Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 661-670.

We show there exist polynomial bounds on torsion of elliptic curves which come from a fixed geometric isogeny class. More precisely, for an elliptic curve E0 defined over a number field F0, for each ϵ>0 there exist constants cϵ:=cϵ(E0,F0),Cϵ:=Cϵ(E0,F0)>0 such that for any elliptic curve E/F geometrically isogenous to E0, if E(F) has a point of order N then

Ncϵ·[F:]1/2+ϵ,

and one also has

#E(F)[tors]Cϵ·[F:]1+ϵ.

Nous montrons qu’il existe des bornes polynomiales pour la torsion des courbes elliptiques qui proviennent d’une classe d’isogénie géométrique fixe. Plus précisément, si E0 est une courbe elliptique définie sur un corps de nombres F0, alors pour chaque ϵ>0 il existe des constantes cϵ:=cϵ(E0,F0) et Cϵ:=Cϵ(E0,F0)>0 telles que pour toute courbe elliptique E/F géométriquement isogène à E0, si E(F) a un point d’ordre N alors

Ncϵ·[F:]1/2+ϵ,

et on a aussi

#E(F)[tors]Cϵ·[F:]1+ϵ.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1292
Classification : 11G05
Mots-clés : Elliptic curve, Galois representation, isogeny, torsion subgroup

Tyler Genao 1

1 Department of Mathematics The Ohio State University 231 W. 18th Ave., Columbus, OH 43210, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_661_0,
     author = {Tyler Genao},
     title = {Polynomial {Bounds} on {Torsion} {From} a {Fixed} {Geometric} {Isogeny} {Class} of {Elliptic} {Curves}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {661--670},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     year = {2024},
     doi = {10.5802/jtnb.1292},
     mrnumber = {4830946},
     zbl = {07948981},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/}
}
TY  - JOUR
AU  - Tyler Genao
TI  - Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 661
EP  - 670
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/
DO  - 10.5802/jtnb.1292
LA  - en
ID  - JTNB_2024__36_2_661_0
ER  - 
%0 Journal Article
%A Tyler Genao
%T Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 661-670
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/
%R 10.5802/jtnb.1292
%G en
%F JTNB_2024__36_2_661_0
Tyler Genao. Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 661-670. doi : 10.5802/jtnb.1292. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/

[1] Abbey Bourdon; Pete L. Clark Torsion points and Galois representations on CM elliptic curves, Pac. J. Math., Volume 305 (2020) no. 1, pp. 43-88 | DOI | MR | Zbl

[2] Abbey Bourdon; Filip Najman Sporadic points of odd degree on X1(N) coming from -curves (2021) | arXiv

[3] Pete L. Clark; Brian Cook; James Stankewicz Torsion points on elliptic curves with complex multiplication (with an appendix by Alex Rice), Int. J. Number Theory, Volume 9 (2013) no. 2, pp. 447-479 | DOI | MR | Zbl

[4] Pete L. Clark; Tyler Genao; Paul Pollack; Frederick Saia The least degree of a CM point on a modular curve, J. Lond. Math. Soc., Volume 105 (2022) no. 2, pp. 825-883 | DOI | MR | Zbl

[5] Pete L. Clark; Paul Pollack The truth about torsion in the CM case, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 8, pp. 683-688 | DOI | Numdam | MR | Zbl

[6] Pete L. Clark; Paul Pollack Pursuing polynomial bounds on torsion, Isr. J. Math., Volume 227 (2018) no. 2, pp. 889-909 | DOI | MR | Zbl

[7] Maarten Derickx; Anastassia Etropolski; Mark van Hoeij; Jackson S. Morrow; David Zureick-Brown Sporadic cubic torsion, Algebra Number Theory, Volume 15 (2021) no. 7, pp. 1837-1864 | DOI | MR | Zbl

[8] Helge Glöckner Haar measure on linear groups over local skew fields, J. Lie Theory, Volume 6 (1996) no. 2, pp. 165-177 | MR | Zbl

[9] Ralph Greenberg The image of Galois representations attached to elliptic curves with an isogeny, Am. J. Math., Volume 134 (2012) no. 5, pp. 1167-1196 | DOI | MR | Zbl

[10] Godfrey H. Hardy; Edward M. Wright An introduction to the theory of numbers, Oxford University Press, 2008 | DOI | MR

[11] Marc Hindry; Joseph Silverman Sur le nombre de points de torsion rationnels sur une courbe elliptique, C. R. Acad. Sci. Paris, Volume 329 (1999) no. 2, pp. 97-100 | DOI | Zbl

[12] Sheldon Kamienny Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math., Volume 109 (1992) no. 2, pp. 221-229 | DOI | MR | Zbl

[13] Sheldon Kamienny Torsion points on elliptic curves over fields of higher degree, Int. Math. Res. Not., Volume 1992 (1992) no. 6, pp. 129-133 | DOI | MR | Zbl

[14] M. A. Kẹnku; Fumiyuki Momose Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., Volume 109 (1988), pp. 125-149 | DOI | MR | Zbl

[15] Samuel Le Fourn; Filip Najman Torsion of -curves over quadratic fields, Math. Res. Lett., Volume 27 (2020) no. 1, pp. 209-225 | DOI | MR | Zbl

[16] Barry Mazur Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | DOI | Numdam | MR | Zbl

[17] Loïc Merel Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | MR | Zbl

[18] James S. Milne Fields and Galois theory (v5.10, course notes, https://www.jmilne.org/math/CourseNotes/FT.pdf) | MR

[19] Pierre Parent Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, J. Reine Angew. Math., Volume 506 (1999), pp. 85-116 | DOI | MR | Zbl

[20] Jean-Pierre Serre Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | DOI | MR | Zbl

[21] David Zywina Explicit open images for elliptic curves over (2022) | arXiv

Cité par Sources :