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Galois groups of p-extensions of higher local fields

par Victor ABRASHKIN

Résumé. Soit K un corps local de dimension N et de caractéristique p ̸= 0.
On note G<p le quotient maximal de G = Gal(Ksep/K) de période p et de
classe de nilpotence < p. Soit K<p ⊂ Ksep tel que Gal(K<p/K) = G<p.
On utilise la théorie nilpotente d’Artin–Schreier pour identifier G<p avec le
groupe G(L) obtenu à partir d’une Fp-algèbre de Lie L via la loi de compo-
sition de Campbell–Hausdorff. On utilise la topologie canonique sur K dite
P-topologie pour définir une sous-algèbre de Lie LP dense dans L. L’algèbre
LP peut être munie d’un système de générateurs topologiques et nous prou-
vons que la correspondance de Galois établit une bijection entre les extensions
N -dimensionnelles de K dans K<p et les P-sous-algèbres ouvertes de LP . Ces
résultats sont appliqués aux corps locaux supérieurs K de caractéristique 0
contenant une racine p-ième primitive de l’unité. Si Γ = Gal(Kalg/K), on
introduit de la même manière le quotient Γ<p de Γ et on le présente sous la
forme G(L), où L est une Fp-algèbre de Lie profinie appropriée. On introduit
ensuite une Fp-sous-algèbre de Lie LP dense dans L et on décrit la structure
de LP en termes de générateurs et relations. Le résultat général est illustré
par une présentation explicite de Γ<p modulo le sous-groupe engendré par les
3-commutateurs.

Abstract. Suppose K is N -dimensional local field of characteristic p ̸= 0,
G<p is the maximal quotient of period p and nilpotent class < p of G =
Gal(Ksep/K), and K<p ⊂ Ksep is such that Gal(K<p/K) = G<p. We use
nilpotent Artin–Schreier theory to identify G<p with the group G(L) obtained
from a profinite Lie Fp-algebra L via the Campbell–Hausdorff composition
law. The canonical P-topology on K is used to define a dense Lie subalgebra
LP in L. The algebra LP can be provided with a system of P-topological
generators and we prove that all N -dimensional extensions of K in K<p are in
the bijection with all P-open subalgebras of LP by the Galois correspondence.
These results are applied to higher local fields K of characteristic 0 containing
a nontrivial p-th root of unity. If Γ = Gal(Kalg/K) we introduce similarly the
quotient Γ<p and present it in the form G(L), where L is a suitable profinite
Lie Fp-algebra. Then we introduce a dense Fp-Lie subalgebra LP in L, and
describe the structure of LP in terms of generators and relations. The general
result is illustrated by explicit presentation of Γ<p modulo subgroup of third
commutators.

Manuscrit reçu le 26 janvier 2023, accepté le 3 mars 2023.
2020 Mathematics Subject Classification. 11S15, 11S20.
Mots-clefs. Local field, Galois group.
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Introduction

Let p be a fixed prime number.

0.1. Higher local fields. The concept of a higher local field K of dimen-
sion N ⩾ 0 appears as an essential ingredient of the theory of higher adeles
in the study of arithmetic properties of algebraic varieties. In dimension 0,
we just require that K is finite of characteristic p. If N ⩾ 1 then K is a
complete discrete valuation field with the residue field isomorphic to some
(N − 1)-dimensional local field of characteristic p. (In this paper we re-
strict our attention to the fields, which have most interesting arithmetic
properties.)This residue field will be called the first residue field K(1) of
K. Similarly, we obtain the next residue fields, the last (or N -th) residue
field is necessarily finite and will be always denoted by k ≃ FpN0 . For ex-
ample, 1-dimensional fields appear as either finite extensions of Qp or fields
of formal Laurent series in one variable with coefficients in k. The basics
of the theory of such fields including highly important concept of special
topology (we refer to it as P-topology) together with classification results
can be found in [34, 35], cf. also Section 2 below.

One of most considerable achievements of the theory of higher local fields
was the construction of a higher dimensional generalization of local class
field theory, cf. [19, 20, 21, 25, 26, 27] and (for explicit aspects of the theory)
[12, 31]. In this setting, the abelian extensions of N -dimensional fields are
described (in a functorial way) in terms of the appropriate Milnor KN -
groups. More precisely, there is a natural morphism ΨK : KN (K) → Γab

K
with dense image and all finite abelian extensions of K can be uniquely
recovered from open subgroups of the image of ΨK .

If N ⩾ 2 the map ΨK is not injective, its kernel coincides with the max-
imal infinitely divisible subgroup ΛN (K) :=

⋂
l⩾1 lKN (K) and the image

of ΨK can be identified with the image of the topological Milnor group
Ktop

N (K) = KN (K)/ΛN (K), cf. [17, 34].
The group ΓK = Gal(Ksep/K) is soluble and its most interesting part

appears as the Galois group ΓK(p) of the maximal p-extension of K. Its
structure (as well as of any other profinite p-group) can be described in
terms of generators and relations. In particular, the generators of ΓK(p)
come as lifts of generators of Γab

K /(Γab
K )p. If N ⩾ 2 there is no more or less

reasonable way to fix a choice of such generators. However, we can do that
at the level of the dense subgroup ΨK(KN (K)): we can use the P-topology
on K to define a P-topological structure on Ktop

N (K) together with the
appropriate set of P-topological generators. This allows us to work with
finite abelian p-extensions of K in terms of generators.

The main target of this paper is to generalize the above approach in
the context of non-abelian p-extensions of K. More precisely, we develop
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the appropriate formalism for finite p-extensions of K with Galois groups
of period p and nilpotent class < p. Note that in this context there is no
any analog of class field theory. Instead, we use a nilpotent analog of the
Artin–Schreier theory from [1, 2]. Below we give more detailed description
of our results.

0.2. Review of 1-dimensional case. Suppose K is 1-dimensional. In
this case (according to class field theory) generators of ΓK(p) come from any
Fp-basis of K1(K)/p = K∗/K∗p. This basis can be chosen in a natural way
if we fix a uniformizing element t ∈ K. For example, suppose K ≃ Fp((t))
and for all

a ∈ Z0(p) := {a ∈ Z>0 | gcd(a, p) = 1} ∪ {0} ,

the elements Ta ∈ Ksep are such that T p
a − Ta = t−a. For b ∈ Z0(p), let

τb ∈ ΓK(p) be such that τb(Ta) − Ta = δab (the Kronecker symbol). Then
{τa | a ∈ Z0(p)} is a minimal system of generators in ΓK(p).

The structure of ΓK(p) was described around 1960’s as follows:
• if char K = p or char K = 0 and K contains no non-trivial p-th

roots of unity the group ΓK(p) is profinite free (I. Shafarevich);
• if K contains a non-trivial p-th root of unity then ΓK(p) has a

minimal system of generators containing [K : Qp] + 2 elements
and one (explicitly known) relation (S. Demushkin), cf. [22, 29, 30].
(This result leads to a complete description of ΓK , cf. [18].)

There is no straight way to extend the above results to higher local fields
for the following reasons.

First, there is no any reasonable choice of generators in ΓK(p). To il-
lustrate this suppose N = 2 and K = Fp((t2))((t1)) is 2-dimensional lo-
cal field of iterated Laurent formal series. The extension K(T ) such that
T p − T = t−1

1 (1 + t2 + · · · + tn
2 + . . . ) is not contained in the compositum

of all K(Tn), where T p
n − Tn = t−1

1 tn
2 , n ⩾ 0. As a result, the lifts of ele-

ments of the Galois groups of the elementary field extensions K(Ta1a2)/K,
where T p

a1a2 − Ta1a2 = t−a1
1 t−a2

2 , generate only very small piece of ΓK(p).
This also can be seen at the level of class field theory, where the abelian
extensions of N -dimensional local field K are described via the quotients of
the K-group KN (K). The profinite group KN (K)/p has no natural system
of generators if N > 1 (but as we have mentioned earlier the situation can
be resolved if we provide this group with the P-topological structure and
use the appropriate P-topological systems of generators).

Another concern is related to the strategy used by Demushkin (in the
1-dimensional case). Let K be a 1-dimensional local field of characteristic
0 containing a non-trivial p-th root of unity. For s ⩾ 1, let C

(p)
s be the s-th

term of the p-central series of ΓK(p). Then we can use the interpretation
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of the abelian quotient ΓK(p)/C
(p)
2 in terms of class field theory. Applying

formalism of Galois cohomology we can obtain then explicitly the action of
this quotient on C

(p)
2 /C

(p)
3 : this involves calculations with Hilbert symbol.

As a result, we can describe the group theoretic structure of ΓK(p)/C
(p)
3 in

terms of a specially chosen minimal system of generators and one (explicitly
given) relation. Luckily, this allows us to recover the structure of ΓK(p) by
choosing special lifts of generators which satisfy the simplest possible lift
of that relation.

The above strategy was applied in the case of local fields of dimension 2
in [13]. At that time the explicit aspects of higher local class field theory, in
particular, the explicit formulas for the Hilbert symbol, were just developed
by the second author of that paper. Its authors worked with the quotient
Ktop

2 (K) of K2(K) and attempted (following the above 1-dimensional strat-
egy) to find the structure of some dense subgroups in ΓK(p)/C

(p)
3 . The pa-

per [13] justifies that in higher dimensions the realisation of the Demushkin
strategy requires enormous calculations but don’t give us very much infor-
mation about the structure of ΓK(p). This approach should be profoundly
revised at least for the following reason. When we use class field theory
and afterwards apply explicit formulas for the Hilbert symbol, we actually
move in two opposite directions (from Kummer or Artin–Schreier theory to
class field theory and vice versa). For this reason, it makes sense to avoid
the use of class field theory and to proceed exclusively within the frames of
Kummer (or Artin–Schreier) theory from the very beginning. Another im-
portant concern is that class field theory is not sufficient for understanding
the structure of ΓK(p) better than just modulo C

(p)
3 .

In [1, 2] the author initiated the study of ΓK(p) modulo the subgroup of
p-th commutators for fields K of characteristic p via a (specially developed)
nilpotent version of Artin–Schreier theory. Later the author applied this
theory together with the Fontaine–Wintenberger field-of-norms functor to
study the case of 1-dimensional local fields K with non-trivial p-th roots
of unity, cf. [8, 9, 10]. As a result, this gave us a description of Γ<p :=
ΓK/Γp

KCp(ΓK) in terms of a specially chosen system of generators which
satisfy one relation. (Here Cp(ΓK) is the closure of the subgroup of p-th
commutators in ΓK .) This could be considered as an alternative approach
to the Demushkin result. Actually, we obtained in the above mentioned
papers much more: our result gives an explicit description of the images of
all ramification subgroups Γ(v)

K , v ⩾ 0, in Γ<p (cf. also Section 0.4).

0.3. Main results. In this paper we develop a technique allowing us to
study the structure of Γ<p = ΓK/Γp

KCp(ΓK) in terms of generators and
relations in the case of N -dimensional fields K. We consider the cases where
either K = K has characteristic p or K has characteristic 0 and contains
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a non-trivial p-th root of unity ζ1 ∈ K. In both cases we introduce a
dense subgroup ΓP

<p of Γ<p provided with P-topological structure (related
to the P-topology on K). This subgroup ΓP

<p still allows us to study finite
extensions of K in K<p but has a definite advantage: it admits a description
in terms of P-topological generators and relations.

Describe the content of the paper in more detail.

(a) For N -dimensional local field K of characteristic p we apply the
nilpotent Artin–Schreier theory to fix an identification π : G<p ≃
G(L). Here G<p = G/GpCp(G) is the maximal quotient of G =
Gal(Ksep/K) of period p and nilpotent class < p, L is a profinite
Lie Fp-algebra and G(L) is the profinite p-group obtained from L
via the Campbell–Hausdorff composition law. The identification π
is defined uniquely up to conjugation after choosing a suitable ele-
ment e ∈ L ⊗K.

(b) We use the P-topology on K to define a Lie subalgebra LP in L. This
is a P-topological algebra provided with a system of P-topological
generators. The algebra LP is dense in L, i.e. the profinite comple-
tion of LP coincides with L.

(c) With respect to (defined up to conjugation) identifications of the
nilpotent Artin–Schreier theory π : G<p ≃ G(L) the algebra LP

gives rise to a class of conjugated subgroups GP
<p := π−1(LP); the

profinite completions of the groups GP
<p coincide with G<p.

(d) The subgroups GP
<p have P-topological systems of generators and

could be used to study N -dimensional local field extensions K′ of K
in K<p. More precisely, H is an open subgroup in G<p (with respect
to the Krull topology) iff HP := GP

<p ∩ H is a P-open subgroup of
finite index in GP

<p. We have also (G<p : H) = (GP
<p : HP) = [K′ : K],

where K′ = KH
<p. In particular, K′/K is Galois iff HP is normal in

GP
<p and in this case Gal(K′/K) = GP

<p/HP .
(e) Suppose t = (t1, . . . , tN ) is a system of local parameters in K, mK

is the maximal ideal in the N -valuation ring OK of K, ω ∈ mK, and
for 1 ⩽ m ⩽ N , h

(m)
ω ∈ Aut K are such that h

(m)
ω (ti) = tiE(ωp)δmi ,

where E(X) is the Artin–Hasse exponential. Then all lifts of h
(m)
ω ,

1 ⩽ m ⩽ N , to K<p generate a subgroup Gω ⊂ Aut K<p containing
G<p. Let Γω be the maximal quotient of Gω of period p and nilpotent
class < p. If G is the image of G<p in Γω we obtain the following
short exact sequence of profinite p-groups

1 −→ G −→ Γω −→ ⟨h(1)
ω ⟩Z/p × · · · × ⟨h(N)

ω ⟩Z/p −→ 1 ,
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the corresponding exact sequence of Lie Fp-algebras (here Γω =
G(Lω))

0 −→ L −→ Lω −→
∏

1⩽m⩽N

Fph(m)
ω −→ 0 ,

and define the appropriate dense subalgebra LP
ω such that

0 −→ LP −→ LP
ω −→

∏
1⩽m⩽N

Fph(m)
ω −→ 0 .

(f) We apply methods from [9, 10] to describe the structure of the
Lie algebras LP ⊗ k and LP

ω ⊗ k. In particular, for 1 ⩽ m ⩽ N ,
we obtain a recurrent procedure to recover the operators ad l

(m)
ω ,

where l
(m)
ω are lifts of h

(m)
ω to Lω, and find explicit formulas for all

[l(m1)
ω , l

(m2)
ω ] ∈ L. These results are illustrated by explicit description

of the structure of the Lie algebra LP
ω modulo the ideal of third

commutators.
(g) We apply the results from (f) to the explicit description of Γ<p =

Γ/ΓpCp(Γ), where Γ is the Galois group of N -dimensional local field
K containing a non-trivial p-th root of unity ζ1. More precisely,
we introduce a canonical class of conjugated dense subgroups ΓP

<p

in Γ<p with P-topological systems of generators. Then we apply
Scholl’s construction of the field-of-norms functor to identify ΓP

<p

with ΓP
ω , where ω ∈ mK is defined in terms related to the p-th

root of unity ζ1. This result is illustrated in the case where K =
Qp(ζ1){{x}}.

0.4. Final remarks.
(a) In 1-dimensional case, the Demushkin relation depends only on the

subgroup µ(K) of roots of unity in K∗ and the degree [K : Qp].
In the general case, the structure of Γ<p depends only on a special
power series constructed from ζ1 ∈ K; this series appears in the
p-adic Hodge theory as the period of Gm. In particular, the group
structure on Γ<p is a very weak invariant of the field K.

(b) In 1-dimensional case, ΓK(p) (as well as ΓK) has very important
additional structure given by the decreasing filtration of ramifica-
tion subgroups ΓK(p)(v), v ⩾ 1. According to [7], the group ΓK(p)
together with the additional structure given by the ramification fil-
tration is an absolute invariant of K, cf. also [3, 24] in the context
of the whole group ΓK . The papers [9, 10] contain the description of
the group structure of Γ<p together with the induced ramification
filtration.
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(c) In the case of local fields of arbitrary dimension N , it would be nat-
ural to suppose that most interesting structures on Γ<p appear as
completions of the structures defined at the level of the subgroups
ΓP

<p. (In particular, we see that the group structure on Γ<p is in-
duced from ΓP

<p.) As a result, such structures can be studied and
described in terms of generators and relations. In particular, it will
be natural to expect that the ramification subgroups introduced for
higher local fields in [4, 5, 36] satisfy this supposition. In particu-
lar, this holds for ramification subgroups of Γ<p modulo subgroup
of third commutators in the case of 2-dimensional local fields K of
characteristic p, cf. [5].

(d) Recently we found more substantial and natural way to study the
ramification filtration of Γ<p in the 1-dimensional case, cf. [11].
We expect that the techniques of generators and relations provided
by that paper will allow us to develop more substantial and clear
approach to the proof of the local analog of the Grothendieck con-
jecture for all higher local fields.

(e) There is still an open question in the description of Γ<p: we have not
yet found explicitly the commutators [l(m1)

ω , l
(m2)
ω ]. There is a strong

evidence that there are lifts l
(m)
ω which commute one with each

other: we verified this fact modulo C4(Γω) by direct computation.
The existence of commuting elements in sufficiently large Galois
groups may have interesting applications to anabelian geometry,
cf. [15].

(f) Notice the paper [32] where the case of the Galois group of 2-
dimensional fields with the first residue field of characteristic 0 was
considered. We are not considering such fields here, but this result
is not very far from the Demushkin one: the Galois group appears
as a profinite group with finitely many generators and one relation,
i.e. it is a group of the Poincaré type.

0.5. Notation. Let G be a topological group. For s ⩾ 1, denote by Cs(G)
the closure of its subgroup of s-th commutators. Here C1(G) = G and for
s ⩾ 2, Cs(G) is the closure of the commutator subgroup (G, Cs−1(G)).
Similarly, if L is a (topological) Lie algebra over some ring R then Cs(L) is
the closure of its R-submodule of commutators of order ⩾ s. If M and S are
R-modules we denote very often by MS the extension of scalars M ⊗R S.

1. Constructions of nilpotent Artin–Schreier theory

In this section, we review basic results of the nilpotent Artin–Schreier
theory, cf. [1, 2]. This theory allows us to work with p-extensions of fields of
characteristic p having Galois groups of nilpotent class < p. In these notes,



678 Victor Abrashkin

we use the simplest case of the theory involving Galois groups of period
p. In other words, if char K = p and Γ = Gal(Ksep/K) our approach
allows us to work efficiently with subfields of K<p := K

ΓpCp(Γ)
sep . Note that

Gal(K<p/K) = Γ<p := Γ/ΓpCp(Γ).

1.1. Groups and Lie algebras of nilpotent class < p. The basic
ingredient of the nilpotent Artin–Schreier theory is the equivalence of the
category of profinite p-groups of nilpotent class s0 < p and the category of
Lie Zp-algebras of the same nilpotent class. In the case of objects killed by
p this equivalence can be explained as follows.

Let L be a Lie Fp-algebra of nilpotent class < p, i.e. Cp(L) = 0.
Let A be an enveloping algebra of L. Then there is a natural embedding

L ⊂ A, the elements of L generate the augmentation ideal J of A and we
have a morphism of algebras ∆ : A → A ⊗ A uniquely determined by the
conditions ∆(l) = l ⊗ 1 + 1 ⊗ l for all l ∈ L. The Poincaré–Birkhoff–Witt
Theorem then implies:

• L ∩ Jp = 0;
• L mod Jp = {a mod Jp | ∆(a) ≡ a⊗1+1⊗a mod (J⊗1+1⊗J)p};
• the set ẽxp(L) mod Jp is identified with the set of all “diagonal

elements” mod deg p, i.e. with the set of all a ∈ 1 + J mod Jp such
that ∆(a) ≡ a⊗a mod (J⊗1+1⊗J)p (here ẽxp(x) =

∑
0⩽i<p xi/i!

is the truncated exponential).
In particular, there is a natural embedding L ⊂ A mod Jp and in terms

of this embedding the Campbell–Hausdorff formula appears as

(l1, l2) 7−→ l1 ◦ l2 = l1 + l2 + 1
2[l1, l2] + . . . , l1, l2 ∈ L ,

where ẽxp(l1) ẽxp(l2) ≡ ẽxp(l1 ◦ l2) mod Jp. This composition law provides
the set L with a group structure and we denote this group by G(L). The
group G(L) has period p and nilpotent class < p. The correspondence
L 7→ G(L) induces equivalence of the category of p-groups of period p
and nilpotent class s < p and the category of Lie Z/p-algebras of the
same nilpotent class s. This equivalence is naturally extended to the similar
categories of pro-finite Lie algebras and pro-finite p-groups.

1.2. Nilpotent Artin–Schreier theory. Let L be a finite Lie Fp-algebra
of nilpotent class < p. Consider the extensions of scalars LK and Lsep :=
LKsep . Then the elements of Γ = Gal(Ksep/K) and the Frobenius σ act
on Lsep through the second factor, Lsep|σ=id = L and (Lsep)Γ = LK . If
e ∈ G(LK) then the set

F(e) = {f ∈ G(Lsep) | σ(f) = e ◦ f}
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is not empty and for any fixed f ∈ F(e), the map τ 7→ (−f) ◦ τ(f) is a
continuous group homomorphism πf (e) : Γ → G(L). The correspondence
e 7→ πf (e) has the following properties:

(a) if f ′ ∈ F(e), then f ′ = f ◦ l, where l ∈ G(L); in particular, πf (e)
and πf ′(e) are conjugated via l;

(b) for any continuous group homomorphism π : Γ → G(L), there are
e ∈ G(LK) and f ∈ F(e) such that πf (e) = π;

(c) for appropriate elements e, e′ ∈ G(LK), f ∈ F(e) and f ′ ∈ F(e′), we
have πf (e) = πf ′(e′) iff there is an x ∈ G(LK) such that f ′ = x ◦ f
and, therefore, e′ = σ(x) ◦ e ◦ (−x).

In the case of a profinite Lie algebra L = lim←−α
Lα, where all Lα are

finite Lie Fp-algebras, consider e = lim←−α
eα ∈ LK , where all eα ∈ LαK .

Then there is f = lim←−α
fα ∈ lim←−α

F(eα) ⊂ Lsep (where all fα ∈ F(eα)) and
πf (e) = lim←−α

πfα(eα) maps Γ to G(L) = lim←−α
G(Lα).

1.3. The diagonal element and abelian Artin–Schreier theory. Let
K = K/(σ−id)K and M = HomFp-lin(K,Fp). If K is provided with discrete
topology (as an inductive limit of finite dimensional Fp-subspaces), its dual
M has the pro-finite topology and

MK = HomFp-lin(K, K) .

Let Π : K → K be a natural projection and let the element e ∈ MK =
HomFp-lin(K, K) be such that (idM ⊗Π)e = idK . Equivalently, let S be a
section of Π and e := eS := (idM ⊗S) idK .

In notation of Section 1.2 the identification of the abelian Artin–Schreier
theory πab : Γ<2 := Γ/ΓpC2(Γ) ≃M can be obtained as follows:

• choose f ∈ Msep := MKsep such that σf − f = eS and for any
τ ∈ Γ<2, let πab(τ) := τf − f ∈Msep|σ=id = M .

Remark. In the above formulas (and in similar situations below if there is
no risk of confusion) we use the simpler notation σ and τ instead of idM ⊗σ
and idM ⊗τ .

The map πab does not depend on a choice of f . If f1 ∈Msep is such that
σf1 − f1 = eS then f1 − f ∈Msep|σ=id = M and τf1 − f1 = τf − f .

The map πab also does not depend on a choice of S. If S′ is another
section then there is g ∈ MK such that eS′ − eS = σg − g. Therefore,
f ′ := f + g satisfies the relation σf ′ − f ′ = eS′ and τf ′ − f ′ = τf − f .

1.4. Identifications πf (e) : Γ<p ≃ G(L). Let L̃ be a free profinite Lie
Fp-algebra with generating module M and L = L̃/Cp(L̃). (Note that M is
a profinite limit of its finite quotients and L̃ is the corresponding profinite
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limit of finite Lie algebras.) Consider the natural projection
pr⊗Π : L⊗Fp K −→ L/C2(L)⊗Fp K = MK

and set E(LK) = {e ∈ LK | (pr⊗Π)e = idK}. Agree to denote the image
of e in MK by eS , where S is the appropriate section of Π, cf. Section 1.3.

Choose f ∈ F(e) and consider the group homomorphism πf (e) : Γ<p →
G(L) such that for any τ ∈ Γ<p, πf (e)(τ) = (−f) ◦ τ(f). Then πf (e) is a
group isomorphism (use that Γ is a free pro-p-group and πf (e) mod ΓpC2(Γ)
is isomorphism by Section 1.3).

If f ′ is another element from F(e) then there is l ∈ G(L) such that
f ′ = f ◦ l and πf ′(e)(τ) = (−f ′) ◦ τ(f ′) = (−l) ◦ πf (e)(τ) ◦ l is conjugated
to πf (e). Study how πf (e) depends on a choice of e ∈ E(LK).
Proposition 1.1. If e, e′ ∈ E(LK) then there is x ∈ LK and a section A
of the natural projection pr : L→ L/C2(L) = M such that

e′ = σ(x) ◦ (A⊗ idK)e ◦ (−x) ,

where A ∈ AutLie L is a unique extension of A.
Proof. Let {lα | α ∈ I} be an Fp-basis of K. Let l̂α, α ∈ I, be the dual
(topological) basis for M , i.e. for any α1, α2 ∈ I, l̂α1(lα2) = δα1α2 . Then
we have the sections S and S′ of Π such that eS =

∑
α l̂α⊗̂S(lα) and

eS′ =
∑

α l̂α⊗̂S′(lα).
Apply induction on r ⩾ 1 to prove the existence of xr ∈ LK and a

section Ar of the projection L→M such that
e′ ≡ σ(xr) ◦ (Ar ⊗ idK)e ◦ (−xr) mod Cr+1(LK) ,

where Ar ∈ AutLie L is such that Ar|M = Ar.
If r = 1, take A1 = idM and x1 =

∑
α l̂α ⊗ x1α, where all x1α ∈ K are

such that S′(lα)− S(lα) = σ(x1α)− x1α.
If r ⩾ 1 and the required xr and Ar exist then there is lr+1 ∈ Cr+1(LK)

such that e′ ≡ σxr ◦ (Ar ⊗ idK)e ◦ (−xr) ◦ lr+1 mod Cr+2(LK).
Using that K = Im(S)⊕ (σ − id)K we can present lr+1 as

lr+1 = l′ + σx′ − x′

where l′ =
∑

α cα ⊗ S(lα), all cα ∈ Cr+1(L) and x′ ∈ Cr+1(LK). It remains
to set Ar+1(l̂α) = Ar(l̂α) + cα and xr+1 = xr + x′. The proposition is
proved. □

Corollary 1.2. With above notation there is f ′ ∈ F(e′) such that for any
τ ∈ Γ<p, πf ′(e′)(τ) = A(πf (e)(τ)).
Proof. Let f ′ = x ◦ (A⊗ idsep)f , then f ′ ∈ F(e′). Indeed,

σ(f ′) = σx ◦ (A⊗ idsep)σ(f) = σ(x) ◦ (A⊗ idK)eS ◦ (A⊗ idsep)f
= σ(x) ◦ (A⊗ idK)e ◦ (−x) ◦ f ′ = e′ ◦ f ′ .
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Therefore, for any τ ∈ Γ<p, πf ′(e′)(τ) is equal to

(−f ′) ◦ τ(f ′) = (A⊗ idsep)((−f) ◦ τ(f)) = A(πf (e)(τ)) . □

By the above corollary, a choice of e ∈ E(LK) determines the class πe of
conjugated identifications {πf (e) | f ∈ F(e)} of Γ<p with G(L). When e is
replaced by another e′ ∈ E(LK) the new class of conjugated identifications
πe′ is obtained from πe via the composition with some automorphism A =
A(e, e′) ∈ AutLie(L) such that A ≡ idL modC2(L).

1.5. Compatibility with field extensions. Suppose K ′ is a field exten-
sion of K in Ksep. Consider the above defined objects: M , L, e ∈ E(LK),
f ∈ F(e) and π = πf (e) : Γ<p ≃ G(L) introduced in the context of the
field K. Let Γ′

<p, M ′, L′, e′ ∈ E(L′
K′), f ′ ∈ F(e′) and π′ : Γ′

<p ≃ G(L′) be
the similar objects for the field K ′.

The embedding Gal(Ksep/K ′) → Gal(Ksep/K) induces a natural group
homomorphism Θ : Γ′

<p → Γ<p, which can be described in terms of the
identifications π and π′ as follows.

Consider e⊗K 1 ∈ LK ⊗K K ′ = LK′ ⊃MK′ = HomFp-lin(K, K ′).

Proposition 1.3. There are a morphism of Lie algebras A : L′ → L and
x ∈ LK′ such that

(a) e⊗K 1 = σ(x) ◦ (A⊗ idK′)e′ ◦ (−x);
(b) for any τ ′ ∈ Γ′

<p, π(Θ(τ ′)) = A(π′(τ ′));
(c) if K ′ ⊂ K<p then π(Gal(K<p/K ′)) = A(L′).

Proof. Let {l′α | α ∈ I ′} be an Fp-basis of K
′ = K ′/(σ − id)K ′. Let l̂′α,

α ∈ I ′, be the dual (topological) basis for M ′. Then for a suitable section
S′ of Π′ : K ′ → K

′, we have eS′ =
∑

α l̂′α ⊗ S′(l′α) and {S′(l′α)| α ∈ I ′} is a
basis of Im(S′) ⊂ K ′. Proceeding similarly to the proof of Proposition 1.1
prove the existence of x′ ∈ LK′ and l̃α ∈ L such that

e⊗K 1 = σ(x′) ◦
(∑

α

l̃α ⊗ S′(l′α)
)
◦ (−x′) .

(The existence of x′ is assumed in the remainder of the proof.) If A′ : M ′ →
L is a linear map such that for all α, it holds A′(l̂′α) = l̃α, the above relation
appears in the following form

e⊗K 1 = σ(x′) ◦ (A′ ⊗ idK′)e′ ◦ (−x′) ,

where A′ is a unique morphism of Lie algebras L′ → L such that A′|M ′ =
A′. As a result, the both (−x′) ◦ f and (A′ ⊗ idsep)f ′ belong to the set
F((A′ ⊗ idK′)e′) ⊂ Lsep. So, there is l ∈ L such that

(−x′) ◦ (f ⊗K 1) = (A′ ⊗ idsep)f ′ ◦ l .
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If x = x′ ◦ l and A = ad l · A′ ∈ HomLie(L′, L) then the above equality
can be rewritten as

(−x) ◦ (f ⊗K 1) = (A⊗ idsep)f ′ .

In particular, we have e ⊗K 1 = σ(x) ◦ (A ⊗ idK′)e′ ◦ (−x) and for any
τ ′ ∈ Γ′

<p, it holds π(Θ(τ ′)) = (−f) ◦ τ ′(f) = (A ⊗ idK′)((−f ′) ◦ τ ′(f ′)) =
A(π′(τ ′)). The proposition is proved. □

1.6. Lifts of ϕ ∈ Aut K. As earlier, e ∈ E(LK), f ∈ F(e), π = πf (e) :
Γ<p ≃ G(L).

Suppose ϕ ∈ Aut K. We are going to describe (the lifts) ϕ<p ∈ Aut K<p

such that ϕ<p|K = ϕ.
Let ϕ∗e := (idL⊗ϕ)e ∈ LK . As earlier, for any given ϕ<p, establish the

existence of A = A(ϕ<p) ∈ AutLie L and C = C(ϕ<p) ∈ LK such that
(1.1) ϕ∗e = σ(C) ◦ (A⊗ idK)e ◦ (−C) .

Let M(ϕ) be the set of all pairs (C,A) satisfying (1.1). Let
κ : M(ϕ) −→ {ϕ<p ∈ Aut K<p | ϕ<p|K = ϕ}

be the map defined as follows.
If (C,A) ∈M(ϕ), then g := C ◦ (A⊗ id)f ∈ F(ϕ∗e). If ϕ′

<p is a lift of ϕ,
then (idL⊗ϕ′

<p)f ∈ F(ϕ∗e). Then for some l ∈ L,

g = (id⊗ϕ′
<p)(f ◦ l) = (id⊗ϕ′

<p)(id⊗π−1l)f = (id⊗(ϕ′
<p · π−1l))f

and the composition ϕ<p := ϕ′
<p · π−1l is a lift of ϕ. It is easy to see that

the lift ϕ<p does not depend on the above choice of ϕ′
<p. As a result, we

can set κ(C,A) = ϕ<p.
Proposition 1.4.

(a) If κ(C,A) = ϕ<p, then for any τ ∈ Γ<p, π(Ad(ϕ<p)τ) = A(π(τ)).
(b) The map κ is a bijection.

Proof. With above notation πg(ϕ∗e)(τ) = (−g) ◦ τ(g) = A(π(τ)). On the
other hand, g = (idL⊗ϕ<p)f implies that

πg(ϕ∗e)(τ) = ϕ<p

(
(−f) ◦ ϕ−1

<pτϕ<p (f)
)

= π(Ad(ϕ<p)τ) .

The part (b) is implied by the following three facts:
(b1) the map κ is injective.
Indeed, let κ(C1,A1) = κ(C2,A2). Then

C1 ◦ (A1 ⊗ id)f = C2 ◦ (A2 ⊗ id)f .

This implies the equality (A−1
1 ⊗ id)((−C2) ◦ C1) ◦ f = (A−1

1 A2 ⊗ id)f
and, therefore, for any τ ∈ Γ<p, it holds π(τ) = (A−1

1 A2)(πτ) (use that
(A−1

1 ⊗ id)((−C2) ◦ C1) ∈ LK). As a result, A−1
1 A2 = idL and (C1,A1) =

(C2,A2).
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(b2) {ϕ<p | ϕ<p|K = ϕ} is a principal homogeneous space over Γ<p with
respect to the action ϕ<p 7→ ϕ<p · τ , τ ∈ Γ<p;

(b3) the appropriate action of τ ∈ Γ<p on the pair (C,A) appears in the
form (C,A) 7→ (C ′,A′), where for lτ := π(e)τ , C ′ = C ◦ lτ and for
any l ∈ L, A′(l) = (−lτ ) ◦ A(l) ◦ lτ = (Ad lτ · A)(l).

The proof of (b2) and (b3) is straightforward. For more details cf. [8]. □

The above formalism allows us to use the identification π = πf (e) to work
with the group of all lifts ϕ<p ∈ Aut K<p of automorphisms ϕ ∈ Aut K.
Directly from definitions it follows that:

• if (C ′,A′) and (C ′′,A′′) correspond to the lifts ϕ′
<p and ϕ′′

<p of,
resp., ϕ′ and ϕ′′, then the couple ((idL⊗ϕ′)C ′′ ◦(A′⊗ idK)C ′,A′′A′)
corresponds to the lift ϕ′

<pϕ′′
<p of ϕ′ϕ′′ (as usually, for any α ∈ K,

ϕ′ϕ′′(α) = ϕ′(ϕ′′(α));
• the elements π(τ) = lτ ∈ G(L) appear as a special case of a lift

of idK and correspond to the pairs (lτ , ad lτ ), where ad lτ : l 7→
(−lτ ) ◦ l ◦ lτ .

2. Higher local fields and P-topology

2.1. Higher local fields. Let K be N -dimensional local field, i.e.
• if N = 0, then K is finite;
• if N ⩾ 1, then K is a complete discrete valuation field such that its

residue field is (N − 1)-dimensional.
If N ⩾ 1, then the residue field of K is the first residue field of K. It

will be usually denoted by K(1). The corresponding valuation ring O
(1)
K is

the first valuation ring. We agree to set by induction for all 1 < m ⩽ N ,
K(m) = K(m−1)(1): this is the m-th residue field of K. Note that K(N) is
0-dimensional and, therefore, finite.

Define the N -valuation ring OK of K by induction on N as follows. If
N = 0, set OK = K. If N ⩾ 1, and pr : O

(1)
K → K(1) is the natural

projection then set OK = pr−1OK(1) .
If N ⩾ 1, then π := {π1, . . . , πN} is a system of local parameters in K if:
• π1 is (the first) uniformizer in K;
• π2, . . . , πN ∈ O

(1)
K and their projections π2, . . . , πN to K(1) form a

system of local parameters for K(1).
If [E : K] < ∞, then the structure of N -dimensional field on K is

uniquely extended to E and vice versa.
If char K = p, and π = {π1, . . . , πN} is a system of local parame-

ters in K then K appears as a field of iterated formal Laurent series
K = k((πN )) . . . ((π1)), where k = K(N) ≃ Fq with q = pN0 . This is a
part of the classification result, [35]. In this case K(1) is identified with the
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subfield k((πN )) . . . ((π2)) of K. More formally, there is a system of local
parameters π := {π2, . . . , πN} in K(1) such that their lifts to K form a
subset {π2, . . . , πN} of π. We use the notation ιπ for the corresponding
embedding of K(1) into K.

If char K = 0, we always assume that char K(1) = p (such fields have most
interesting arithmetical structure). The appropriate classification result for
such fields K can be presented as follows.

Let K(1) = k((πN )) . . . ((π2)) where π := {π2, . . . , πN} are local parame-
ters for K(1). The elements π2, . . . , πN form a p-basis in K(1), [14]. We can
use this p-basis to construct an (absolutely unramified) lift K

(1)
π of K(1)

to characteristic 0, [14]. Recall that K
(1)
π is the fraction field of the ring

lim←−m∈N Om(K(1)), where

Om(K(1)) = Wm(σm−1K(1))[π2, . . . , πN ] ⊂Wm(K(1))

are the lifts of K(1) modulo pm. (Here π2, . . . , πN are the Teichmuller rep-
resentatives of π2, . . . , πN .) The field K

(1)
π has a natural structure of N -

dimensional local field of characteristic 0 with the system of local parame-
ters {p, π2, . . . , πN}. Now the classification result from [35] states:

K is a finite field extension of K
(1)
π .

In particular, we obtain an analogue ιπ : K
(1)
π → K of the above defined

embedding K(1) → K in the characteristic p case.
Note also that,
• there is π1 ∈ K such that {π1, π2, . . . , πN} is a system of local

parameters in K;
• the field K contains a (unramified 1-dimensional) local field Fur =

Frac W (k);
• the classification result from [35] states also the existence of a finite

totally ramified extension F ′ of Fur such that K ⊂ F ′K
(1)
π .

2.2. Definition and basic properties of P-topology. The topology
on N -dimensional local field K (we refer to it as the P-topology) can be
introduced as follows, [23, 26, 35].

If N = 0, then P-topology on K is discrete.
Suppose N ⩾ 1 and π = {π1, . . . , πN} is a system of local parameters

in K. Then P-topology on K is introduced by induction on N via the
following properties:

(1) any ξ ∈ K can be uniquely presented as a P-convergent series

ξ =
∑

a

[αa]πa1
1 . . . πaN

N
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where the indices a = (a1, . . . , aN ) ∈ ZN , all αa ∈ k, [αa] = αa if
char K = p and [αa] are the Teichmuller representatives of αa in
W (k) ⊂ K

(1)
π if char K = 0;

(2) the P-convergence property of the series ξ means the existence of
Ai(a1, . . . ai−1) ∈ Z, 1 ⩽ i ⩽ N , satisfying the following condition:

if αa ̸=0 then a1⩾A1, a2⩾A2(a1), . . . , aN ⩾AN (a1, . . . , aN−1);
(3) if π := {π2, . . . , πN} is a system of local parameters for K(1) used

to define the P-topology on K(1), then ιπ induces the map

sπ :
∑

a=(a2,...,aN )
[αa]πa2

2 . . . πaN
N 7−→

∑
a=(0,a2,...,aN )

[αa]πa2
2 . . . πaN

N

which is a P-continuous (set-theoretic) section sπ : K(1) → O
(1)
K of

the natural projection O
(1)
K → K(1).

The above properties allow us to construct by induction on N the base
Uπ(K) of open subsets and the base of sequentially compact subsets Cπ(K)
in K as follows:

(a) a base of P-open subsets Uπ(K) in K consists of the subsets∑
b∈Z πb

1sπ(Ub), where all Ub ∈ Uπ(K(1)) and for b≫ 0, Ub = K(1);

Remark. Note that any αb ∈ Uπ(Ub) appears as a P-convergent
power series in the variables π2, . . . , πN in K(1). Then all sπ(αb) ap-
pear as P-convergent power series in O

(1)
K in the variables π2, . . . , πN

and, finally
∑

b πb
1αb is a formal P-convergent series in the variables

π1, . . . , πN .

(b) a base Cπ(K) of sequentially compact (closed) subsets in K consists
of
∑

b∈Z πb
1sπ(Cb) such that all Cb ∈ Cπ(K(1)) and for b≪ 0, Cb = 0;

(c) if π′ = {π′
1, . . . , π′

N} is another system of local parameters for K
then the appropriate analogs of the above properties a)-c) also hold
(i.e. the concept of P-topology does not depend on the original
choice of local parameters in K);

(d) if [E : K] = n and the identification of K-vector spaces E = Kn is
induced by a choice of some K-basis in E then {Un | U ∈ Uπ(K)}
is a base of P-open subsets in L; similarly, {Cn | C ∈ Cπ(K)} is a
base of sequentially P-compact subsets in E;

(e) if C1, C2 ⊂ Cπ(K) then C1C2 is also sequentially compact (i.e. there
is C ∈ Cπ(K) such that C1C2 ⊂ C);

(f) K is a P-topological additive group but not a P-topological field;
however, K = lim−→C∈Cπ(K) C and the multiplication C ×K → K is
P-continuous (i.e. for any U ∈ Uπ(K) there is an U ′ ∈ Uπ(K) such
that CU ′ ⊂ U).



686 Victor Abrashkin

Note that the subset of K consisting of the series ξ from above item (1)
satisfying the condition:

if αa ̸= 0 then a1 ⩾ A1, a2 ⩾ A2(a1), . . . , aN ⩾ AN (a1, . . . , aN−1)
(with a fixed choice of Ai(a1, . . . , ai−1), 1 ⩽ i ⩽ N)

is sequentially compact. The family of all such subsets (with a fixed choice
of a system of local parameters π = {π1, . . . , πN}) forms the base Cπ(K).

We can similarly describe the base Uπ(K):
U ∈ Uπ(K) iff there are B1, B2(a1), . . . , BN (a1, . . . , aN−1) ∈ Z (de-
pending on U) such that ξ ∈ U are characterized by the condition:
if a1 < B1, a2 < B2(a1), . . . , aN < BN (a1, . . . , aN−1) then αa = 0.

2.3. P-topology in characteristic p. Assume that K = K has charac-
teristic p and has a system of local parameters t = {t1, . . . , tN}. We will
use the simpler notation U(K) and C(K) instead of Ut(K) and Ct(K) when
working with this fixed system of local parameters t. Note that all C ∈ C(K)
and U ∈ U(K) are k-linear vector spaces (where k = K(N)) and their el-
ements appear as (some) formal k-linear combinations of the monomials
ta := ta1

1 . . . taN
N , where all a = (a1, . . . , aN ) ∈ ZN .

Let I = I(K) and J = J (K) be the sets of indices such that C(K) =
{Cα | α ∈ I} and U(K) = {Uβ | β ∈ J }.

It is easy to see by induction on N that for any α ∈ I and β ∈ J ,

(2.1) dimk Cα/Cα ∩ Uβ <∞ .

Note that Cα/Cα∩Uβ are provided with the k-bases consisting of the mono-
mials ta mod Cα ∩ Uβ such that ta ∈ Cα \ Uβ. These bases are compatible
with respect to different choices of α and β. Therefore, {ta | ta ∈ Cα} is
a P-topological k-basis in Cα, a base of P-open neighborhoods in Cα con-
sists of k-vector subspaces containing almost all elements of this basis and
Cα = lim←−β

Cα/Cα ∩ Uβ.
Let Nαβ = (Cα/Cα ∩ Uβ)D be the dual k-vector space for Cα/Cα ∩ Uβ.

Then dimkNαβ <∞, ND
αβ = Cα/Cα∩Uβ and the spaces Nαβ are provided

with compatible (dual) k-bases

{Ta | t−a ∈ Cα \ Uβ} ,

where for any t−b with b ∈ ZN , Ta(t−b) = δab .
Note that NP

α := HomP-cont(Cα, k) = lim−→β
Hom(ND

αβ, k) = lim−→β
Nαβ

has a k-basis {Ta | t−a ∈ Cα}. Using that Cα is the set of all formal k-
linear combinations of the appropriate monomials ta we obtain a natural
identification Cα = NP D

α .
Consider the Fp-vector spaces EP

α := HomP-cont(Cα,Fp). Then

EP
α ⊗ k = HomFp-lin,P-cont(Cα, k) = ⊕n∈Z/N0N

P
α ⊗k k(n) ,
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where k(n) is the (twisted) k-module k ⊗σn k. In this identification the
Frobenius σ acts through the second factor on the left-hand side and shifts
Z/N0-summands by +1 on the right-hand side.

In particular, the extensions of scalars EP
α ⊗ k have the k-bases

{Tan = Ta ⊗ 1 | t−a ∈ Cα, n ∈ Z/N0}
which are compatible on α ∈ I. So, {Tan | a ∈ ZN , n ∈ Z/N0} is a topolog-
ical basis for EP ⊗ k, where EP := HomP-cont(K,Fp) = lim←−α

EP
α .

Proposition 2.1. Let E := Hom(K,Fp). Then E = EP DD (the double dual
Fp-vector space for EP).
Proof. We verify this on the level of extensions of scalars as follows:

Hom(K,Fp)⊗ k = lim←−
α

Hom(Cα,Fp)⊗ k

= lim←−
α

⊕
n∈Z/N0

Homk(Cα, k)⊗k k(n) = lim←−
α

⊕
n∈Z/N0

NDD
α ⊗k k(n)

= lim←−
α

 ⊕
n∈Z/N0

Nα ⊗k k(n)

DD

= lim←−
α

(EP
α ⊗ k)DD = EP DD ⊗ k . □

Corollary 2.2. The vector space Hom(K,Fp) is the profinite completion
of its subspace HomP-cont(K,Fp).
Proof. Use that if L is a Fp-linear space then LDD is canonically isomorphic
to the profinite completion of L. We sketch briefly the proof of this fact
extracted from [16].

Suppose LD = lim−→Yα, where all Yα are finite dimensional vector sub-
spaces in LD. Then LDD = lim←−Y D

α . Note that Yα 7→ Ann(Yα) ⊂ L is a
bijection between the set of finite dimensional subspaces in LD and the
set of finite codimensional subspaces in L, and Y D

α ≃ L/ Ann(Yα). There-
fore, LDD ≃ lim←−L/Zα where Zα = Ann Yα runs over the set of all finite
codimensional subspaces in L. □

3. The group GP
<p

3.1. Frobenius and P-topology. Let K be N -dimensional local field of
characteristic p. The quotient K = K/(σ − id)K can be provided with the
induced P-topological structure such that the projection Π : K → K is
open. Choose a system of local parameters t = {t1, . . . , tN} in K and let
C(K) = {Cα | α ∈ I} and U(K) = {Uβ | β ∈ J } be the corresponding bases
of sequentially compact and open subsets in K from Section 2.3. Then the
images Cα = Π(Cα) and Uβ = Π(Uβ) form the corresponding bases for K.

Choose α0 ∈ k with the absolute trace Trk/Fp
α0 = 1. Define Fp-linear

operators S,R : K → K as follows. Suppose α ∈ k∗ and ZN is provided
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with the lexicographic order. If a ∈ ZN , a > 0 = (0, . . . , 0) ∈ ZN then
we set

S(taα) = 0 , R(taα) = −
∑
i⩾0

σi(taα) .

For a = 0, set S(α) = α0 Trk/Fp
α, R(α) =

∑
0⩽j<i<N0(σjα0)σiα.

If a < 0 then there is a unique m ⩾ 0 such that a = −a1pm with

a1 ∈ Z+
N (p) :=

{
b = (b1, . . . , bN ) ∈ ZN

∣∣∣ b > 0, gcd(b1, . . . , bN ) = 1
}

.

With these notation we set

S(taα) = t−a1σ−mα, R(taα) =
∑

1⩽i⩽m

σ−i(taα) .

For b =
∑

a∈ZN αata ∈ K, set S(b) =
∑

a∈ZN S(αata), R(b) =
∑

a∈ZN R(αata).
The proof of the following proposition is straightforward. It uses just that

σ : K → K is P-continuous and K is a P-topological group with respect to
addition.

Proposition 3.1.
(a) R and S are P-continuous.
(b) For any b ∈ K, b = S(b) + (σ − id)R(b).

Notice that S2 = S, R2 = R and RS = SR = 0. In particular, Proposi-
tion 3.1 implies that the elements b ∈ K can be uniquely presented modulo
(σ − id)K in the following form

(3.1)
∑

a∈Z+
N (p)

γat−a + γ0α0

where all γa ∈ k and γ0 ∈ Fp. We have also the following proposition.

Proposition 3.2.
(a) The morphism Π(b) 7→ S(b), where b ∈ K, defines a P-continuous

section St,α0 : K → K of Π such that St,α0Π(αt−a) = αt−a if a ∈
Z+

N (p), α ∈ k, and St,α0(k/(σ − id)k) = Fpα0 ⊂ k.
(b) For a P-continuous section S of Π, there is a P-continuous map

RS : K → K such that for any b ∈ K, b = S(Π(b)) + (σ − id)RS(b).

Proof. Item (a) follows from Proposition 3.1. For item (b), just notice that

b = S(b) + (σ − id)R(b) = SΠ(b) + (S − SΠ)b + (σ − id)R(b)
= SΠ(b) + (σ − id)(R(S − SΠ) +R)(b) = SΠ(b) + (σ − id)R(b− SΠb)

and RS := R (id−SΠ) is P-continuous. □
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3.2. P-topological module KDP . Proceed similarly to Section 2.3 by
setting for all α ∈ I and β ∈ J :

(1) KD
αβ := Hom(Cα/Cα ∩ Uβ,Fp) = HomP-cont(Cα/Cα ∩ Uβ,Fp) ;

(2) KDP
α := lim−→β

KD
αβ = HomP-cont(Cα,Fp);

(3) KDP := lim←−α
KDP

α = HomP-cont(K,Fp) .

Remark.
(1) For any α and β, dimk Cα/(Cα ∩ Uβ) <∞.
(2) KD

α = Hom(Cα,Fp) =
(
KDP

α

)DD , in particular, KD
α is the profinite

completion of KDP
α .

(3) It follows from (2) that KD = lim←−α

(
KDP

α

)DD =
(
KDP)DD is the

profinite completion of KDP .

Define the P-topology on KDP as projective limit of discrete topologies
on all KDP

α .
Set for any α ∈ I and β ∈ J ,

UD
α :=

{
uD ∈ KDP ∣∣∣ uD(Cα) = 0

}
= Ann(Cα).

CD
β =

{
cD ∈ KDP ∣∣∣ cD(Uβ) = 0

}
= Ann(Uβ) .

Then in KDP :
(a) U(KDP) := {UD

α | α ∈ I} is a base of open neighborhoods;
(b) C(KDP) = {CD

β | β ∈ J } is a base of sequentially compact subsets;
(c) KDP = lim−→β

CD
β and for any β ∈ J , CD

β = lim←−α
CD

β /CD
β ∩ UD

α ;

(d) for any α ∈ I, KDP
α = KDP

/UD
α .

These properties are implied easily via the following observations.
Let {αi | 1 ⩽ i ⩽ N} be a basis of k over Fp. Consider the set

(3.2) {αit
−a | 1 ⩽ i ⩽ N, a ∈ Z+

N (p)} ∪ {α0} .

Then:
• for any α ∈ I, there is a subset of (3.2) which forms a P-topological

basis of Cα;
• for any β ∈ J , there is a subset of (3.2) which forms a P-topological

basis of Uβ.
Let

(3.3) {D(i)
a | a ∈ Z+

N (p), 1 ⩽ i ⩽ N} ∪ {D0}

be the dual system of elements of KDP for system (3.2).
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Then for any α ∈ I, there is a subset of (3.3) which forms a P-topological
Fp-basis of UD

α . Similarly, for any β ∈ J , there is a subset of (3.3) which
forms a P-topological Fp-basis of CD

β .
As a result, the pairing K × KDP → Fp is a perfect pairing of P-

topological modules. This pairing identifies KDP with HomP-cont(K,Fp).
Consider the presentations of elements from S(K) ⊂ K in the form (3.1).

For a ∈ Z+
N (p) and n ∈ Z/N0, let Dan ∈ K

DP ⊗Fp k be such that
Dan(Π(γat−a)) = σnγa and Dan(Π(α0)) = 0. If D0 ∈ K

DP is the element
appeared in (3.3), then D0(γat−a) = 0 and D0(α0) = 1.

The elements of the set
(3.4) D := {Dan | a ∈ Z+

N (p), n ∈ Z/N0} ∪ {D0}

form a P-topological basis for KDP
k . In particular:

(i) the elements of KDP
k appear uniquely as P-convergent series∑
a∈Z+

N (p)
n∈Z/N0

γanDan + γ0D0 ,

where all γan and γ0 run over k;
(ii) the appropriate subsets of (3.4) provide us with compatible k-bases

for KD
αβ and KDP

α ;
(iii) the elements of KDP can be presented uniquely as P-convergent

series ∑
a∈Z+

N (p)
n∈Z/N0

σn(γa)Dan + γ0D0 ,

where γ0 ∈ Fp and for a ̸= 0, γa ∈ k.

Remark. The condition of P-convergence in (i) means that for any α ∈ I,
{γan ̸= 0 | t−a ∈ Cα} is finite. Similar condition holds in (iii) (where γan

should be replaced by σnγa).

Let ⊗P be the P-topological tensor product. Consider

KDP
K := HomP-cont(K,K) = KDP ⊗P

Fp
K = KDP

k ⊗P
k K .

The following property is straightforward.

Proposition 3.3. The elements of KDP
K can be presented uniquely as P-

convergent sums
∑

a∈ZN mat−a with coefficients ma ∈ K
DP
k .

Remark. The condition of P-convergency in Proposition 3.3 means that
for any α ∈ I, β ∈ J , {ma ̸= 0 | t−a /∈ Uβ, ma /∈ UD

α } is finite.



p-extensions of higher local fields 691

3.3. Lie algebras L and LP . Let L̃ be a free profinite Lie algebra over Fp

with the (profinite) module of free generators KD = Hom(K,Fp). Let L =
L̃/Cp(L̃). Then L is a projective limit of finite Lie Fp-algebras generated
by the finite quotients of KD.

Let L̃P , resp. LP , be the Lie subalgebra in L̃, resp. in L, generated by the
elements of KDP = HomP-cont(K,Fp) ⊂ KD. Then Cp(L̃P) = L̃P ∩ Cp(L̃)
(use that the profinite completion of KDP is KD) and LP = L̃P/Cp(L̃P).

Note that LP inherits the P-topological structure from KDP (use the
topology of tensor product on

∑
1⩽i<p

(
KDP)⊗i ⊃ LP), and the profinite

completion of LP coincides with L.
Introduce the Lie algebras Lα with generators KD

α = Hom(Cα,Fp) and
LP

α with generators KDP
α = HomP-cont(Cα,Fp). Then LP

α has discrete topol-
ogy, its profinite completion coincides with Lα, L = lim←−α

Lα and LP =
lim←−α

LP
α . If Lαβ is the subalgebra in Lα generated by KD

αβ then Lαβ is finite
and LP

α = lim−→β
Lαβ.

The elements of the Lie algebra LP
k := LP ⊗Fp k appear as convergent

k-linear combinations of the Lie monomials of the form∑
D1,...,Dr

γD1,...Dr [. . . [D1, . . . ], Dr] .

where all D1, . . . , Dr belong to (3.4). The condition of convergency means
that for any α ∈ I, all but finitely many of these monomials have the zero
image in LP

α .
We can describe similarly the enveloping algebra of LP . Namely, let AP

and AP
α be enveloping algebras for LP and, resp., LP

α taken modulo p-
th powers of the corresponding augmentation ideals. Then AP = lim←−α

AP
α

and AP
α,k consists of all polynomials of total degree < p in the subset of

variables Dan from (3.4) satisfying the condition t−a /∈ Cα. In other words,
the elements of AP are characterized in the algebra A as P-continuous
polynomials on K with values in Fp of total degree < p. Of course, A and
L can be recovered as the profinite completion of AP and, resp., LP .

3.4. Class of conjugated subgroups clP(G<p). Let G = Gal(Ksep/K)
be the absolute Galois group of the field K.

If G<2 := G/GpC2(G) is the maximal abelian quotient of period p of G
then the classical Artin–Schreier duality K×G<2 → Fp allows us to identify
G<2 with KD =

(
KDP)DD and to introduce a dense subgroup GP

<2 := KDP

in G<2. Note that with respect to this identification, the elements D
(i)
a ∈

KDP from (3.3) appear as elements of G<2 such that if Tbj ∈ Ksep are such
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that T p
bj − Tbj = αjt−b (in notation from Section 2.3) then D

(i)
a (Tbj) =

Tbj + δabδij . Similarly, the elements Dan ∈ K
DP
k from (3.4) act as follows:

if b ∈ N, gcd(b, p) = 1 and Tb ∈ Ksep is such that T q
b − Tb = t−b then for

0 ⩽ m < N0, Dan(T pm

b ) = T pm

b + δabδnm.
The reciprocity map of local class field theory ΨK , cf. Introduction, in-

duces the identification GP
<2 ≃ Ktop

N (K)/p (as earlier, Ktop
N is the topological

version of the functor KN , cf. also e.g. [25, 26]). The subgroup GP
<2 is con-

siderably smaller than G<2 but its profinite completion recovers the whole
G<2. In particular, GP

<2 can be used instead of G<2 when studying finite
(abelian) extensions of K inside K<2 = KC2(G<p)

<p . Our target is to introduce
an analog of GP

<2 in the case of p-extensions of nilpotent class < p.
Let LP

K be the topological tensor product LP ⊗P K .
From now on we will consider only e ∈ E(LP

K) := LP
K ∩ E(LK). Under

this assumption if S is a section of the projection Π : K → K such that
e mod C2(LP

K) = eS then S is P-continuous.
As earlier, choose f ∈ F(e) and set π = πf (e) : G<p ≃ G(L).

Definition. clP(G<p) is the class of conjugated subgroups of G<p containing
πf (e)−1G(LP).

Theorem 3.4. The class clP(G<p) does not depend on the choices of e ∈
E(LP

K) and f ∈ F(e).

Proof. Suppose e′ ∈ E(LP
K), f ′ ∈ F(e′) and set π′ = πf ′(e′). We must prove

that π−1G(LP) and (π′)−1G(LP) are conjugated in G<p.

Lemma 3.5. There are x ∈ LP
K and a P-continuous section A : KDP → LP

of the natural projection LP → LP/C2(LP) = KDP such that
e′ = σ(x) ◦ (A⊗P

Fp
idK)e ◦ (−x) ,

where A ∈ AutLie LP is such that A|KDP = A.

Proof of Lemma 3.5. The proof appears as a P-topological version of the
proof of Proposition 1.1, where we use the (P-continuous) operators from
Proposition 3.1 and 3.2.

Let {lα | α ∈ I} be a P-topological Fp-basis of K. Let l̂α, α ∈ I,
be the dual (P-topological) Fp-basis for KDP , i.e. for any α1, α2 ∈ I,
l̂α1(lα2) = δα1α2 . Then for the corresponding sections S and S′, we have
the P-convergent series eS =

∑
α l̂α ⊗P S(lα) and e′

S′ =
∑

α l̂α ⊗P S′(lα).
Apply induction on r ⩾ 1 to prove the existence of xr ∈ LP

K and a
section Ar of the projection LP → KDP such that

e′ ≡ σ(xr) ◦ (Ar ⊗ idK)e ◦ (−xr) mod Cr+1(LP
K) ,
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with the appropriate P-continuous automorphism Ar of LP .
If r = 1, take A1 = idM and x1 =

∑
α l̂α ⊗P x1α, where all x1α =

R(S′(lα) − S(lα)) ∈ K and R is the operator from Proposition 3.1. Note
that x1 ∈ LP

K because R is P-continuous.
If r ⩾ 1 and such xr and Ar exist then there is lr+1 ∈ Cr+1(LP

K) such
that e′ ≡ σxr ◦ (Ar ⊗P idK)e ◦ (−xr) ◦ lr+1 mod Cr+2(LP

K).
Let lr+1 =

∑
α cα ⊗P bα with all cα ∈ Cr+1(LP) and bα ∈ K. Then

lr+1 = l′ + σ(x′)− x′ ,

where the elements l′ =
∑

α cα ⊗P (SΠ)(bα) and x′ =
∑

α cα ⊗P RS(bα)
belong to Cr+1(LP

K) ⊂ LP
K. It remains to set Ar+1(l̂α) = Ar(l̂α) + cα and

xr+1 = xr + x′. The lemma is proved. □

Remark. The main reason why the proof of Proposition 1.1 works in the
P-topological context is that LP

K = LP ⊗P K is stable with respect to the
action of P-continuous operators on the factor K.

Continue the proof of the theorem.
Denote by the same symbol A the (unique) extension of A to L (use that

L is a profinite completion of LP). Then f ′′ = x ◦ (A⊗ idsep)f ∈ F(e′) and
for any τ ∈ G<p, πf ′′(e′)(τ) = (A · π)τ .

Then (A · π)(GP
<p) = A(LP) = LP . This implies that π−1G(LP) =

πf ′′(e′)−1G(LP). But f ′, f ′′ ∈ F(e′) implies that the subgroups (π′)−1G(LP)
and πf ′′(e′)−1G(LP) are conjugated in G<p. □

3.5. Galois P-correspondence. As earlier, consider KD, KDP , the el-
ements e ∈ E(LP

K), f ∈ F(e) and the corresponding identification π :=
πf (e) : G<p ≃ G(L). Suppose K′ is a finite field extension of K in Ksep. Let
G′

<p, K′D, K
′DP , e′ ∈ E(L′P

K′), f ′ ∈ F(e′) and π′ = πf ′(e′) : G′
<p ≃ G(L′) be

the similar objects for the field K′.
The natural morphism of profinite groups Θ : G′

<p → G<p can be de-
scribed in terms of identifications π and π′ by Proposition 1.3. It admits
the following P-version.

Proposition 3.6. Suppose G′P
<p ∈ clP G′

<p. Then:
(a) there is GP

<p ∈ clP G<p such that Θ(G′P
<p) ⊂ GP

<p;
(b) (GP

<p : Θ(G′P
<p)) = (G<p : Θ(G′

<p)), i.e. Θ(G′P
<p) = Θ(G′

<p) ∩ GP
<p.

Proof.

(a). We can assume that f ′ ∈ F(e′) is such that G′P
<p = π′−1G(L′P). Then

we can apply the P-topological version of the proof of Proposition 1.3
to establish the existence of a P-continuous A ∈ HomLie(L

′P ,LP) and
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x′ ∈ LP
K′ such that

(3.5) e⊗P
K 1K′ = σ(x′) ◦ (A⊗ idK)e′ ◦ (−x′) .

From (3.5) it follows that both (−x′) ◦ f and (A ⊗ idK′)f ′ belong to
F((A⊗ id)e′) ⊂ Lsep. Therefore, there is l ∈ L such that

(−x′) ◦ f = (A⊗ idsep)f ′ ◦ l .

As a result, for any τ ′ ∈ G′
<p, π(Θ(τ ′)) = (−l) ◦ A(π′(τ ′)) ◦ l, and

π(Θ(G′P
<p)) = (−l) ◦ A(L′P) ◦ (−l) ⊂ (−l) ◦ LP ◦ l .

Equivalently, for g = π−1(l) ∈ G<p, we have

Θ(G′P
<p) ⊂ (−g) ◦ π−1(LP) ◦ g ∈ clP G<p .

So, we can take GP
<p = Ad(g)(π−1LP).

(b). Assume that in the notation from (a), l = 0. This guarantees the
embedding Θ(G′P

<p) ⊂ GP
<p and the factorisation π = A · π′, where π =

πf (e) : G<p ≃ G(L), π′ = πf ′(e′) : G′
<p ≃ G(L′) and A : L′ → L is induced

by Θ.
Let pn = [K′ : K] = (G<p : Θ(G′

<p)).

The case [K′ : K] = p. Here K′/K is Galois of degree p, (L : A(L′)) = p (cf.
Proposition 1.3), A(L′) is an ideal in L, and A(L′) = C2(L) + L, where
L ⊂ KD is of index p.

Let A(L′P) = C2(LP) + L0 ⊂ A(L′), where in notation from Section 3.2,

L0 ⊂ KPD = lim←−
α

HomP-cont(Cα,Fp) .

Let K′ = K(T ′), where T ′p − T ′ = c ∈ K. Then K′ = KH
<p, with H =

Θ(G′
<p) and π(H) = G(C2(L) + L). Therefore, L ⊂ KD is characterized by

the trivial action on T ′ or, equivalently, L = Ann(c), where c ∈ K is the
image of c under the natural projection Π : K → K.

We can assume that for some index α0, Π(c) ∈ Cα0 , because K is the
union of all Cα = Π(Cα). As a result:

• the P-subgroup HP appears in the form π−1G(C2(LP) + L0);
• L0 is the preimage of a subspace L0

α0 ⊂ HomP-cont(Cα0 ,Fp);
• L0

α0 consists of all finite Fp-linear combinations of the elements
D

(i)
a ∈ Cα0 from (3.3) which annihilate c. This means that L0

α0 is
of index p in HomP-cont(Cα0 ,Fp), L0 is of index p in KPD, A(L′P)
is of index p in LP and (b) is proved in the case n = 1.
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Inductive step. Suppose n ⩾ 2 and (b) is proved for field extensions of
degree pn−1.

Consider the tower K ⊂ K1 ⊂ K′, [K1 : K] = p, [K′ : K] = pn−1.
Using similar notation for K′ and K1 we have:
(1) the fields tower K ⊂ K1 ⊂ K′ ⊂ K<p ⊂ K1,<p ⊂ K′

<p,
(2) the compatible identifications:

• G<p ≃ G(L) ⊂ G1,<p ≃ G(L1) ⊂ G′
<p ≃ G(L′),

• GP
<p ≃ G(LP) ⊂ GP

1,<p ≃ G(L1) ⊂ G′P
<p ≃ G(L′P)

(3) the natural group homomorphisms:
• Θ1 : G1,<p → Θ1(G1,<p) ⊂ G<p,
• Θ′ : G′

<p → Θ′(G′
<p) ⊂ G1,<p

• Θ1 : Θ′(G<p)→ Θ(G′
<p) ⊂ Θ1(G1,<p) ⊂ G<p,

(4) the restrictions of the above Θ, Θ′, Θ1 to the corresponding P-
subgroups satisfy analogs of relations from above item (3)).

Note that Ker Θ1 = Gal(K1,<p/K<p) = J is the profinite closure of
J P := GP

1,<p ∩ J = Ker Θ1|GP
1,<p

. Therefore, Θ1(GP
1,<p) = G1,<p/ Ker JP .

Similarly, Θ1 induces a group epimorphic map Θ′(G<p) → Θ(G′
<p) with

the kernel J , the corresponding epimorphism Θ′(GP
<p) → Θ(G′P

<p) has the
kernel JP and Θ(G′P

<p) = Θ′(GP
<p)/JP .

Therefore, (GP
1,<p : Θ′(GP

<p)) = (Θ1(GP
1,<p) : Θ(G′P

<p)). By the inductive
assumption, this index equals pn−1. Finally, using the case n = 1 we obtain
(GP

<p : Θ(G′P
<p)) = pn. □

Definition. If H = Θ(G′
<p) then we set HP = H ∩ GP

<p.

Clearly, the conjugacy class of HP in its profinite completion H is well
defined.

Corollary 3.7.
(a) Any extension K′ of K in K<p (in the category of N -dimensional

local fields) appears in the form KH
<p, where H is the profinite com-

pletion of a P-closed subgroup HP of some GP
<p ∈ clP G<p.

(b) In the above notation, K′ is Galois over K iff the subgroup HP of
GP

<p is normal, and Gal(K′/K) = GP
<p/HP .

It remains to characterize the subgroups HP ⊂ GP
<p such that KH is an

extension of K in K<p.

Proposition 3.8. Let H ⊂ GP
<p be a subgroup. Then H = HP , where

KH = K′ is N -dimensional field extension of K iff
(a) (GP

<p : H) <∞;
(b) H is P-open in GP

<p.



696 Victor Abrashkin

Proof. If K′ is field extension of K in the category of N -dimensional fields
then [K′ : K] = (G<p : H) = (GP

<p : HP) <∞ and by Proposition 3.6 HP is
P-closed. It is also P-open as a closed subgroup of finite index in GP

<p.
To proceed in the opposite direction note that H = G(L), where L is a

Lie subalgebra in LP and the index (LP : L) is a power of p. Choose an
increasing sequence of Lie algebras L = L0 ⊂ L1 ⊂ · · · ⊂ Ln = LP where
each Li−1 is ideal in Li and (Li : Li−1) = p. As a result, we can proceed by
induction and it will be sufficient to consider the case n = 1.

Then L ⊃ C2(LP) and L = C2(LP) + L0, where

L0 ⊂ HomP-cont(K,Fp) = lim←−
α

HomP-cont(Cα,Fp) ,

cf. notation from Section 3.2. Since L0 is P-open there is an index α0 such
that L0 is the preimage of a subgroup L0

α0 of index p in HomP-cont(Cα0 ,Fp).
Therefore, there is c ∈ Cα0 such that L0

α0 = Ann c in HomP-cont(Cα0 ,Fp).
Let K′ = K(T ′), where T ′p − T ′ = Π−1c. Then K′ = KH

<p, where the
subgroup H of G<p is such that H = G(C2(L) + L) and L ⊂ KD is charac-
terized by the trivial action on T ′. Therefore, the corresponding P-subgroup
HP = G(C2(LP) + LP), where LP consists of finite Fp-linear combinations
of the elements D

(i)
a from (3.3) which annihilate c. Therefore, LP = L0 and

HP = H. □

3.6. More general P-groups. Suppose G′ ⊂ Aut K′. For example, K′/K
is Galois and G′ = Gal(K′/K). Consider the group Γ′ ⊂ Aut K′

<p of all lifts
of the elements of G′ to K′

<p. These lifts can be treated in terms of couples
(C ′

g,A′
g), where g ∈ G′, C ′

g ∈ L′
K′ and A′ ∈ AutLie L′, cf. Section 1.6.

This description uses the identification π′ = πf ′(e′) : G′
<p ≃ G(L′). After

applying π′−1 we obtain the exact sequence

1 −→ G′
<p −→ Γ′ −→ G′ −→ 1 .

Consider a subgroup Γ′P of Γ′ coming from C ′
g ∈ L′P

K = L′P⊗PK′ and P-
continuous A′

g. (For example, use the P-continuous operatorsR and S from
Section 3.1 to recover the corresponding pairs (C ′

g,A′
g), cf. e.g. Section 4.2

below.) We obtain the following exact sequence

1 −→ G′P
<p −→ Γ′P −→ G′ −→ 1 .

This construction of the subgroup Γ′P of Γ′ does not depend on a choice of
“P-continuous” lifts of elements of g ∈ G′ (all such lifts differ by elements
of G′P

<p).
The above construction in the case G′ = Gal(K′/K) allows us to recover

(uniquely up to isomorphism) the group GP
<p from HP = Θ(G′P

<p). Even
more, if K ⊂ K1 ⊂ K2 ⊂ K<p, Hi = Gal(K<p/Ki), HP

i = Hi ∩ GP
<p with
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i = 1, 2, and K2/K1 is Galois then HP
2 = H2 ∩ GP

<p is uniquely (up to
isomorphism) recovered from HP

1 .

4. The groups GP
ω and ΓP

ω

As earlier, K is N -dimensional local field of characteristic p with fixed
system of local parameters t = {t1, . . . , tN} and the last residue field k ≃
FpN0 . Fix α0 ∈ k such that Trk/Fp

(α0) = 1. Let S = St,α0 be the section
from Proposition 3.2.

Take e := eS =
∑

a∈Z+
N (p) t−aDa 0 + α0D0, choose f ∈ F(e) and consider

π = πf (e) : G<p ≃ G(L).
Fix c 0 = (c 0

1 , . . . , c 0
N ) ∈ pZN such that c0

1 > 0, set tc0 := t
c0

1
1 . . . t

c0
N

N .
Choose ω =

∑
ι⩾0 βιt

(c0/p)+ι ∈ tc0/pO∗
K, where all βι = βι(ω) ∈ k, β0 ̸= 0.

Let E(X) = exp
(∑

i⩾0 Xpi
/pi
)

be the Artin–Hasse exponential.

4.1. Automorphisms h(m)
ω . For 1⩽m⩽N , let h

(m)
ω be the P-continuous

automorphism of K such that h
(m)
ω |k = id, h

(m)
ω (tm) = tmE(ωp) and for all

j ̸= m, h
(m)
ω (tj) = tj . Let mK be the maximal ideal in OK. Clearly, mK

consists of all P-convergent k-linear combinations of ta, where a ∈ ZN
>0.

For n ∈ Z, let h
(m)n
ω be the n-th iteration of h

(m)
ω and, similarly, denote

by h
(m1)
ω h

(m2)
ω the composition of h

(m1)
ω and h

(m2)
ω .

Proposition 4.1.

(a) For any n ⩾ 0, h
(m)n
ω (tm) ≡ tmE(n ωp) mod tpc0mK;

(b) h
(m1)
ω h

(m2)
ω ≡ h

(m2)
ω h

(m1)
ω mod tpc0mK.

Proof. Note that h
(m)
ω (tm) ≡ tm mod tc0mK and this implies for any ι ⩾ 0,

that h
(m)
ω (tc0+pι) ≡ tc0+pι mod tpc0mK. As a result,

(4.1) h(m)
ω (ωp) ≡ ωp mod tpc0mK .

Apply induction on n ⩾ 0 to prove part (a) of the proposition.
If it is proved for some n ⩾ 0 then

h(m)n+1
ω (tm) ≡ h(m)

ω (tmE(nωp)) ≡ tmE(ωp)E(nωp) ≡ tmE((n + 1)ωp)

modulo tpc0mK (use that E(X + Y ) ≡ E(X)E(Y ) mod deg p).
Similarly, relation (4.1) implies part (b). □

Remark. The above proposition can be stated also for the truncated ex-
ponential ẽxp(X) = 1 + X + · · ·+ Xp−1/(p− 1)! instead of E(X).
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4.2. The groups Gω and GP
ω . Let ĥ

(m)
ω ∈ Aut K<p be such that ĥ

(m)
ω |K =

h
(m)
ω . Denote by Gω the subgroup in Aut K<p generated by the elements

of G<p and the lifts ĥ
(m)
ω with 1 ⩽ m ⩽ N . The elements ĥω of Gω are

characterised by the property ĥω|K ∈ ⟨h(1)
ω , . . . , h

(N)
ω ⟩ ⊂ AutK. According

to Section 1.6 the lifts h
(m)
ω , 1 ⩽ m ⩽ N , can be uniquely specified by the

couples (C(m),A(m)) ∈ LK ×Aut L such that

ĥ(m)
ω (f) = C(m) ◦ (A(m) ⊗ id)f

or, equivalently, such that

(4.2) (idL ⊗ h(m)
ω )e = σC(m) ◦ (A(m) ⊗ id)e ◦ (−C(m)) .

Relation (4.2) can be treated via the following recurrent procedure.
Suppose s ⩾ 0 and the couple (C(m)

s ,A(m)
s ) satisfies relation (4.2) mod-

ulo (s + 1)-th commutators Cs+1(LK). Use the operators R and S from
Section 3.1 to obtain C ′

s ∈ Cs+1(LK) and A′
s ∈ HomLie(L, Cs+1L) such

that

σC ′
s − C ′

s + (A′
s ⊗ idK)e

≡ (idL ⊗ h(m)
ω )e− σC(m)

s ◦ (A(m)
s ⊗ idK)e ◦ (−C(m)

s ) mod Cs+2(LK) .

Then the couple (C(m)
s+1,A(m)

s+1) := (Cs + C ′
s,As +A′

s) satisfies (4.2) modulo
Cs+2(LK).

Denote by ĥ
0(m)
ω the lift of h

(m)
ω which is uniquely determined by the

couple (C0(m),A0(m)) := (C(m)
p−1,A(m)

p−1). Note that C0(m) ∈ LP
K andA0(m)|LP

is a P-continuous automorphism of the Lie algebra LP .
Using that (idL⊗h

(m)
ω )e ∈ LP

K and L∩LP
K = LP we obtain the following

property:

Proposition 4.2. A lift ĥ
(m)
ω corresponds to a couple (C(m),A(m)) with

C(m) ∈ LP
K and A(m) ∈ AutP-cont(LP), if and only if there is l ∈ LP such

that C(m) = C0(m) ◦ l and A(m) = Ad l · A0(m).

Definition. GP
ω ⊂ Gω is a subgroup generated by GP

<p = π−1LP and the
lifts ĥ

0(m)
ω , 1 ⩽ m ⩽ N .

Remark.
(i) The elements of the group GP

ω are specified via the couples (C,A) ∈
LP

K ×AutP-cont LP (which satisfy relation (4.2)).
(ii) The profinite completion of GP

ω coincides with Gω.
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Obviously, we have the following natural short exact sequences:
1 −→ G<p −→ Gω −→ ⟨h(1)

ω , . . . , h(N)
ω ⟩ −→ 1 ,(4.3)

1 −→ GP
<p −→ GP

ω −→ ⟨h(1)
ω , . . . , h(N)

ω ⟩ −→ 1 ,(4.4)
The structure of (4.3) can be uniquely recovered from (4.4) by going to

the profinite completions.

4.3. The commutator subgroups Cs(GP
ω ). Define the weight function

in LP
k by setting for s ∈ N and (s− 1)c0 ⩽ a < sc0,

wt(Dan) = s .

Introduce the ideal LP
c0(s) of LP such that LP

c0(s)k is generated by all
[. . . [Da1n1 , Da2n2 ], . . . , Darnr ] with

∑
i wt(Daini) ⩾ s. Clearly, for any s1, s2,

it holds [LP
c0(s1),LP

c0(s2)] ⊂ LP
c0(s1 + s2).

Consider the lifts h
0(m)
ω ∈ GP

ω from Section 4.2. Denote by Ad(m) the
automorphism of G(LP) obtained from conjugation by ĥ

0(m)
ω on GP

<p with
respect to the identification π(= πf (e)) : GP

<p ≃ G(LP).
Let for a ∈ Z+

N (p), Ad(m)
k (Da 0) = D

(m)
a 0 and Ad(m)

k (D0) = D
(m)
0 .

Lemma 4.3. For any 1 ⩽ m, m1 ⩽ N ,
(a) D

(m)
0 ≡ D0 mod LP

c0(3) + LP
c0(2) ∩ C2(LP);

(b) if a = (a(1), . . . , a(N)) ∈ Z+
N (p) and wt(Da n) = s then

D
(m)
a 0 ≡ Da 0 −

∑
ı⩾0

Aıa
(m)Da+c0+pı,0

modulo LP
c0(s+2)k+LP

c0(s+1)k∩C2(LP
k ), where the elements Aι ∈ k

are such that E(ωp) = 1 +
∑

ι⩾0 Aιt
c0+pι;

(c) the commutator (ĥ0(m)
ω , ĥ

0(m1)
ω ) ∈ π−1G(LP

c0(2)).

We shall prove this lemma after finishing the proof of Proposition 4.4
below.

Note that Lemma 4.3 implies πC2(GP
ω ) ⊂ G(LP

c0(2)).
Set LP

ω (1) = LP .
For s ⩾ 2, let LP

ω (s) ⊂ LP be such that πCs(GP
ω ) = G(LP

ω (s)).

Proposition 4.4. For 1 ⩽ s ⩽ p, LP
ω (s) = LP

c0(s).

Proof. Use induction on s ⩾ 1.
Clearly, LP

ω (1) = LP
c0(1).

Suppose s0 ⩾ 1 and for 1 ⩽ s ⩽ s0, LP
ω (s) = LP

c0(s). Let LP
lin =(∑

a,n kDa n
)
∩ LP be “the subspace of linear terms” in LP . We have the

following properties for all s ⩽ s0:
• LP

c0(s + 1) = LP
c0(s + 1) ∩ LP

lin + LP
c0(s + 1) ∩ C2(LP);
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• LP
c0(s + 1) ∩ C2(LP) =

∑
s1+s2=s+1

[
LP

c0(s1),LP
c0(s2)

]
;

• LP
ω (s + 1) is the ideal in LP generated by [LP

ω (s),LP ] and the ele-
ments Ad(m)(l) ◦ (−l), where l ∈ LP

ω (s) and 1 ⩽ m ⩽ N . (If s0 = 1
we do need part (c) of Lemma 4.3.)

Now statements (a) and (b) of Lemma 4.3 imply:
(c1) if l ∈ LP

c0(s) then Ad(m)(l) ◦ (−l) ∈ LP
c0(s + 1);

(c2) if l ∈ LP
lin ∩ LP

c0(s + 1) then there are m and l′ ∈ LP
lin ∩ L(s) such

that

Ad(m)(l′) ◦ (−l′) ≡ l mod LP
c0(s + 1) ∩ C2(LP)

(use that A0 ̸= 0 and for any a = (a(1), . . . , a(N)) ∈ Z+
N (p), there is

m such that a(m) ̸≡ 0 mod p).
Then [LP

ω (s0),LP ] = [LP
c0(s0),LP(1)] ⊂ LP

c0(s0 +1) and applying (c1) we
obtain LP

ω (s0 + 1) ⊂ LP
c0(s0 + 1).

For the opposite direction, note that by the inductive assumption,

LP
c0(s0 + 1) ∩ C2(LP) =

∑
s1+s2=s0+1

[
LP

ω (s1),LP
ω (s2)

]
⊂ LP

ω (s0 + 1)

and then (c2) implies that LP
lin ∩ LP

c0(s0 + 1) ⊂ LP
ω (s0 + 1). As a result,

LP
c0(s0 + 1) ⊂ LP

ω (s0 + 1) and our proposition is proved. □

Proof of Lemma 4.3. Let

N =
∑
s⩾1

t−c0sLP
c0(s)mK ,

where mK is the maximal ideal of the N -valuation ring OK of K. Clearly,
N has an induced structure of a Lie algebra over Fp and e ∈ N .

Let e(m) := (Ad(m)
k ⊗ idK)e =

∑
a∈Z+

N (p) t−aD
(m)
a 0 + α0D

(m)
0 .

The recovering of C0(m) ∈ G(LP
K) and e(m) from relation

(4.5) (idLP ⊗ h(m)
ω )e ◦ C0(m) = (σC0(m)) ◦ e(m) ,

is a part of the recurrent procedure from Section 4.2. Clearly, the opera-
tors S and R from Section 3.1 map N to itself. Therefore, when follow-
ing the recurrent procedure we remain at each step in N . As a result, all
e(m), C0(m), σC0(m) ∈ N .

For any j ⩾ 0, introduce the ideals N (j) := tjc0N of N . The operators
R and S also map the ideals N (j) to itself.

The following properties are obtained by direct calculations:
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(i) (idLP ⊗ h
(m)
ω )e = e + e

(m)
1 mod N (2), e

(m)
1 = e

(m)+
1 + e

(m)−
1 ∈ N (1),

e
(m)−
1 = −

∑
ι⩾0

a∈Z+
N (p)

t−aa(m)AιDa+c0+pι,0, e
(m)+
1 = −

∑
ι⩾0

0<a<c0+pι

a(m)Aιt
−a+c0+pιDa 0

(note that e
(m)+
1 ∈ LP

mK and, therefore, S(e(m)+
1 ) = 0);

(ii) the congruence (idLP ⊗ h
(m)
ω )e ≡ e mod N (1) implies that e(m) ≡

e mod N (1) and C0(m), σC0(m) ∈ N (1). Indeed, in the procedure
of specification of ĥ

0(m)
ω it holds that for all s, C

(m)
s , σC

(m)
s ∈ N (1)

and (A(m)
s ⊗ idK)e ≡ e mod N (1);

(iii) e(m) = (−σC0(m)) ◦ (idLP ⊗ h
(m)
ω )e ◦ C0(m) ≡ (C0(m) − σC0(m)) +

e + e
(m)
1 mod N (2) + tc0Ñ (2), where Ñ (2) :=

∑
s⩾2 t−sc0(LP

c0(s) ∩
C2(LP))mK (use that [N (1),N (1)]⊂N (2) and [N (1),N ]⊂ tc0Ñ (2));

(iv) S(N (2) + tc0Ñ (2)) ⊂ N (2) + tc0Ñ (2), S(e(m) − e− e
(m)−
1 ) = e(m) −

e−e
(m)−
1 , S(C(m)−σC(m)+e

(m)+
1 ) = 0. Therefore, item (iii) implies

e(m) ≡ e + e
(m)−
1 mod N (2) + tc0Ñ (2) .

More explicitly,

(4.6) e(m) ≡
∑

a∈Z+
N (p)

t−a

(
Da 0 − a(m)∑

ι⩾0

AıDa+c0+pι,0

)
+ α0D0

modulo N (2) + tc0Ñ (2).
Deduce from this congruence statements (a) and (b) of our lemma. Con-

sider the presentation of an element l ∈ LP
K in the form of a P-convergent

series l =
∑

b∈ZN
tblb, with all lb ∈ LP

k .
Suppose s ⩾ 1 and −(s − 1)c0 ⩾ b > −sc0. It follows directly from

definitions that:
• if l ∈ N then lb ∈ LP

c0(s)k;
• if l ∈ N (2) then lb ∈ LP

c0(s + 2)k;
• if l ∈ tc0Ñ (2) then lb ∈ LP

c0(s + 1)k ∩ C2(LP
k ).

As a result, the parts (a) and (b) of our lemma are obtained by comparing
coefficients in (4.6).

Now note that for any m1,

(4.7) (idLP ⊗ h(m1)
ω )e ≡ e + e

(m1)
1 mod N (2) .

Let N<p =
∑

s⩾1 t−c0sLP
c0(s)m<p , where m<p is the maximal ideal of the

N -valuation ring OK<p . Again, N<p has the induced structure of a Lie
Fp-algebra and for any j ⩾ 0, N<p(j) = tjc0N<p is ideal in N<p.
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As earlier, f, σf ∈ N<p, and congruence (4.7) implies that

(idLP ⊗ h(m1)
ω h(m))

ω )e ≡ e + e
(m)
1 + e

(m1)
1 mod N<p(2) .

where f
(m1)
1 ∈ N<p(1) is such that σf

(m1)
1 − f

(m1)
1 = e

(m1)
1 .

This implies the following congruences modulo N<p(2)

(idLP ⊗ ĥ0(m)
ω ĥ0(m1)

ω )f ≡ (idLP ⊗ ĥ0(m1)
ω ĥ0(m)

ω )f ≡ f + f
(m1)
1 + f

(m)
1

and, therefore, (idLP ⊗ (ĥ0(m)
ω , ĥ

0(m1)
ω ))f ≡ f mod N<p(2).

On the other hand, the commutator (ĥ0(m)
ω , ĥ

0(m1)
ω ) is a lift of idK, i.e. it

coincides with π−1(lmm1) ∈ GP
<p. Therefore, lmm1 ∈ LP ∩N<p(2) = LP

c0(2).
The part (c) is proved. □

4.4. The group ΓP
ω . Let L = L/Lc0(p) and LP = LP/LP

c0(p). Then LP is
dense in L. If K(p) = KG(Lc0 (p))

<p and G := Gal(K(p)/K) then the identifica-
tion πf (e) induces the identification π : G ≃ G(L). This identification can
be obtained via nilpotent Artin–Schreier theory: for e ∈ LK and f ∈ LK(p),
we have σf = e◦f and π = πf (e). However, the algebra LK is too big for the
process of linearization, cf. below. This motivates the following definitions.

Let
M :=

∑
1⩽s<p

t−sc0Lc0(s)mK + Lc0(p)K

MP :=
∑

1⩽s<p

t−sc0LP
c0(s)mK + LP

c0(p)K

M<p :=
∑

1⩽s<p

t−sc0Lc0(s)m<p + Lc0(p)K<p

where (as earlier) m<p is the maximal ideal of the N -valuation ring OK<p .
Then M and MP have the induced structure of Lie Fp-algebras (use the
Lie bracket from LK). For s ⩾ 0, M(s) := tsc0M and MP(s) := tsc0MP

form a decreasing central filtrations of ideals in M and MP . Similarly,
M<p is a Lie Fp-algebra (containing M as its subalgebra), for s ⩾ 0,
M<p(s) := tsc0M<p is a decreasing central filtration of ideals in M<p

and M<p(s) ∩ MP = MP(s). It can be easily seen that e ∈ MP and
f, σf ∈M<p.

There is a natural embedding

MP :=MP/MP(p− 1) ⊂M<p :=M<p/M<p(p− 1) ,

and the induced decreasing filtrations of idealsMP(s) andM<p(s) (where
MP(p − 1) = M<p(p − 1) = 0) are compatible with this embedding. For
all s ⩾ 0, (idL ⊗ h

(m)
ω − idMP )sMP ⊂MP(s).
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The algebras MP and M<p are naturally identified with the following
subquotients of LP

K and L<p:

MP =
( ∑

1⩽s<p

t−sc0LP
c0(s)m

)
⊗OK/t(p−1)c0

M<p =
( ∑

1⩽s<p

t−sc0Lc0(s)m<p

)
⊗OK<p/t(p−1)c0

.

We can see easily that e⊗ 1 ∈MP , f ⊗ 1, σf ⊗ 1 ∈M<p and σf ⊗ 1 =
(e ⊗ 1) ◦ (f ⊗ 1). The following property shows that we still have a full
control of the identification π.

Proposition 4.5. The correspondence τ 7→ (−f ⊗1)◦ τ(f ⊗1) induces the
natural projections G<p → G ≃ G(L) and GP

<p → G
P ≃ G(LP).

Proof. (−f ⊗1)◦ τf ⊗1 comes from (−f)◦ τf ∈ G(L). It remains to notice
that L ∩M(p− 1) = Lc0(p) and L ∩MP(p− 1) = LP

c0(p). □

Remark. In the above setting we can replaceM<p by its analogueMK(p),
where the field K(p) is used instead of K<p (because f ∈ LK(p)).

Let ΓP
ω := GP

ω /(GP
ω )pCp(GP

ω ). Then Γω := Gω/Gp
ωCp(Gω) can be recovered

as the profinite completion of ΓP
ω .

Proposition 4.6. Exact sequence (4.3) induces the following exact se-
quence of profinite p-groups

1 −→ GP −→ ΓP
ω −→

∏
1⩽m⩽N

⟨h(m)
ω ⟩/⟨h(m)p

ω ⟩ −→ 1 .

Proof. Consider the orbit of f ⊗ 1 with respect to the natural action of
Gω ⊂ Aut K<p on f (recall that all “values” of f belong to K<p ⊂ Ksep).
Then the stabilizer H of f⊗1 equals Gp

ωCp(Gω). This fact and the remaining
part of the proof go along the lines of Proposition 3.5 from [9]. □

Suppose πω : ΓP
ω ≃ G(LP

ω ) extends π = πf (e) for a suitable Lie Fp-
algebra LP

ω containing LP . Then the automorphisms h
(m)
ω give rise to the

Lie elements l
(m)
ω and we obtain the following property.

Corollary 4.7. There is a natural exact sequence of Lie Fp-algebras

(4.8) 0 −→ LP −→ LP
ω −→

∏
1⩽m⩽N

Fpl(m)
ω −→ 0 .

We recover the structure of LP
ω below by analyzing the orbit of f .
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4.5. Filtered module Mf and the procedure of linearization. Let
h

(m)
ω ∈ ΓP

ω be a lift of h
(m)
ω to K(p). We use below the notation l

(m)
ω for

the corresponding element πω(h(m)
ω ) ∈ LP

ω . For example, cf. Section 4.3, if
l

0(m)
ω = πω(ĥ0(m)

ω )|K(p)) then the notation Ad(m) appears as Ad(l 0(m)
ω ).

Let Γ(m)P
ω be the subgroup in ΓP

ω generated by h
(m)
ω and GP = π−1G(LP)

(clearly, it does not depend on the choice of h
(m)
ω ). Then we have the fol-

lowing exact sequence

1 −→ GP −→ Γ(m)P
ω −→ ⟨h(m)

ω ⟩/⟨h(m)p
ω ⟩ −→ 1 .

Let L
(m)P
ω be a Lie subalgebra in LP

ω such that πω(Γ(m)P
ω ) = G(L(m)P

ω ).
We have the following exact sequence of Fp-Lie algebras

0 −→ LP −→ L(m)P
ω −→ Fpl(m)

ω −→ 0.

obtained from (4.8) via the natural embedding Fpl
(m)
ω →

∏
1⩽m⩽N Fpl

(m)
ω .

The structure of the Lie algebras L
(m)P
ω (as well as the groups Γ(m)P

ω )
can be studied via the “linearization techniques” from [8, 10].

Namely, the action of idLP ⊗h
(m)
ω on LP

K induces the action on MP ,
which can be presented in the form ẽxp(idLP ⊗ dh

(m)
ω ), where idLP ⊗ dh

(m)
ω

is a derivation onMP . Indeed, the elements ofMP can be written uniquely
as sums of elements of the form l⊗ t−a, where all a = (a(1), . . . , a(N)) ∈ ZN

and for some 1 ⩽ s < p, (s − 1)c0 ⩽ a < sc0 and l ∈ LP(s)k. Then this
derivation comes from the correspondences l ⊗ t−a 7→ l ⊗ (−a(m))t−aωp.

Let Mf be the minimal Lie subalgebra in MK(p) obtained by joining to
MP the element f and its images under the action of the group generated
by idL⊗ h

(m)
ω . The algebraMf still reflects all essential information about

the structure of Γω. Then(
idL ⊗ h

(m)
ω

)
f = C

(m) ◦
(
A(m) ⊗ idK(p)

)
f ,

where C
(m) ∈ MP and A(m) = Ad l

(m)
ω ∈ AutLP , cf. Section 1.6. Clearly,

this relation determines the action of the lift idL ⊗ h
(m)
ω on Mf .

For any n ⩾ 1, we have (id⊗h
(m)n
ω ) f = C

(m,n) ◦ (A(m)n ⊗ id)f , where
the element C

(m,n) ∈MP can be presented in the following form(
id⊗ h(m)n−1

ω

)
C

(m) ◦
(
A(m) ⊗ h(m)n−2

ω

)
C

(m) ◦ . . . ◦
(
A(m)n−1 ⊗ id

)
C

(m)
.

Let c
(m)
i ∈ MP be such that for all 1 ⩽ n < p, C

(m,n) =
∑

1⩽i<p ni c
(m)
i .

(Such elements c
(m)
i are unique because det((ni))1⩽n,i<p ̸= 0 mod p.) Sum-

marizing our approach from [8, 10] we obtain:
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Proposition 4.8.
(a) A(m) = ẽxpB(m), where B(m) is a derivation on LP ;
(b) if αp := Spec Fp[U ] with Up = 0, is a finite group scheme with

coaddition ∆U = U ⊗ 1 + 1⊗ U then the correspondence

h
(m)U : f 7−→

(
U ⊗ c

(m)
1 + · · ·+ Up−1 ⊗ c

(m)
p−1

)
◦
(
A(m)U ⊗ id

)
f

=
(
U ⊗ c

(m)
1 + · · ·+ Up−1 ⊗ c

(m)
p−1

)
◦
( ∑

0⩽n<p

Un ⊗ (B(m)n
/n!⊗ id)

)
f

induces a coaction of αp on Mf ;
(c) h

(m)n
ω (f) = h

(m)U
ω |U=n;

(d) if for all a ∈ Z0
N (p), V

(m)
a 0 := ad l

(m)
ω (Da 0) then

(4.9) σc
(m)
1 − c

(m)
1 +

∑
a∈Z0

N (p)
t−aV

(m)
a 0

= −
∑

1⩽k<p

1
k! t−(a1+···+ak)ωpa

(m)
1 [. . . [Da1 0, Da2 0], . . . , Dak 0]

−
∑

2⩽k<p

1
k! t

−(a1+···+ak)[. . . [V (m)
a1 0 , Da2 0], . . . , Dak 0]

−
∑

1⩽k<p

1
k! t−(a1+···+ak)[. . . [σc

(m)
1 , Da10], . . . , Dak0]

(the indices a1, . . . , ak in all above sums run over Z0
N (p));

(e) the solutions {c(m)
1 , V

(m)
a0 | a ∈ Z0

N (p)} of (4.9) are in bijection with
the lifts h

(m)
ω of h

(m)
ω to K(p);

(f) suppose c
(m)
1 =

∑
ι∈ZN c

(m)
1 (ι)tι, where all c

(m)
1 (ι) ∈ LP

k ; then differ-
ent solutions of (4.9) have different c

(m)
1 (0), i.e. c

(m)
1 (0) ∈ LP

k are
strict invariants of the lifts h

(m)
ω .

Proof.

(a). It is just a general fact about the structure of unipotent automorphisms
on modules with filtration of length < p;

(b). This is also a sufficiently general interpretation of unipotent additive
action on modules with filtration of length < p (Section 3 of [8] contains
necessary background of the specification of this situation to the Campbell–
Hausdorff composition law.);

(c). This follows obviously from (b);
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(d). Note that the relations(
id⊗h(m)n

ω

)
e =

(
σC

(m,n)) ◦ (Adn l
(m)
ω ⊗ id

)
e ◦
(
−C

(m,n))
imply that(

id⊗h(m)U
ω

)
e =

(
σC

(m)U) ◦ (AdU l
(m)
ω ⊗ id

)
e ◦
(
−C

(m)U)
,

where C
(m)U = Uc

(m)
1 + · · ·+ Up−1c

(m)
p−1. This implies(

c
(m)
1 U

)
◦
(
id⊗h(m)

ω U
)
e ≡

(
σc

(m)
1 U

)
◦
(
AdU l

(m)
ω ⊗ id

)
e mod U2 ,

and we need just to follow the coefficents for U ;

Remark. Relation (4.9) can be uniquely lifted to LP
K = LP

K mod LP
c0(p)K

by taking suitable unique lifts of c
(m)
1 (use that σ is nilpotent on

M(p− 1)K mod LP
c0(p)K). In other words, we have unique lifts of c

(m)
1 to

LK such that (4.9) is still an equality in LP
K. We will use the same notation

c
(m)
1 for these lifts.

(e). Note, first, the corresponding data {c(m)
1 , V

(m)
a0 | a ∈ Z0

N (p)} are in
a bijection with the lifts h

(m)
ω of h

(m)
ω to K(p), cf. Section 1.6. Therefore,

we should verify that c
(m)
1 determines uniquely the whole vector c(m). This

follows formally from b) and can be verified as follows (we used a different
approach in [10], cf. Remark in Section 3.5).

Since h
(m)U
ω : Mf → Fp[U ] ⊗Mf is the coaction of the group scheme

αp, we have in Fp[U1, U2]⊗Mf that

(idU1 ⊗ h
(m)U2
ω ) · h(m)U1

ω = h
(m)U1+U2
ω .

Then we obtain in LK(p),

(id⊗ h(m)U2
ω )C(m)U1 ◦ (AdU1 l

(m)
ω ⊗ id)C(m)U2 ◦ (AdU1+U2 l

(m)
ω ⊗ id)f

= C
(m)U1+U2 ◦ (AdU1+U2 l

(m)
ω ⊗ id)f

implies(∑
n⩾1

Un
1 (id⊗ h(m)U2

ω )c(m)
n

)
◦
(∑

n⩾1
Un

2 (AU1 ⊗ id)c(m)
n

)

=
∑

n1,n2

c
(m)
n1+n2(U1 + U2)n1+n2
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For n ⩾ 1, the coefficient for U1Un
2 in the RHS equals (n + 1)c(m)

n+1. The
corresponding coeffcient in the LHS coincides with the coeffcient in(

U1(id⊗ h(m)U2
ω )c(m)

1

)
◦
(

(id + U1B
(m) ⊗ id)

∑
n⩾0

Un
2 c(m)

n

)

and, therefore, equals (B(m) ⊗ id)c(m)
n plus Fp-linear combination of the

elements of the following form (cf. Remark below)

[. . . [(id⊗dn1h(m)
ω /n1!)c(m)

1 , c(m)
n2 ], · · · ], c(m)

ns
] ,

where n1 + · · ·+ ns = n, s ⩾ 1 and n1 ⩾ 0. As a result, (n + 1)c(m)
n+1 can be

uniquely recovered from c
(m)
1 , . . . , c

(m)
n .

Remark. We used well-known relation,

X + UY ≡ X ◦

U
∑
k⩾1

1
k! [. . . [Y, X], . . . , X]︸ ︷︷ ︸

k−1 times

 mod U2

with U = U1 and X =
∑

n Un
2 c

(m)
n , cf. references in [9, proof of Proposi-

tion 3.7 in Section 3.5].

(f). It follows by induction on mod Ci(L
P
K), i ⩾ 1, from relation (4.9). □

4.6. The structure of ΓP
ω . We are going to determine the structure of

the Lie algebra LP
ω . In the above section we indicated the way how to

specify the lifts h
(m)
ω = π−1

ω (l(m)
ω ), 1 ⩽ m ⩽ N . This can be done by

applying recurrent procedure (4.9) to find the elements c
(m)
1 and V

(m)
a 0 =

ad l
(m)
ω (Da0), a ∈ Z0

N (p). In addition, we should specify the commutators
lω[i, j] := [l(i)ω , l

(j)
ω ] ∈ LP , 1 ⩽ i, j ⩽ N .

Remark. From Lemma 4.3 c) it follows that all lω[i, j] ∈ C2(LP
ω ) = Lc0(2).

It would be very interesting to find explicit expressions for the elements
lω[i, j] in terms of the involved parameters Aι = Aι(ω) (recall that E(ωp) =
1+
∑

ι Aιt
c0+pι). We verified by a direct calculation with relations (4.9) that

for any lifts h
(i)
ω and h

(j)
ω , the corresponding elements lω[i, j] ∈ C4(LP

ω ). It
would be natural to expect the existence of lifts h

(i)
ω , 1 ⩽ i ⩽ N , which

commute with each other. However, in the moment we do not see how to
simplify the process of calculation of the elements lω[i, j].

The following property could be useful to study the properties of the
elements lω[i, j]. To simplify the notation set for all m, id ⊗ dh

(m)
ω = d(m)

and Ad l
(m)
ω ⊗ id = ad(m).
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Proposition 4.9. For all 1 ⩽ i, j ⩽ N ,

lω[i, j] = (d(j) − ad(j))c(i)
1 − (d(i) − ad(i))c(j)

1 + [c(i)
1 , c

(j)
1 ] .

Proof. With above assumption we have in LP
K[U ] for all m,

(id + Ud(m))e ≡ (Uσc
(m)
1 ) ◦ (id + U ad(m))e ◦ (−Uc

(m)
1 ) mod U2.

Let E = ẽxp e in the enveloping algebra A
P
K of LP

K. Then we have the
following congruence modulo (U2, (J P

K)p), where J P
K is the augmentation

ideal in A
P
K,

(id + Ud(m))E ≡ (1 + σc
(m)
1 U) · (id + U ad(m))E · (1− c

(m)
1 U) .

Comparing the coefficients for U we obtain

(4.10) (d(m) − ad(m))E ≡ σc
(m)
1 · E − E · c(m)

1 mod (J P
K)p .

Note that (d(i)d(j) − d(j)d(i))E ≡ 0 because

d(m)E = −
∑
ι⩾0

Aι

∑
s⩾0

(1/s!)(a1 + · · ·+ as)(m)t−(a1+···+as)+c0+pιDa 0 .

In addition, for any i, j, ad(i) and d(j) commute one with another.
Therefore, (4.10) implies

Ad lω[i, j](E) ≡ (d(i) − ad(i))(d(j) − ad(j))E − (d(j) − ad(j))(d(i) − ad(i))E
≡ σ(X )E − EX mod (J P

K )p,

where X = (d(i) − ad(i))c(j)
1 − (d(j) − ad(j))c(i)

1 + [c(j)
1 , c

(i)
1 ].

Let X0 = X − lω[i, j], then

(4.11) σ(X0)E ≡ EX0 mod (J P
K)p .

It remains to prove that

Lemma 4.10. X0 = 0.

Proof of Lemma 4.10. As earlier, let A
P be the enveloping algebra for LP .

Let A
P
c0(s), s ⩾ 1, be the ideal in A

P generated by the monomials
Da1n1 . . . Daunu of weight ⩾ s, i.e. such that if si ∈ N for 1 ⩽ i ⩽ u,
are such that (si − 1)c0 ⩽ ai < sic0 then s1 + · · · + su ⩾ s. For each s,
A

P
c0(s) ∩ LP

c0 = LP
c0(s), in particular, AP

c0(p) ∩ LP
c0 = 0.

Note that X0 ∈ L
P
K and let X0 = X (1) + · · ·+X (p−1)

0 , where each X (s)
0 is

a K-linear combination of the Lie monomials of weight s,

[. . . [Da1n1 , Da2n2 ], . . . , Daunu ] .
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Clearly, X (s)
0 ∈ LP

c0(s) and if X (s)
0 ∈ A

P
c0(s + 1) then X (s)

0 = 0. It will be
enough to prove by induction on 1 ⩽ s ⩽ p that

X0 ∈ L
P
c0(s) + A

P
c0(s + 1)K .

If s = 1 then (4.11) implies that σ(X0) ≡ X0 mod A
P
c0(2)K (use that

E ≡ 1 mod A
P
c0(1)K). So, σX (1)

0 = X (1)
0 in LP

K, i.e. X (1)
0 ∈ LP = LP

c0(1) and
X0 ∈ L

P
c0(1) + A

P
c0(2)K.

Suppose the above formula for X0 is proved for some 1 ⩽ s ⩽ p− 1.
So, X0 = X (s)

0 + · · ·+ X (p−1)
0 ∈ LP

c0(s) + A
P
c0(s + 1)K, and (4.11) implies

σX (s+1)
0 −X (s+1)

0 ≡
∑

a∈Z0
N (p)

t−a[Da0,X (s)
0 ] mod A

P
c0(s + 2)K .

Thus (use Proposition 3.1) all [Da0,X (s)
0 ] ∈ A

P
c0(s + 2)K and

X (s+1)
0 ∈ LP

c0(s + 1) + A
P
c0(s + 2)K .

If the weight of Da0 = 1 then [Da0,X (s)
0 ] has weight s + 1, therefore,

[Da0,X (s)
0 ] = 0 and X (s)

0 = 0. Similarly, X (s+1)
0 ∈ LP

c0(s + 1).
The lemma is proved. □

Using the notation from item (f) of Proposition 4.8 we obtain:

Corollary 4.11. For 1 ⩽ i, j ⩽ N ,

lω[i, j] = ad(i)(c(j)
1 (0))− ad(j)(c(i)

1 (0)) +
∑

ι∈ZN

[c(i)
1 (ι), c

(j)
1 (−ι)] .

4.7. The structure of ΓP
ω modulo third commutators. Consider the

lift of relation (4.9) to LP
K taken modulo C2(LP

ω )K = LP
c0(2)K (cf. Remark

in the part d) of the proof of Proposition 4.8) where ωp =
∑

ι⩾0 Aι(ω)tc0+pι

with all Aι(ω) ∈ k.

(4.12) σc
(m)
1 − c

(m)
1 +

∑
a∈Z0

N (p)
t−aV

(m)
a0 ≡ −

∑
a∈Z0

N (p)
ι⩾0

Aι(ω)tc0+pι−aa(m)Da0 .

Here V
(m)

a0 = Ad l
(m)
ω (Da0) and a(m) is the m-th component of a ∈ Z0

N (p).
Applying to (4.12) the operator R from Section 3.1 we obtain:

(1) V
(m)

0 = ad l
(m)
ω (D0) ∈ C2(LP

ω );
(2) for all a ∈ Z+

N (p),

V
(m)

a0 = ad l
(m)
ω (Da0) ∈ C2(LP

ω,k) .
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Property (2) means that all generators of L
(m)P
ω,k of the form Dan with

a > c0 and a(m) ̸= 0 mod p, can be eliminated from the system

{Dan | a ∈ Z+
N (p)} ∪ {D0} ∪ {l

(m)
ω }

of generators of L
(m)P
ω,k . Indeed, because A0(ω) ̸= 0 and a(m) ̸= 0 mod p, all

Da+c0,0 belong to the ideal of second commutators

C2(L(m)P
ω,k ) = (ad l

(m)
ω )LP

k + C2(LP
k ) ,

and for any n ∈ Z/N0, all Da+c0,n = σnDa+c0,0 also belong to C2(L(m)P
ω,k ).

Property (1) means that L
(m)P
ω has only one relation with respect to any

minimal P-topological set of generators. Therefore, Γ(m)P
ω can be treated

as a P-topological group with one relation.
On the other hand, the Lie algebra LP

ω,k has the system of generators

{Dan | a ∈ Z+
N (p)} ∪ {D0} ∪ {l

(m)
ω | 1 ⩽ m ⩽ N}

with the corresponding system of relations

[Dan, l
(m)
ω ] = V (m)

an , [D0, l
(m)
ω ] = V

(m)
0 , [l(i)ω , l

(j)
ω ] = lω[i, j] ,

where a ∈ Z+
N (p) and 1 ⩽ m, i, j ⩽ N .

Choose for every a ∈ Z+
N (p), ma ∈ [1, N ] such that a(ma) ̸= 0 mod p.

Then the relations [Dan, l
(ma)
ω ] = V

(ma)
an , a ∈ Z+

N (p), can be used to eliminate
extra generators {Dan | a > c0} and to present the structure of LP

ω,k in terms
of the corresponding minimal system of generators

{Dan | a ∈ Z+
N (p), a < c0} ∪ {D0} ∪ {l

(m)
ω } .

Consider the second central step to obtain explicitly the above relations
modulo C3(LP

ω,k).

Proposition 4.12. For 1 ⩽ m ⩽ N and a ∈ Z+
N (p), there are the following

congruences mod C3(LP
ω,k):

V
(m)

0 ≡ −1
2

∑
ι⩾0

0⩽n<N0

σn

Aι

∑
a1+a2=
c0+pι

a
(m)
1 [Da1,0, Da2,0]

 ,
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V
(m)

a0 ≡ −
∑
n⩾1
ι⩾0

σn

Aι

∑
a1+a2/pn

=c0+pι+a/pn

a
(m)
1 [Da1,0, Da2,−n]



−
∑
ı⩾0

Aιa
(m)Dc0+pı+a,0 −

1
2
∑
n⩾0
ι⩾0

σ−n

Aι

∑
a1+a2=

c0+pι+apn

a
(m)
1 [Da1,0, Da2,0]

 .

Proof. From (4.11) we obtain (apply the operator R from Section 3.1)

c
(m)
1 ≡

∑
a,ι⩾0
n⩾0

σn(Aι)tpn(c0+pι−a)a(m)Dan mod C2(LP
ω,K) .

Then the right-hand side of (4.9) modulo C3(LP
ω,K) appears as

−
∑

ι

Aιt
c0+pι−aa(m)Da0 −

1
2
∑

a1,a2,ι

Aıt
c0+pι−a1−a2a

(m)
1 [Da10, Da20]

−
∑

a1,a2,ι
n⩾1

σn(Aι)tpn(c0+pι−a1)−a2a
(m)
1 [Da1,n, Da20]

Applying the operators R and S we obtain our proposition. □

Corollary 4.13. LP
ω,k mod C3(LP

ω,k) is the maximal σ-invariant quotient
of nilpotent class 2 of a free Lie k-algebra with generators

{Dan | a ∈ Z+
N (p), a < c0, n ∈ Z/N0} ∪ {D0} ∪ {l

(m)
ω | 1 ⩽ m ⩽ N}

satisfying for 1 ⩽ m1, m2 ⩽ N and a ∈ Z+
N (p), the relations:

R(m1, m2) : [l(m1)
ω , l

(m2)
ω ] = 0 ,

R0(m) : [D0, l
(m)
ω ] + 1

2
∑
ι⩾0

0⩽n<N0

σn

Aι

∑
a1+a2=
c0+pι

a
(m)
1 [Da1,0, Da2,0]

 = 0 ,

Ra(m1, m2) :
∑
n⩾1
ι⩾0

σn

Aι

∑
a1+a2/pn

=c0+pι+a/pn

(
a

(m1)
1 a

(m2)
2 − a

(m2)
1 a

(m1)
2

)
[Da1,0, Da2,−n]



+ 1
2
∑
n⩾0
ι⩾0

σ−n

Aι

∑
a1+a2=

c0+pι+apn

(
a

(m1)
1 a

(m2)
2 − a

(m2)
1 a

(m1)
2

)
[Da1,0, Da2,0]

 = 0 .



712 Victor Abrashkin

Remark.
(a) If N = 1 then there is only one (Demushkin) relation R0(1), cf. [8,

10].
(b) The simplest example can be obtained by choosing c0 = (p, 0, . . . , 0),

ωp = tc0 and N0 = 1, cf. Section 5.6.
(c) The structure of ΓP

ω depends only on ω, more precisely, only on
ωp mod t(p−1)c0 , i.e. on the constants Aı with ι < (p− 2)c0/p.

(d) The structure of ΓP
ω modulo Cs(ΓP

ω ), s ⩽ p, depends only on the
constants Aι with ι < (s− 2)c0/p.

4.8. The simplest example. N = 2, N0 = 1, c0 = (p, 0), A0 = 1, all
remaining Aι = 0.

The minimal generators:

{Da | a ∈ Z+
2 (p), a < (p, 0)} ∪ {D0} ∪ {l

(1)
, l

(2)}.
The relations:

R(1, 2) : [l(1)
, l

(2)] ,

R0(1) = [D0, l
(1)] +

∑
1⩽α⩽ p−1

2
γ∈Z

α[D(α,γ), D(p−α,−γ)]

R0(2) = [D0, l
(2)] +

∑
0⩽α⩽ p−1

2
γ∈Z

γ[D(α,γ), D(p−α,−γ)]

Ra(1, 2) : [Da, a(2)l
(1) − a(1)l

(2)]− δa(1),0
∑

γ

a(2)[D(p−1,γ), D(p,a(2)−pγ)]

+ a(1)∑
n⩾1

β∈Z+(p)

β[D(p,−β), Da+(0,pnβ)]+
1
2

∑
a1+a2=
(p,0)+a

(
a

(1)
1 a

(2)
2 −a

(2)
1 a

(1)
2

)
[Da1 , Da2 ] .

5. Characteristic 0 case

In this section, K is an N -dimensional local field of characteristic 0. We
assume that the first residue field K(1) of K has characteristic p. The last
residue field k of K is isomorphic to FpN0 , N0 ∈ N. We also fix a system of
local parameters π = {π1, . . . , πN} of K, denote by v1 the first valuation
of K such that v1(p) = 1 and by O1

K the corresponding valuation ring.
Starting Section 5.2 we assume that K contains a primitive p-th root of
unity ζ1.

5.1. The field-of-norms functor. N -dimensional local fields are special
cases of (N − 1)-big fields used by Scholl [28] to construct a higher dimen-
sional analogue of the Fontaine–Wintenberger field-of-norms functor, [33].
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We can apply this construction to the case of higher local fields due to the
fact that the structure of an N -dimensional field is uniquely extended to
its finite field extensions. We don’t use here the construction of the field-of-
norms functor from [6]: it is based on essentially close ideas but works in the
category of higher local fields with additional structure given by “subfields
of constants” (because the whole theory in [6] is based only on the concept
of ramification for higher local fields).

Let Kalg be an algebraic closure of K. Denote by the same symbol a
unique extension of the valuation v1 to Kalg. For any 0 < c ⩽ 1, let pc =
{x ∈ Kalg | v1(x) ⩾ c}. If L is a field extension of K in Kalg, we use the
simpler notation O1

L/pc instead of O1
L/(pc ∩O1

L).
An increasing fields tower K• = (Kn)n⩾0, where K0 = K, is strictly

deeply ramified (SDR) with parameters (n0, c), if for n ⩾ n0, we have
[Kn+1 : Kn] = pN and there is a surjective map Ω1

O1
Fn+1

/O1
Fn

→ (O1
Fn+1

/pc)N

or, equivalently, the p-th power map induces epimorphic maps
i1
n(K•) : O1

Kn+1/pc −→ O1
Kn

/pc.

This implies that for all n ⩾ n0, the last residue fields K
(N)
n are the same

and there are systems of local parameters {πn1, . . . , πnN} in Kn such that
for all 1 ⩽ m ⩽ N , πp

n+1,m ≡ πnm mod pc, where πm = π0m. Equivalently,
on the level of the N -valuation rings OKn , the p-th power map induces
epimorphic maps
(5.1) in(K•) : OKn+1/pc −→ OKn/pc.

Let O = lim←−n
OKn/pc. Then O is an integral domain and we can intro-

duce the field of fractions K of O. The field-of-norms functor X associates
to the SDR tower K• the field K = X(K•). This field has characteristic p,
it inherits a structure of N -dimensional local field such that the elements
tm := lim←−n

πnm, 1 ⩽ m ⩽ N , form a system of local parameters in K.
Then the N -dimensional valuation ring OK of K coincides with O, and
for n ⩾ n0, the last residue fields of K and Kn coincide. Since the iden-
tification OK = lim←−OKn/pc relates the appropriate power series in given
systems of local parameters the field-of-norms functor is compatible with
P-topological structures on the fields Kn and K.

Suppose L is a finite extension of K in Kalg. Then the tower L• =
(LKn)n⩾0 is again SDR and X(L•) = L is a separable extension of K of
degree [LKn : Kn], where n≫ 0. The extension L/K is Galois if and only
if for n≫ 0, LKn/Kn is Galois. From the definition of L and K it follows
that we have a natural identification of groups Gal(L/K) = Gal(LKn/Kn).
As a result, X(Kalg) := lim−→L

X(L•) is a separable closure Ksep of K and
the functor X identifies Gal(Ksep/K) with Gal(Kalg/K∞

• ), where K∞
• =

lim−→n
Kn.
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Similarly to the classical 1-dimensional situation there is the following
interpretation of the functor X. Let Cp(N) be the v1-adic completion of
Kalg and let R0(N) = lim←−n⩾0 Cp(N) with respect to the p-th power maps on
Cp(N). The operations on R0(N) are defined as follows: if a = {an}n⩾0 and
b = {bn}n⩾0 belong to R0(N) then ab = {anbn}n⩾0 and a + b = {cn}n⩾0,
where cn = limm→∞(an+m + bn+m)pm . So, R0(N) is a field of characteristic
p, there is a natural embedding Ksep ⊂ R0(N), and R0(N) appears as the
completion of Ksep with respect to the first valuation.

We denote by R(N) ⊂ R0(N) the completion of the N -valuation ring of
Ksep, and let mR(N) be the maximal ideal of R(N). Clearly,

R(N) = lim←−
n⩾0
OCp(N) = lim←−

n⩾0
OKalg

/p .

Note that the P-topology on K is uniquely extended to R0(N) and this
extension coincides with the extension of the P-topological structure of K
to R0(N) (as the completion of the P-topology on Ksep).

5.2. Suppose u ∈ N and ϕ1, . . . , ϕu ∈ mK \ {0} are independent modulo
p-th powers, i.e. for any n1, . . . , nu ∈ Z, the product ϕn1

1 . . . ϕnu
u ∈ K∗p iff

all ni ≡ 0 mod p. Let Kϕ =
⋃

n⩾0 K(ϕ1n, . . . , ϕun), where for 1 ⩽ i ⩽ u,
ϕi = ϕi0 and for all n ∈ N, ϕi,n−1 = ϕp

in.
For n ∈ N, let ζn+1 ∈ Kalg be such that ζp

n+1 = ζn. Here ζ1 ∈ K is our
given p-th primitive root of unity. Let K̃ϕ = Kϕ({ζn |n ∈ N}). Then K̃ϕ/K
is normal and let Γϕ be its Galois group.

Lemma 5.1. If Γϕ
<p is the maximal quotient of Γϕ of period p and nilpotent

class < p then there is a natural exact sequence of groups

Gal(K̃ϕ/Kϕ) −→ Γϕ
<p −→ Gal(K(ϕ11, . . . , ϕu1)/K) −→ 1 .

Proof. Clearly, ΓK̃ϕ/K = ⟨σ, τ1, . . . , τu⟩, where for any 1 ⩽ i, m ⩽ u and
some s0 ∈ Z, σζn = ζ1+ps0

n , σϕin = ϕin, τm(ζn) = ζn, τm(ϕin) = ϕinζδmi
n ,

and σ−1τmσ = τ
(1+ps0)−1
m .

Therefore, (Γϕ)p = ⟨σp, τp
1 , . . . , τp

u⟩ and for the subgroup of second com-
mutators we have C2(Γϕ) ⊂ ⟨τp

1 , . . . , τp
u⟩ ⊂ (Γϕ)p. As a result, it holds

(Γϕ)pCp(Γϕ) = ⟨σp, τp
1 , . . . , τp

u⟩ and the lemma is proved. □

We are going to apply the above lemma to our field K and the set of local
parameters π = {π1, . . . , πn}. The lemma provides us with the field exten-
sions K̃π ⊃ Kπ ⊃ K. Let Γ<p := Γ/ΓpCp(Γ) and ΓKπ = Gal(Kalg/Kπ).
The embedding ΓKπ ⊂ Γ induces a continuous homomorphism ιπ : ΓKπ →
Γ<p. Denote by κπ the natural surjection

Γ<p −→ Gal(K( p
√

π1, . . . , p
√

πN )/K) =
∏

1⩽m⩽N

⟨τm⟩Z/p
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where τm( p
√

πi) = p
√

πiζ
δim
1 .

Proposition 5.2. The following sequence of profinite groups

ΓKπ
ιπ

−→ Γ<p
κπ

−→
∏

1⩽m⩽N

⟨τm⟩Z/p −→ 1

is exact.

Proof. Note that the elements of the group ΓK̃π = Gal(Kalg/K̃π) together
with a lift σ̂ ∈ ΓKπ of σ generate the group ΓKπ . Now the exact sequence
from Lemma 5.1 implies that Ker κπ is generated by σ̂ and the image of
ΓK̃π ⊂ ΓKπ . As a result, this kernel coincides with the image of ΓKπ in
Γ<p. □

Let R(N) be the ring from Section 5.1. Recall, there is a natural em-
bedding k ⊂ R and for 1 ⩽ m ⩽ N , tm := lim←−n

{πmn}n⩾0 ∈ R(N), where
πm0 = πm and πp

m,n+1 = πmn.
Following Section 2.3 set t = (t1, . . . , tN ) and K = k((t)). Then K is a

closed subfield of R0(N) = Frac R(N) with a system of local parameters t.
The tower Kπ

• = {K(π1n, . . . , πNn)}n⩾0 is SDR and Kπ = Kπ ∞
• . Therefore,

the field-of-norms functor X from Section 5.1 identifies X(Kπ
• ) with K

and R0(N) with the completion of Ksep. In particular, there is a natural
inclusion Γ → Aut R0(N) which induces the identification of the groups
G = Gal(Ksep/K) and ΓKπ .

We are going to apply below the results of the previous sections and will
use the appropriate notation related to our field K, e.g. G<p = Gal(K<p/K),
where K<p = KGpCp(G)

sep . The field-of-norms identification G ≃ ΓKπ com-
posed with the morphism ιπ from Proposition 5.2 induces a group homo-
morphism ιπ

<p : G<p → Γ<p and we obtain the following property.

Proposition 5.3. The following sequence of profinite groups is exact

G<p

ιπ
<p−→ Γ<p

j−→
∏

1⩽m⩽N

⟨τm⟩Z/p −→ 1 .

5.3. Isomorphism κ<p. Let c1 ∈ ZN
>0 be such that p = πc1

u, where

u ∈ O∗
K (as earlier, πc1 = π

c1
1

1 . . . π
c1

N
N with c1 = (c1

1, . . . , c1
N )).

Set c0 = pc1/(p−1). Note that c0 ∈ ZN
>0, because ζ1 ∈ K, ζ1−1 ∈ πc2O∗

K

with c2 ∈ ZN
>0 and (p− 1)c2 = c1.

Consider the auxiliary Lie algebraM<p from Section 4.4 and its analogue

MR0(N) =
( ∑

1⩽s<p

t−sc0
Lc0(s)mR(N)

)
⊗R(N)/t(p−1)c0

.
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Clearly, f ∈ LR0(N) and f ⊗ 1 ∈ MR0(N). (Recall that π = πf (e) : G ≃
G(L).)

Consider a v1
K-continuous embedding η of the field K into R0(N) such

that the image of (idL ⊗ η)e in MR0(N) coincides with e⊗ 1.
Such field embedding satisfies η|k = id and is uniquely determined by

a choice of the elements η(tm) ∈ R(N)0, where 1 ⩽ m ⩽ N , such that
η(tm) ≡ tm mod t(p−1)c0mR(N).

Proposition 5.4. There is a unique lift η of η to K(p) such that
(idL ⊗ η)f ⊗ 1 = f ⊗ 1 .

Proof. Let η̂ be an extension of η to Ksep. Clearly, σ((idL ⊗ η̂)f ⊗ 1) =
(e⊗ 1) ◦ ((idL ⊗ η̂)f ⊗ 1). So,

(−(f ⊗ 1)) ◦ ((idL ⊗ η̂)f ⊗ 1) ∈MR0(N)|σ=id = L .

In other words, there is l ∈ L such that for g = π−1(l), it holds
(idL ⊗ η̂)f ⊗ 1 = (f ⊗ 1) ◦ l = g(f)⊗ 1 .

As a result, we can take η = η̂ ·g−1. The uniqueness of η is obvious because
any two such lifts differ by an element of G but G acts strictly on f ⊗1. □

Let ε = (ζn mod p)n⩾0 ∈ R ⊂ R(N) be Fontaine’s element (here ζ1 ∈ K
is our p-th root of unity and for all n, ζp

n = ζn−1).
Let ζ1 = 1 + πc2 ∑

ι⩾0[βι]πι, where all [βι] are the Teichmuller represen-
tatives of βι ∈ k and β0 ̸= 0. Here πc2OK = (ζ1 − 1)OK = p1/(p−1)OK , i.e.
pc2 = c0.

Consider the identification of rings R(N)/tc1 ≃ OKalg
/p, coming from

the projection R(N) = lim←−n⩾0(OKalg
)n to (OKalg

)0 mod p. This implies
σ−1ε ≡ 1 +

∑
ı⩾0 βıt

c2+ı mod tc1
R(N) and, therefore,

ε ≡ 1 +
∑
ı⩾0

βp
ı tc0+pı mod t(p−1)c0

R(N) .

Assume the morphisms h
(m)
ω ∈ AutK from Section 4.1 are determined

by ω such that E(ωp) = 1 +
∑

ι⩾0 βp
ι tc0+pι, i.e. for all ι, Aι(ω) = βp

ι . As a
result, for any m, τm(t) ≡ h

(m)
ω (t) mod t(p−1)c0mR(N).

Suppose τ ∈ Γ (recall that Γ ⊂ Aut R0(N)). Then for some integers
m1, . . . , mN , we have the following congruence modulo t(p−1)c0mR(N)

τ(t) = {t1εm1 , . . . , tN εmN } ≡ {h(1)m1
ω (t1), . . . , h(N)mN

ω (tN )} .

Let hτ = h
(1)m1
ω . . . h

(N)mN
ω ∈ Aut K. Then (use Proposition 4.1)

τ |K(t) ≡ hτ (t) mod t(p−1)c0mR(N) .
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This means that η := τ−1|K · hτ : K → R0(N) satisfies the assumption
of Proposition 5.4 and we can consider the corresponding lift η : K(p) →
R0(N). Let η̂ be a lift of η to Ksep.

Set hτ := (τ · η̂)|K(p).
Then hτ |K = (τ · η̂)|K = hτ and by Galois theory hτ ∈ Γω ⊂ AutK(p).
As a result, we obtained the map (of sets) κ : Γ → Γω uniquely charac-

terized by the property (idL ⊗ τ)f = (idL ⊗ κ(τ))f .
Proposition 5.5. κ induces a group isomorphism κ<p : Γ<p → Γω.

Proof. Suppose τ1, τ ∈ Γ. Let C ∈ LK and A ∈ AutL be such that (idL ⊗
κ(τ))f = C ◦ (A⊗ idK(p))f . Then

(idL ⊗ κ(τ1τ))f = (idL ⊗ τ1τ)f = (idL ⊗ τ1)(idL ⊗ τ)f
= (idL ⊗ τ1)(idL ⊗ κ(τ))f = (idL ⊗ τ1)(C ◦ (A⊗ idK(p))f)
= (idL ⊗ τ1)C ◦ (A⊗ τ1)f = (idL ⊗ κ(τ1))C ◦ (A⊗ idK(p))(idL ⊗ τ1)f
= (idL ⊗ κ(τ1))C ◦ (A⊗ idK(p))(idL⊗κ(τ1))f
= (idL ⊗ κ(τ1))(C ◦ (A⊗ idK(p))f
= (idL ⊗ κ(τ1))(idL ⊗ κ(τ))f = (idL ⊗ κ(τ1)κ(τ))f

and, therefore, κ(τ1τ) = κ(τ1)κ(τ) (use that Γω acts strictly on the orbit
of f). In particular, κ factors through the natural projection Γ→ Γ<p and
defines the group homomorphism κ<p : Γ<p → Γω.

Recall that we have the identification of ΓKπ = Gal(Kalg/Kπ) with
G = Gal(Ksep/K) and, therefore, κ<p identifies the groups κ(ΓKπ ) and
G(L) ⊂ Γω. Besides, κ<p induces a group isomorphism of the group
Gal(K(π11, . . . , π1N )/K) = ⟨τ1⟩Z/p × · · · × ⟨τm⟩Z/p and the quotient
⟨h(1)

ω ⟩Z/p × · · · × ⟨h(N)
ω ⟩Z/p of Γω. Now Proposition 5.3 implies that κ<p

is a group isomorphism. □

5.4. Groups ΓP
<p. Consider the group isomorphism κ<p : Γ<p → Γω from

Section 5.3.
Definition. clP Γ<p is the class of conjugated subgroups in Γ<p containing
ΓP

<p := κ−1(ΓP
ω ).

This definition involves a choice of local parameters in K.
Proposition 5.6. The class clP Γ<p does not depend on a choice of a
system of local parameters in K.
Proof. Let π = {π1, . . . , πN} and π′ = {π′

1, . . . , π′
1N} be two systems of local

parameters in K. Let Kπ
1 = K(π11, . . . , π1N ) and Kπ′

1 = K(π′
11, . . . , π′

1N ),
where (as earlier) for all m, πp

1m = πm and π′p
1m = π′

m. Denote by K(1) the
composite of Kπ

1 and Kπ′
1 .
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Consider the SDR-towers Kπ
• and Kπ′

• , the fields-of-norms K = X(Kπ
• )

and K′ = X(Kπ′
• ) with the corresponding systems of local parameters t =

{t1, . . . , tN} and t′ = {t′
1, . . . , t′

N}.
Then we have the appropriate field extensions

K ⊂ K(1) ⊂ K(p) ⊂ K<p ⊂ R0(N)

K′ ⊂ K′(1) ⊂ K′(p) ⊂ K′
<p ⊂ R0(N)

where K(1) = X(K(1)Kπ
• ), K′(1) = X(K(1)Kπ′

• ), the fields K<p and K(p)
were defined earlier, K′

<p and K′(p) are their analogs if K is replaced by K′.
The exact sequence from Section 4.5

1 −→ G −→ Γω −→ Hω −→ 1 ,

with Hω :=
∏

1⩽m⩽N ⟨h
(m)
ω ⟩/⟨h(m)p

ω ⟩, gives rise to the exact sequence

(5.2) 1 −→ G(1) −→ Γω −→ Gal(K(1)/K)×Hω −→ 1 ,

where G(1) = Gal(K(p)/K(1)). We have a similar sequence for K′

(5.3) 1 −→ G′(1) −→ Γ′
ω′ −→ Gal(K′(1)/K′)×H ′

ω′ −→ 1 ,

where H ′
ω′ is an analog of Hω. The isomorphisms κ<p : Γω ≃ Γ<p and

κ′
<p : Γ′

ω′ ≃ Γ<p induce the isomorphisms

(5.4)
Gal(K(1)/K) ≃ Gal(K(1)/K)×Hω ≃ Gal(K′(1)/K′)×H ′

ω′ ,

Gal(K<p/K(1)) ≃ G(1) ≃ G′(1)
.

We want to study relation between the P-structures on G(1) and G′(1) (in-
duced from G and G′).

Recall, cf. Section 4.4, there is a Lie algebra

M =
(∑

s

t−sc0mKLc0(s)
)
⊗OK/t(p−1)c0

and its analogueMK(p), where K is replaced by K(p). There are e⊗1 ∈M
and f⊗1 ∈MK(p) such that σ(f⊗1) = (e⊗1)◦(f⊗1) and the identification
πf (e) : G ≃ G(L) is given by τ 7→ (−f ⊗ 1) ◦ (τf ⊗ 1).

The algebra LP (as well as the group GP) is defined in terms of the P-
topological structure on M coming from the corresponding structures on
OK/t(p−1)c0 and L. Note that L is the image of L and the P-topology on
L is induced from L/C2(L) = Hom(K,Fp). Therefore, the P-structure on
L comes from

L/C2(L) = Hom(t−(p−1)c0mK/(σ − id)K,Fp) .
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As a result,

e⊗ 1 ∈MP =
(∑

s

t−sc0mKL
P
c0(s)

)
⊗P OK/t(p−1)c0

and πf (e)−1G(LP) = GP .
Similar construction is used to obtain (in the context of K′) that

e′ ⊗ 1 ∈M′P =
(∑

s

t′−sc′0mK′L′P
c′0(s)

)
⊗P OK′/t′(p−1)c′0

and π
f

′(e′)−1G(L′P) = G′P .

The P-subgroups GP and G′P “live in different worlds“, but the field-of-
norms functor X identifies them with subgroups in Γ<p = Gal(K<p/K).
This procedure can be specified as follows.

Let Γ<p = G(L), where L is a suitable Lie Fp-algebra. Introduce

M =
( ∑

1⩽s<p

(ζ1 − 1)−sCs(L)mK

)
⊗OK/p .

M<p =
( ∑

1⩽s<p

(ζ1 − 1)−sCs(L)mK<p

)
⊗OK<p/p .

The projection pr1 : R(N) = lim←−n⩾0(OKalg
/p)n → (OKalg

/p)1 estab-
lishes the ring isomorphism R(N)/tpc1 = R(N)/t(p−1)c0 ≃ OKalg

/p , cf.
Section 5.4 (note that Ker pr1 is generated by t(p−1)c0).

Consider the induced by pr1 isomorphism OK(p)/t(p−1)c0 ≃ OK<p/p. This
gives for each 1 ⩽ s < p, the compatible identifications of theOK(p)/t(p−1)c0-
module t−sc0mK(p)⊗OK(p)/t(p−1)c0 with OK<p/p -module (ζ1−1)−smK<p⊗
OK<p/p. In addition, the field-of-norms functor identifies the group G with
Γπ

1 = Gal(K<p/Kπ
1 ) ⊂ Γ and the Lie algebra L with the Lie subalgebra

Lπ
1 ⊂ L, where G(Lπ

1 ) = Γπ
1 . As a result, we obtain the embedding F<p :

MK(p) →M<p and the induced embedding F = F<p|M :M→M .
Set eπ = F (e ⊗ 1) and fπ = F<p(f ⊗ 1). Then σfπ = eπ ◦ fπ and the

map τ 7→ (−fπ) ◦ τ(fπ) recovers the identification Γπ
1 ≃ G or, equivalently,

κπ : Lπ
1 ≃ L. (We used it earlier when constructing the isomorphism κ<p.)

The identification κπ is compatible with the P-topology.
Indeed, the P-topological structure on Lπ

1 comes (via tensor topology)
from Lπ

1 /C2(Lπ
1 ) = Hom(p−1mK/(σ − id)K,Fp) and the field-of-norms

identification of p−1mK/(σ − id)K with t−(p−1)c0mK/(σ − id)K.
Repeating the above argiments in the context of the system of parameters

π′ we obtain the P-continuous identification κπ′ : Lπ′
1 ≃ L′.
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Let G(1) = G(L(1)) and G′(1) = G(L′(1)). Then isomorphism (5.4) ap-
pears as compatible with P-structures isomorphisms L(1) ≃ L(1) ≃ L′(1).
Therefore, the conjugacy classes of (κπ)−1L(1)P and (κπ′)−1L′(1)P coincide.

Finally, applying the interpretation from Section 3.6 we obtain from ex-
act sequences (5.2) and (5.3) that the conjugate classes of κ<p(ΓP

ω ) and
κ′

<p(Γ′P
ω′ ) coincide. □

As a result, ΓP
<p is provided with the P-topology induced from the sub-

group GP and this topology does not depend on a choice of such subgroup
(i.e. on the choice of local parameters in K).

For any (local N -dimensional) subfield K ⊂ K ′ ⊂ K<p, set HP = H ∩
ΓP

<p, where H = Gal(K<p/K ′). As earlier (in the case of local fields of
characteristic p), we easily obtain the following property.

Corollary 5.7.
(a) The profinite completion of HP is H;
(b) (Γ<p : H) = (ΓP

<p : HP) = [K ′ : K];
(c) for all subfields K ′, the subgroups HP of ΓP

<p can be characterized
as all P-open subgroups of finite index in ΓP

<p.

5.5. Explicit structure of ΓP
<p. Recall that K is an N -dimensional local

field, with the first residue field of characteristic p and the last residue field
k ≃ FpN0 . Review the above results about Γ<p.

Suppose π = {π1, . . . , πN} is a system of local parameters in K and
ζ1 ∈ K is a primitive p-th root of unity. Then

ζ1 = E

(∑
ι⩾0

[βι]πc2+ι

)
,

where E(X) ∈ Zp[[X]] is the Artin–Hasse exponential, all ι ∈ ZN
⩾0, [βι]

are the Teichmuller representatives of βι ∈ k, β0 ̸= 0. (Recall that πc2 :=
πc1

1 . . . πcN
N , where c2 = (c1, . . . , cN ).)

Associate with K the topological Fp-algebra LP as follows.
Consider an N -dimensional local field K of characteristic p with finite

residue field k ≃ FpN0 . Then we have the topological module KPD :=
HomP-cont(K/(σ− id)K,Fp), which generate the “maximal” Fp-Lie algebra
LP of nilpotent class < p, i.e. the quotient of a free Lie algebra with the
module of generators KPD by the ideal of p-th commutators. (Note that LP

appears as the projective limit of “maximal” Lie algebras LCα
(of nilpotent

class < p) generated by the elements of open subsets C
D
α ⊂ M.) If t =

{t1, . . . , tN} is a system of local parameters in K then LP
k is provided with
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a natural system of P-topological generators {Dan | a ∈ Z+
N (p), n ∈ Z/N0}∪

{D0}. Recall that

Z+
N (p) = {a ∈ ZN

>0 | gcd(a, p) = 1} ,Z0
N (p) = Z+(p) ∪ {0} .

Let c0 = pc2 and introduce the weight function wt on LP by setting
wt(Dan) = s if (s− 1)c0 ⩽ a < sc0, wt(D0) = 1. Let LP

k (p) be the ideal in
LP

k of elements of weight ⩾ p, Lk = Lk/L(p). Let σ be the Frobenius auto-
morphism on k and denote by the same symbol the σ-linear automorphism
of Lk such that Dan 7→ Da,n+1, D0 7→ D0. (We also set D0n = σn(α0)D0,
where α0 is a fixed element from W (k) ⊂ K with absolute trace 1.)

Let LP = LP
k /LP

k (p)|σ=id with induced P-topological structure.
Introduce the Lie Fp-algebra L♭ as the maximal algebra of nilpotent class

< p containing L and the generators {l(m) | 1 ⩽ m ⩽ N}. Introduce the
ideal of relations R♭

k in L♭
k as follows.

Specify recurrent relation (4.9) to our situation:

(5.5) σc
(m)
1 − c

(m)
1 +

∑
a∈Z0

N (p)
t−aV

(m)
a 0

= −
∑
ι⩾0

βp
ι

∑
1⩽k<p

1
k! t−(a1+···+ak)+pιa

(m)
1 [. . . [Da10, Da20], . . . , Dak0]

−
∑

2⩽k<p

1
k! t

−(a1+···+ak)[. . . [V (m)
a10 , Da20], . . . , Dak0]

−
∑

1⩽k<p

1
k! t−(a1+···+ak)[. . . [σc

(m)
1 , Da10], . . . , Dak0]

(the indices a1, . . . , ak in all above sums run over Z0
N (p)). Recall that c

(m)
1 ∈

LP
K and Va0 ∈ L

P
k . Then the ideal R♭

k ⊂ L♭
k is generated by the following

elements:
(1) [Dan, l

(m)]− σn(V (m)
a0 ), a ∈ Z0

N (p);
(2) [l(i), l

(j)] − l[i, j], where l[i, j] ∈ L is given in notation of Corol-
lary 4.11

l[i, j] = ad(i)(c(j)
1 (0))− ad(j)(c(i)

1 (0)) +
∑

ι∈ZN

[c(i)
1 (ι), c

(j)
1 (−ι)] .

Let Lk = L♭
k/R♭

k and L = Lk|σ=id.

Remark. Taking another solutions

{c(m)
1 , V

(m)
a0 | a ∈ Z0

N (p), 1 ⩽ m ⩽ N}

of (5.5) is equivalent to replacing the generators l
(m) modulo LP .
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Summarizing the above results we state the following theorem.

Theorem 5.8.
(a) ΓP

<p ≃ G(LP);
(b) Γ<p is the profinite completion of G(LP).

5.6. Simplest example. The above description of Γ<p essentially uses
the equivalence of the category of p-groups and Fp-Lie algebras (there is
no operation of extension of scalars in the category of p-groups). It could
be also verified that the study of involved p-groups at the level of their
Lie algebras gives much simpler form of the corresponding relations. At the
same time the above presentation of LP as the quotient of L♭ by appropriate
relations is not the simplest one. Some relations, e.g. [Dan, l

(m)]−Van with
a > c0 can be used to exclude extra generators Dan with a > c0. Ideally,
the whole description should be done in terms of, say, the minimal system
of generators {Dan | a < c0} ∪ {l(m) | 1 ⩽ m ⩽ N}. This was done in
Section 4.7 where we presented our description modulo third commutators.

In the case of the last residue field k ≃ Fp we do not need the operation
of extension of scalars and can express the answer directly in terms of
groups. This will not give any simplifications, but can be easily obtained
when working modulo third commutators.

Namely, if k ≃ Fp then ΓP
<p mod C3(ΓP

<p) appears as the group with
P-topological generators

{τa | a ∈ Z0
N (p), a < c0} ∪ {h(m) | 1 ⩽ m ⩽ N}

and the subgroup of relations generated (as normal subgroup) by following
relations:

• R(i, j) = (h(i)
, h

(j)), here 1 ⩽ i < j ⩽ N ;
• R0(m) = (τ0, h

(m))
∏
ι⩾0

∏
b+c=
c0+pι

(τb, τc)b(m)βι/2 ;

• Ra(i, j) =
(
τa, h

(i)a(j)
/h

(j)a(i)) ∏
n⩾1
ι⩾0

∏
b+c/pn=

c0+pι+a/pn

(τb, τc)(b(i)c(j)−b(j)c(i))βι

×
∏
n⩾0
ι⩾0

∏
b+c=

c0+pι+apn

(τb, τc)(b(i)c(j)−b(j)c(i))βι/2 ;

here 1 ⩽ m ⩽ N , 1 ⩽ i < j ⩽ N , a ∈ Z+
N (p).

The above example could be simplified if we take 2-dimensional K =
Qp(ζ1){{π2}} with the system of local parameters π = {π1, π2}, where
E(π1) = ζ1. In this case c0 = (p, 0), β0 = 1 and all remaining βι = 0.
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We have the system of minimal generators

{τa | a ∈ Z+
2 (p), a < (p, 0)} ∪ {τ0} ∪ {h

(1)
, h

(2)}
and the following relations:

• R(1, 2) = (h(1)
, h

(2));
• R0(1) = (τ0, h

(1))
∏

1⩽α⩽ p−1
2

∏
γ

(τ(α,γ), τ(p−α,−γ))α

• R0(2) = (τ0, h
(2))

∏
1⩽α⩽ p−1

2

∏
γ

(τ(α,γ), τ(p−α,−γ))γ

• Ra(1, 2) : (τa, h
(1)a(2)

/h
(2)a(1)

)×
∏
γ

(τ(p−1,γ), τ(p,a(2)−pγ))
−a(2)δ0,a(1)

×
∏

n⩾1,β

(τ(p,−β), τa+(0,pnβ))a(1)β ×
∏

b+c=
(p,0)+a

(τb, τc)(b(1)c(2)−b(2)c(1))/2 .
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