Soit un corps local de dimension et de caractéristique On note le quotient maximal de de période et de classe de nilpotence Soit tel que . On utilise la théorie nilpotente d’Artin–Schreier pour identifier avec le groupe obtenu à partir d’une -algèbre de Lie via la loi de composition de Campbell–Hausdorff. On utilise la topologie canonique sur dite -topologie pour définir une sous-algèbre de Lie dense dans . L’algèbre peut être munie d’un système de générateurs topologiques et nous prouvons que la correspondance de Galois établit une bijection entre les extensions -dimensionnelles de dans et les -sous-algèbres ouvertes de Ces résultats sont appliqués aux corps locaux supérieurs de caractéristique 0 contenant une racine -ième primitive de l’unité. Si on introduit de la même manière le quotient de et on le présente sous la forme , où est une -algèbre de Lie profinie appropriée. On introduit ensuite une -sous-algèbre de Lie dense dans et on décrit la structure de en termes de générateurs et relations. Le résultat général est illustré par une présentation explicite de modulo le sous-groupe engendré par les -commutateurs.
Suppose is -dimensional local field of characteristic , is the maximal quotient of period and nilpotent class of , and is such that . We use nilpotent Artin–Schreier theory to identify with the group obtained from a profinite Lie -algebra via the Campbell–Hausdorff composition law. The canonical -topology on is used to define a dense Lie subalgebra in . The algebra can be provided with a system of -topological generators and we prove that all -dimensional extensions of in are in the bijection with all -open subalgebras of by the Galois correspondence. These results are applied to higher local fields of characteristic 0 containing a nontrivial -th root of unity. If we introduce similarly the quotient and present it in the form , where is a suitable profinite Lie -algebra. Then we introduce a dense -Lie subalgebra in , and describe the structure of in terms of generators and relations. The general result is illustrated by explicit presentation of modulo subgroup of third commutators.
Accepté le :
Publié le :
Mots clés : Local field, Galois group
@article{JTNB_2024__36_2_671_0, author = {Victor Abrashkin}, title = {Galois groups of $p$-extensions of higher local fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {671--724}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1293}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/} }
TY - JOUR AU - Victor Abrashkin TI - Galois groups of $p$-extensions of higher local fields JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 671 EP - 724 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/ DO - 10.5802/jtnb.1293 LA - en ID - JTNB_2024__36_2_671_0 ER -
%0 Journal Article %A Victor Abrashkin %T Galois groups of $p$-extensions of higher local fields %J Journal de théorie des nombres de Bordeaux %D 2024 %P 671-724 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/ %R 10.5802/jtnb.1293 %G en %F JTNB_2024__36_2_671_0
Victor Abrashkin. Galois groups of $p$-extensions of higher local fields. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 671-724. doi : 10.5802/jtnb.1293. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/
[1] Ramification filtration of the Galois group of a local field, Proceedings of the St. Petersburg Mathematical Society. Vol. III (Translations. Series 2. American Mathematical Society), Volume 166, American Mathematical Society, 1995, pp. 35-100 | Zbl
[2] Ramification filtration of the Galois group of a local field. II, Number theory, algebra and algebraic geometry (Proceedings of the Steklov Institute of Mathematics), Volume 208, Maik Nauka/Interperiodica Publishing, 1995, pp. 18-69 | Zbl
[3] On a local analogue of the Grothendieck Conjecture, Int. J. Math., Volume 11 (2000) no. 2, pp. 133-175 | DOI | Zbl
[4] Ramification theory for higher dimensional fields, Algebraic number theory and algebraic geometry (Contemporary Mathematics), Volume 300, American Mathematical Society, 2002, pp. 1-16 | DOI | Zbl
[5] An analogue of the Grothendieck conjecture for two-dimensional local fields of finite characteristic, Number theory, algebra, and algebraic geometry (Proceedings of the Steklov Institute of Mathematics), Volume 241, Maik Nauka/Interperiodika, 2003, pp. 2-34 | Zbl
[6] An analogue of the field-of-norms functor and of the Grothendieck conjecture, J. Algebr. Geom., Volume 16 (2007) no. 4, pp. 671-730 | DOI | Zbl
[7] Modified proof of a local analogue of the Grothendieck Conjecture, J. Théor. Nombres Bordeaux, Volume 22 (2010) no. 1, pp. 1-50 | DOI | Numdam | Zbl
[8] Galois groups of local fields, Lie algebras and ramification, Arithmetic and geometry (London Mathematical Society Lecture Note Series), Volume 420, Cambridge University Press, 2015, pp. 1-23 | Zbl
[9] Groups of automorphisms of local fields of period and nilpotent class . I, Int. J. Math., Volume 28 (2017) no. 6, 1750043, 34 pages | Zbl
[10] Groups of automorphisms of local fields of period and nilpotent class . II, Int. J. Math., Volume 28 (2017) no. 10, 1750066, 32 pages | Zbl
[11] Ramification filtration via deformations, Sb. Math., Volume 212 (2021) no. 2, pp. 135-169 | DOI | Zbl
[12] The field-of-norms functor and the Hilbert symbol for higher local fields, J. Théor. Nombres Bordeaux, Volume 24 (2012) no. 1, pp. 1-39 | DOI | Numdam | Zbl
[13] On -Extensions of Multidimensional Local Fields, Math. Nachr., Volume 160 (1993), pp. 59-68 | DOI | Zbl
[14] Théorie de Dieudonné cristalline. III: Théorèmes d’équivalence et de pleine fidélité, The Grothendieck Festschrift (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 173-247 | Zbl
[15] Commuting elements in Galois groups of function fields, Motives, polylogarithms and Hodge theory. Part I: Motives and polylogarithms (International Press Lecture Series), Volume 3, International Press, 2002, pp. 75-120 | Zbl
[16] Profinite completion and double-dual: isomorphisms and counter-examples (2080) (https://hal.science/hal-00208000v1/, version 1)
[17] Abelian local -class field theory, Math. Ann., Volume 301 (1995) no. 3, pp. 561-586 | DOI | Zbl
[18] Die Struktur der absoluten Galoisgruppe -adischer Zahlkörper, Invent. Math., Volume 70 (1982), pp. 71-98 | DOI | Zbl
[19] A generalization of local class field theory by using -groups I, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 26 (1979), pp. 303-376 | Zbl
[20] A generalization of local class field theory by using -groups. II, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 3, pp. 603-683 | Zbl
[21] Existence theorem for higher local fields, Invitation to higher local fields (Münster, 1999) (Geometry and Topology Monographs), Volume 3, Geometry and Topology Publications, 2000, pp. 165-195 | Zbl
[22] Galois theory of -extensions, Springer Monographs in Mathematics, Springer, 2002, xiii+190 pages | DOI
[23] Multidimensional complete fields: topology and other basic constructions, Proceedings of the St. Petersburg Mathematical Society. Vol. III (Translations. Series 2. American Mathematical Society), Volume 166, American Mathematical Society, 1995, pp. 1-34 | Zbl
[24] A version of the Grothendieck conjecture for -adic local fields, Int. J. Math., Volume 8 (1997) no. 4, pp. 499-506 | DOI | Zbl
[25] Class fields and algebraic -theory (Russian), Usp. Mat. Nauk, Volume 30 (1975) no. 1, pp. 253-254 | Zbl
[26] Local class field theory. (Russian), Tr. Mat. Inst. Steklova, Volume 165 (1985), pp. 143-170 | Zbl
[27] Galois cohomology and Brauer group of local fields. (Russian), Proc. Steklov Inst. Math., Volume 183 (1990), pp. 159-169 | Zbl
[28] Higher fields of norms and ()-modules, Doc. Math. (2006), pp. 685-709 | Zbl
[29] Cohomologie Galoisienne, Lecture Notes in Mathematics, 5, Springer, 1964 | Zbl
[30] Structure de certains pro--groupes (d’aprés Demushkin), Bourbaki Seminar. Vol. 8. Years 1962/63-1963/64. Expos. 241–276, Société Mathématique de France, 1995, pp. 145-155
[31] Explicit construction of class field theory for a multidimensional local field, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 49 (1985) no. 2, pp. 283-308 | Zbl
[32] Galois groups of Poincare type, Galois groups over (Mathematical Sciences Research Institute Publications), Volume 16, Springer, 1989, pp. 439-449 | DOI | Zbl
[33] Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983), pp. 59-89 | DOI | Numdam | Zbl
[34] Milnor and topological K-groups of multidimensional complete fields, Algebra Anal., Volume 9 (1997) no. 1, pp. 98-147 | Zbl
[35] Higher dimensional local fields, Invitation to higher local fields (Münster, 1999) (Geometry and Topology Monographs), Volume 3, Geometry and Topology Publications, 2000, pp. 5-18 | Zbl
[36] On ramification theory in the case of an imperfect residue field, Sb. Math., Volume 194 (2003) no. 12, pp. 1747-1774 | DOI | Zbl
Cité par Sources :