Galois groups of p-extensions of higher local fields
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 671-724.

Soit 𝒦 un corps local de dimension N et de caractéristique p0. On note 𝒢 <p le quotient maximal de 𝒢=Gal(𝒦 sep /𝒦) de période p et de classe de nilpotence <p. Soit 𝒦 <p 𝒦 sep tel que Gal(𝒦 <p /𝒦)=𝒢 <p . On utilise la théorie nilpotente d’Artin–Schreier pour identifier 𝒢 <p avec le groupe G() obtenu à partir d’une 𝔽 p -algèbre de Lie via la loi de composition de Campbell–Hausdorff. On utilise la topologie canonique sur 𝒦 dite 𝒫-topologie pour définir une sous-algèbre de Lie 𝒫 dense dans . L’algèbre 𝒫 peut être munie d’un système de générateurs topologiques et nous prouvons que la correspondance de Galois établit une bijection entre les extensions N-dimensionnelles de 𝒦 dans 𝒦 <p et les 𝒫-sous-algèbres ouvertes de 𝒫 . Ces résultats sont appliqués aux corps locaux supérieurs K de caractéristique 0 contenant une racine p-ième primitive de l’unité. Si Γ=Gal(K alg /K), on introduit de la même manière le quotient Γ <p de Γ et on le présente sous la forme G(L), où L est une 𝔽 p -algèbre de Lie profinie appropriée. On introduit ensuite une 𝔽 p -sous-algèbre de Lie L 𝒫 dense dans L et on décrit la structure de L 𝒫 en termes de générateurs et relations. Le résultat général est illustré par une présentation explicite de Γ <p modulo le sous-groupe engendré par les 3-commutateurs.

Suppose 𝒦 is N-dimensional local field of characteristic p0, 𝒢 <p is the maximal quotient of period p and nilpotent class <p of 𝒢=Gal(𝒦 sep /𝒦), and 𝒦 <p 𝒦 sep is such that Gal(𝒦 <p /𝒦)=𝒢 <p . We use nilpotent Artin–Schreier theory to identify 𝒢 <p with the group G() obtained from a profinite Lie 𝔽 p -algebra via the Campbell–Hausdorff composition law. The canonical 𝒫-topology on 𝒦 is used to define a dense Lie subalgebra 𝒫 in . The algebra 𝒫 can be provided with a system of 𝒫-topological generators and we prove that all N-dimensional extensions of 𝒦 in 𝒦 <p are in the bijection with all 𝒫-open subalgebras of 𝒫 by the Galois correspondence. These results are applied to higher local fields K of characteristic 0 containing a nontrivial p-th root of unity. If Γ=Gal(K alg /K) we introduce similarly the quotient Γ <p and present it in the form G(L), where L is a suitable profinite Lie 𝔽 p -algebra. Then we introduce a dense 𝔽 p -Lie subalgebra L 𝒫 in L, and describe the structure of L 𝒫 in terms of generators and relations. The general result is illustrated by explicit presentation of Γ <p modulo subgroup of third commutators.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1293
Classification : 11S15, 11S20
Mots clés : Local field, Galois group
Victor Abrashkin 1, 2

1 Department of Mathematical Sciences, Durham University, Science Laboratories Lower Mountjoy, Durham DH1 3LE, United Kingdom
2 Steklov Institute, Gubkina str. 8, 119991, Moscow, Russia
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_671_0,
     author = {Victor Abrashkin},
     title = {Galois groups of $p$-extensions of higher local fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {671--724},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     year = {2024},
     doi = {10.5802/jtnb.1293},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/}
}
TY  - JOUR
AU  - Victor Abrashkin
TI  - Galois groups of $p$-extensions of higher local fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 671
EP  - 724
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/
DO  - 10.5802/jtnb.1293
LA  - en
ID  - JTNB_2024__36_2_671_0
ER  - 
%0 Journal Article
%A Victor Abrashkin
%T Galois groups of $p$-extensions of higher local fields
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 671-724
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/
%R 10.5802/jtnb.1293
%G en
%F JTNB_2024__36_2_671_0
Victor Abrashkin. Galois groups of $p$-extensions of higher local fields. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 671-724. doi : 10.5802/jtnb.1293. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1293/

[1] Victor A. Abrashkin Ramification filtration of the Galois group of a local field, Proceedings of the St. Petersburg Mathematical Society. Vol. III (Translations. Series 2. American Mathematical Society), Volume 166, American Mathematical Society, 1995, pp. 35-100 | Zbl

[2] Victor A. Abrashkin Ramification filtration of the Galois group of a local field. II, Number theory, algebra and algebraic geometry (Proceedings of the Steklov Institute of Mathematics), Volume 208, Maik Nauka/Interperiodica Publishing, 1995, pp. 18-69 | Zbl

[3] Victor A. Abrashkin On a local analogue of the Grothendieck Conjecture, Int. J. Math., Volume 11 (2000) no. 2, pp. 133-175 | DOI | Zbl

[4] Victor A. Abrashkin Ramification theory for higher dimensional fields, Algebraic number theory and algebraic geometry (Contemporary Mathematics), Volume 300, American Mathematical Society, 2002, pp. 1-16 | DOI | Zbl

[5] Victor A. Abrashkin An analogue of the Grothendieck conjecture for two-dimensional local fields of finite characteristic, Number theory, algebra, and algebraic geometry (Proceedings of the Steklov Institute of Mathematics), Volume 241, Maik Nauka/Interperiodika, 2003, pp. 2-34 | Zbl

[6] Victor A. Abrashkin An analogue of the field-of-norms functor and of the Grothendieck conjecture, J. Algebr. Geom., Volume 16 (2007) no. 4, pp. 671-730 | DOI | Zbl

[7] Victor A. Abrashkin Modified proof of a local analogue of the Grothendieck Conjecture, J. Théor. Nombres Bordeaux, Volume 22 (2010) no. 1, pp. 1-50 | DOI | Numdam | Zbl

[8] Victor A. Abrashkin Galois groups of local fields, Lie algebras and ramification, Arithmetic and geometry (London Mathematical Society Lecture Note Series), Volume 420, Cambridge University Press, 2015, pp. 1-23 | Zbl

[9] Victor A. Abrashkin Groups of automorphisms of local fields of period p and nilpotent class <p. I, Int. J. Math., Volume 28 (2017) no. 6, 1750043, 34 pages | Zbl

[10] Victor A. Abrashkin Groups of automorphisms of local fields of period p and nilpotent class <p. II, Int. J. Math., Volume 28 (2017) no. 10, 1750066, 32 pages | Zbl

[11] Victor A. Abrashkin Ramification filtration via deformations, Sb. Math., Volume 212 (2021) no. 2, pp. 135-169 | DOI | Zbl

[12] Victor A. Abrashkin; Ruth Jenni The field-of-norms functor and the Hilbert symbol for higher local fields, J. Théor. Nombres Bordeaux, Volume 24 (2012) no. 1, pp. 1-39 | DOI | Numdam | Zbl

[13] D. G. Benois; Sergeĭ V. Vostokov On p-Extensions of Multidimensional Local Fields, Math. Nachr., Volume 160 (1993), pp. 59-68 | DOI | Zbl

[14] Pierre Berthelot; William Messing Théorie de Dieudonné cristalline. III: Théorèmes d’équivalence et de pleine fidélité, The Grothendieck Festschrift (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 173-247 | Zbl

[15] Fedor Bogomolov; Yuri Tschinkel Commuting elements in Galois groups of function fields, Motives, polylogarithms and Hodge theory. Part I: Motives and polylogarithms (International Press Lecture Series), Volume 3, International Press, 2002, pp. 75-120 | Zbl

[16] Colas Bordavid Profinite completion and double-dual: isomorphisms and counter-examples (2080) (https://hal.science/hal-00208000v1/, version 1)

[17] Ivan B. Fesenko Abelian local p-class field theory, Math. Ann., Volume 301 (1995) no. 3, pp. 561-586 | DOI | Zbl

[18] Uwe Jannsen; Kay Wingberg Die Struktur der absoluten Galoisgruppe 𝔭-adischer Zahlkörper, Invent. Math., Volume 70 (1982), pp. 71-98 | DOI | Zbl

[19] Kazuya Kato A generalization of local class field theory by using K-groups I, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 26 (1979), pp. 303-376 | Zbl

[20] Kazuya Kato A generalization of local class field theory by using K-groups. II, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 3, pp. 603-683 | Zbl

[21] Kazuya Kato Existence theorem for higher local fields, Invitation to higher local fields (Münster, 1999) (Geometry and Topology Monographs), Volume 3, Geometry and Topology Publications, 2000, pp. 165-195 | Zbl

[22] Helmut Koch Galois theory of p-extensions, Springer Monographs in Mathematics, Springer, 2002, xiii+190 pages | DOI

[23] Aleksandra I. Madunts; Igor B. Zhukov Multidimensional complete fields: topology and other basic constructions, Proceedings of the St. Petersburg Mathematical Society. Vol. III (Translations. Series 2. American Mathematical Society), Volume 166, American Mathematical Society, 1995, pp. 1-34 | Zbl

[24] Shinichi Mochizuki A version of the Grothendieck conjecture for p-adic local fields, Int. J. Math., Volume 8 (1997) no. 4, pp. 499-506 | DOI | Zbl

[25] Alekseĭ N. Parshin Class fields and algebraic K-theory (Russian), Usp. Mat. Nauk, Volume 30 (1975) no. 1, pp. 253-254 | Zbl

[26] Alekseĭ N. Parshin Local class field theory. (Russian), Tr. Mat. Inst. Steklova, Volume 165 (1985), pp. 143-170 | Zbl

[27] Alekseĭ N. Parshin Galois cohomology and Brauer group of local fields. (Russian), Proc. Steklov Inst. Math., Volume 183 (1990), pp. 159-169 | Zbl

[28] Anthony J. Scholl Higher fields of norms and (ϕ,Γ)-modules, Doc. Math. (2006), pp. 685-709 | Zbl

[29] Jean-Pierre Serre Cohomologie Galoisienne, Lecture Notes in Mathematics, 5, Springer, 1964 | Zbl

[30] Jean-Pierre Serre Structure de certains pro-p-groupes (d’aprés Demushkin), Bourbaki Seminar. Vol. 8. Years 1962/63-1963/64. Expos. 241–276, Société Mathématique de France, 1995, pp. 145-155

[31] Sergei V. Vostokov Explicit construction of class field theory for a multidimensional local field, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 49 (1985) no. 2, pp. 283-308 | Zbl

[32] Kay Wingberg Galois groups of Poincare type, Galois groups over (Mathematical Sciences Research Institute Publications), Volume 16, Springer, 1989, pp. 439-449 | DOI | Zbl

[33] Jean-Pierre Wintenberger Le corps des normes de certaines extensions infinies de corps locaux; applications, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983), pp. 59-89 | DOI | Numdam | Zbl

[34] Igor Zhukov Milnor and topological K-groups of multidimensional complete fields, Algebra Anal., Volume 9 (1997) no. 1, pp. 98-147 | Zbl

[35] Igor Zhukov Higher dimensional local fields, Invitation to higher local fields (Münster, 1999) (Geometry and Topology Monographs), Volume 3, Geometry and Topology Publications, 2000, pp. 5-18 | Zbl

[36] Igor Zhukov On ramification theory in the case of an imperfect residue field, Sb. Math., Volume 194 (2003) no. 12, pp. 1747-1774 | DOI | Zbl

Cité par Sources :