function (2022) | arXiv

[10] Olivier Robert; Patrick Sargos Three-dimensional exponential sums with monomials, J. Reine Angew. Math., Volume 591 (2006), pp. 1-20 | DOI | MR | Zbl

[11] Patrick Sargos; Jie Wu Multiple exponential sums with monomials and their applications in number theory, Acta Math., Volume 87 (2000) no. 4, pp. 333-354 | Zbl

[12] Edward C. Titchmarsh The theory of the Riemann zeta-function, Oxford Science Publications, Clarendon Press, 1986, x+412 pages | MR

[13] Edmund T. Whittaker; George N. Watson A course of Modern Analysis, Cambridge University Press, 1927, vi+608 pages | MR

[14] Jie Wu Nombres -libres dans les petits intervalles, Acta Arith., Volume 65 (1993) no. 2, pp. 97-116 | MR | Zbl

Cité par Sources :