Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 661-670.

Nous montrons qu’il existe des bornes polynomiales pour la torsion des courbes elliptiques qui proviennent d’une classe d’isogénie géométrique fixe. Plus précisément, si E 0 est une courbe elliptique définie sur un corps de nombres F 0 , alors pour chaque ϵ>0 il existe des constantes c ϵ :=c ϵ (E 0 ,F 0 ) et C ϵ :=C ϵ (E 0 ,F 0 )>0 telles que pour toute courbe elliptique E /F géométriquement isogène à E 0 , si E(F) a un point d’ordre N alors

Nc ϵ ·[F:] 1/2+ϵ ,

et on a aussi

#E(F)[tors]C ϵ ·[F:] 1+ϵ .

We show there exist polynomial bounds on torsion of elliptic curves which come from a fixed geometric isogeny class. More precisely, for an elliptic curve E 0 defined over a number field F 0 , for each ϵ>0 there exist constants c ϵ :=c ϵ (E 0 ,F 0 ),C ϵ :=C ϵ (E 0 ,F 0 )>0 such that for any elliptic curve E /F geometrically isogenous to E 0 , if E(F) has a point of order N then

Nc ϵ ·[F:] 1/2+ϵ ,

and one also has

#E(F)[tors]C ϵ ·[F:] 1+ϵ .

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1292
Classification : 11G05
Mots clés : Elliptic curve, Galois representation, isogeny, torsion subgroup
Tyler Genao 1

1 Department of Mathematics The Ohio State University 231 W. 18th Ave., Columbus, OH 43210, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_661_0,
     author = {Tyler Genao},
     title = {Polynomial {Bounds} on {Torsion} {From} a {Fixed} {Geometric} {Isogeny} {Class} of {Elliptic} {Curves}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {661--670},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     year = {2024},
     doi = {10.5802/jtnb.1292},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/}
}
TY  - JOUR
AU  - Tyler Genao
TI  - Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 661
EP  - 670
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/
DO  - 10.5802/jtnb.1292
LA  - en
ID  - JTNB_2024__36_2_661_0
ER  - 
%0 Journal Article
%A Tyler Genao
%T Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 661-670
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/
%R 10.5802/jtnb.1292
%G en
%F JTNB_2024__36_2_661_0
Tyler Genao. Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 661-670. doi : 10.5802/jtnb.1292. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/

[1] Abbey Bourdon; Pete L. Clark Torsion points and Galois representations on CM elliptic curves, Pac. J. Math., Volume 305 (2020) no. 1, pp. 43-88 | DOI | Zbl

[2] Abbey Bourdon; Filip Najman Sporadic points of odd degree on X 1 (N) coming from -curves (2021) | arXiv

[3] Pete L. Clark; Brian Cook; James Stankewicz Torsion points on elliptic curves with complex multiplication (with an appendix by Alex Rice), Int. J. Number Theory, Volume 9 (2013) no. 2, pp. 447-479 | DOI | Zbl

[4] Pete L. Clark; Tyler Genao; Paul Pollack; Frederick Saia The least degree of a CM point on a modular curve, J. Lond. Math. Soc., Volume 105 (2022) no. 2, pp. 825-883 | DOI | Zbl

[5] Pete L. Clark; Paul Pollack The truth about torsion in the CM case, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 8, pp. 683-688 | DOI | Zbl

[6] Pete L. Clark; Paul Pollack Pursuing polynomial bounds on torsion, Isr. J. Math., Volume 227 (2018) no. 2, pp. 889-909 | DOI | Zbl

[7] Maarten Derickx; Anastassia Etropolski; Mark van Hoeij; Jackson S. Morrow; David Zureick-Brown Sporadic cubic torsion, Algebra Number Theory, Volume 15 (2021) no. 7, pp. 1837-1864 | DOI | Zbl

[8] Helge Glöckner Haar measure on linear groups over local skew fields, J. Lie Theory, Volume 6 (1996) no. 2, pp. 165-177 | Zbl

[9] Ralph Greenberg The image of Galois representations attached to elliptic curves with an isogeny, Am. J. Math., Volume 134 (2012) no. 5, pp. 1167-1196 | DOI | Zbl

[10] Godfrey H. Hardy; Edward M. Wright An introduction to the theory of numbers, Oxford University Press, 2008 | DOI

[11] Marc Hindry; Joseph Silverman Sur le nombre de points de torsion rationnels sur une courbe elliptique, C. R. Acad. Sci. Paris, Volume 329 (1999) no. 2, pp. 97-100 | DOI | Zbl

[12] Sheldon Kamienny Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math., Volume 109 (1992) no. 2, pp. 221-229 | DOI | Zbl

[13] Sheldon Kamienny Torsion points on elliptic curves over fields of higher degree, Int. Math. Res. Not., Volume 1992 (1992) no. 6, pp. 129-133 | DOI | Zbl

[14] M. A. Kẹnku; Fumiyuki Momose Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., Volume 109 (1988), pp. 125-149 | DOI | Zbl

[15] Samuel Le Fourn; Filip Najman Torsion of -curves over quadratic fields, Math. Res. Lett., Volume 27 (2020) no. 1, pp. 209-225 | DOI | Zbl

[16] Barry Mazur Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | DOI | Numdam | Zbl

[17] Loïc Merel Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | Zbl

[18] James S. Milne Fields and Galois theory (v5.10, course notes, https://www.jmilne.org/math/CourseNotes/FT.pdf)

[19] Pierre Parent Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, J. Reine Angew. Math., Volume 506 (1999), pp. 85-116 | DOI | Zbl

[20] Jean-Pierre Serre Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | DOI | Zbl

[21] David Zywina Explicit open images for elliptic curves over (2022) | arXiv

Cité par Sources :