Nous montrons qu’il existe des bornes polynomiales pour la torsion des courbes elliptiques qui proviennent d’une classe d’isogénie géométrique fixe. Plus précisément, si est une courbe elliptique définie sur un corps de nombres , alors pour chaque il existe des constantes et telles que pour toute courbe elliptique géométriquement isogène à , si a un point d’ordre alors
et on a aussi
We show there exist polynomial bounds on torsion of elliptic curves which come from a fixed geometric isogeny class. More precisely, for an elliptic curve defined over a number field , for each there exist constants such that for any elliptic curve geometrically isogenous to , if has a point of order then
and one also has
Révisé le :
Accepté le :
Publié le :
Mots clés : Elliptic curve, Galois representation, isogeny, torsion subgroup
@article{JTNB_2024__36_2_661_0, author = {Tyler Genao}, title = {Polynomial {Bounds} on {Torsion} {From} a {Fixed} {Geometric} {Isogeny} {Class} of {Elliptic} {Curves}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {661--670}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1292}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/} }
TY - JOUR AU - Tyler Genao TI - Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 661 EP - 670 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/ DO - 10.5802/jtnb.1292 LA - en ID - JTNB_2024__36_2_661_0 ER -
%0 Journal Article %A Tyler Genao %T Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves %J Journal de théorie des nombres de Bordeaux %D 2024 %P 661-670 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/ %R 10.5802/jtnb.1292 %G en %F JTNB_2024__36_2_661_0
Tyler Genao. Polynomial Bounds on Torsion From a Fixed Geometric Isogeny Class of Elliptic Curves. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 661-670. doi : 10.5802/jtnb.1292. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1292/
[1] Torsion points and Galois representations on CM elliptic curves, Pac. J. Math., Volume 305 (2020) no. 1, pp. 43-88 | DOI | Zbl
[2] Sporadic points of odd degree on coming from -curves (2021) | arXiv
[3] Torsion points on elliptic curves with complex multiplication (with an appendix by Alex Rice), Int. J. Number Theory, Volume 9 (2013) no. 2, pp. 447-479 | DOI | Zbl
[4] The least degree of a CM point on a modular curve, J. Lond. Math. Soc., Volume 105 (2022) no. 2, pp. 825-883 | DOI | Zbl
[5] The truth about torsion in the CM case, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 8, pp. 683-688 | DOI | Zbl
[6] Pursuing polynomial bounds on torsion, Isr. J. Math., Volume 227 (2018) no. 2, pp. 889-909 | DOI | Zbl
[7] Sporadic cubic torsion, Algebra Number Theory, Volume 15 (2021) no. 7, pp. 1837-1864 | DOI | Zbl
[8] Haar measure on linear groups over local skew fields, J. Lie Theory, Volume 6 (1996) no. 2, pp. 165-177 | Zbl
[9] The image of Galois representations attached to elliptic curves with an isogeny, Am. J. Math., Volume 134 (2012) no. 5, pp. 1167-1196 | DOI | Zbl
[10] An introduction to the theory of numbers, Oxford University Press, 2008 | DOI
[11] Sur le nombre de points de torsion rationnels sur une courbe elliptique, C. R. Acad. Sci. Paris, Volume 329 (1999) no. 2, pp. 97-100 | DOI | Zbl
[12] Torsion points on elliptic curves and -coefficients of modular forms, Invent. Math., Volume 109 (1992) no. 2, pp. 221-229 | DOI | Zbl
[13] Torsion points on elliptic curves over fields of higher degree, Int. Math. Res. Not., Volume 1992 (1992) no. 6, pp. 129-133 | DOI | Zbl
[14] Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., Volume 109 (1988), pp. 125-149 | DOI | Zbl
[15] Torsion of -curves over quadratic fields, Math. Res. Lett., Volume 27 (2020) no. 1, pp. 209-225 | DOI | Zbl
[16] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | DOI | Numdam | Zbl
[17] Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | DOI | Zbl
[18] Fields and Galois theory (v5.10, course notes, https://www.jmilne.org/math/CourseNotes/FT.pdf)
[19] Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres, J. Reine Angew. Math., Volume 506 (1999), pp. 85-116 | DOI | Zbl
[20] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | DOI | Zbl
[21] Explicit open images for elliptic curves over (2022) | arXiv
Cité par Sources :