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Polynomial Bounds on Torsion From a Fixed
Geometric Isogeny Class of Elliptic Curves

par Tyler GENAO

Résumé. Nous montrons qu’il existe des bornes polynomiales pour la torsion
des courbes elliptiques qui proviennent d’une classe d’isogénie géométrique
fixe. Plus précisément, si E0 est une courbe elliptique définie sur un corps de
nombres F0, alors pour chaque ϵ > 0 il existe des constantes cϵ := cϵ(E0, F0)
et Cϵ := Cϵ(E0, F0) > 0 telles que pour toute courbe elliptique E/F géomé-
triquement isogène à E0, si E(F ) a un point d’ordre N alors

N ≤ cϵ · [F : Q]1/2+ϵ,

et on a aussi
#E(F )[tors] ≤ Cϵ · [F : Q]1+ϵ.

Abstract. We show there exist polynomial bounds on torsion of elliptic
curves which come from a fixed geometric isogeny class. More precisely, for
an elliptic curve E0 defined over a number field F0, for each ϵ > 0 there exist
constants cϵ := cϵ(E0, F0), Cϵ := Cϵ(E0, F0) > 0 such that for any elliptic
curve E/F geometrically isogenous to E0, if E(F ) has a point of order N then

N ≤ cϵ · [F : Q]1/2+ϵ,

and one also has
#E(F )[tors] ≤ Cϵ · [F : Q]1+ϵ.

1. Introduction
For an elliptic curve E defined over a number field F , the Mordell–Weil

theorem states that the abelian group E(F ) of F -rational points on E is
finitely generated. One consequence of this is that its torsion subgroup
E(F )[tors] is finite. In fact, a celebrated result of Merel [17, Corollaire]
showed that the size #E(F )[tors] is uniformly bounded in the degree of F ;
more precisely, for each integer d ∈ Z+ there exists a bound B(d) on torsion
subgroup sizes #E(F )[tors] over all elliptic curves E/F where [F : Q] = d.
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Sharp values of B(d) are only known for d ≤ 3, via a complete classifica-
tion of torsion groups of elliptic curves [7, 12, 13, 14, 16]. However, Merel [17]
gave an explicit upper bound on prime power divisors of #E(F )[tors] in
terms of d, which was later strengthened by Parent [19, Corollaire 1.8]: if
pn | #E(F )[tors] then pn ≤ 129(5d−1)(3d)6. This gives bounds B(d) which
are larger than exponential in the degree d.

It is a folklore conjecture that there exist polynomial bounds on torsion
groups of elliptic curves over number fields. More precisely:

Conjecture 1 ([3]). There exist constants C,α > 0 such that for all elliptic
curves E/F one has #E(F )[tors] ≤ C · [F : Q]α.

Parent’s bounds above [19] are more than an exponential factor away
from this conjecture. However, several results in the literature support this
conjecture once we restrict certain parameters of our elliptic curves. For
example, for any elliptic curve E/F with integral j-invariant, Hindry and
Silverman have shown that #E(F )[tors] ≤ 1977408 ·d log(d) when d := [F :
Q] > 1 [11, Théorème 1]. In a stricter case, if E has complex multiplication
(CM) then Clark and Pollack have shown that #E(F )[tors] ≤ C ·d log log d
when d > 2, where C ∈ Z+ is some absolute, effectively computable con-
stant [5, Theorem 1].

There are also polynomial bounds for elliptic curves with rational j-
invariant: Clark and Pollack have shown that for each ϵ > 0 there exists
a constant Cϵ > 0 such that for any elliptic curve E/F whose j-invariant
j(E) ∈ Q, one has that the exponent1 expE(F )[tors] ≤ Cϵ · [F : Q]3/2+ϵ,
and thus #E(F )[tors] ≤ Cϵ · [F : Q]5/2+ϵ [6, Theorem 1.3]. An identical
result holds when one assumes the Generalized Riemann Hypothesis (GRH)
and replaces Q with a number field F0 which contains no Hilbert class field
of any imaginary quadratic field [6, Theorem 1.6].

The principal result of this paper constructs polynomial bounds on or-
ders of torsion points (and thus torsion groups) of non-CM elliptic curves
E/F within a fixed geometric isogeny class. Recall that an isogeny between
elliptic curves E and E′ is a nonconstant algebraic map ϕ : E → E′ which
preserves basepoints. We say that ϕ is F -rational if E, E′ and ϕ are defined
over F . As an adjective, “geometric” will mean Q-rational, where Q is a
fixed algebraic closure of Q.

Theorem 1.1. Fix a number field F0 and a non-CM elliptic curve
E0/F0. Then for each ϵ > 0 there exist constants cϵ := cϵ(E0, F0), Cϵ :=
Cϵ(E0, F0) > 0 such that for any elliptic curve E/F geometrically isogenous

1Given a finite group (G, +), its exponent exp G is the least integer n ∈ Z+ such that nG = 0.
When G is abelian, its exponent is equal to the largest possible order of an element in G.
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to E0/F0, one has both

expE(F )[tors] ≤ cϵ · [F : Q]1/2+ϵ

and
#E(F )[tors] ≤ Cϵ · [F : Q]1+ϵ.

Remark 1.2. In Theorem 1.1, The power “1/2+ϵ” in the exponent bound
cϵ · [F : Q]1/2+ϵ is optimal “up to ϵ”, since for any elliptic curve E/F ,
any integer N ∈ Z+ and any torsion point R ∈ E[N ], one always has
[F (R) : F ] ≤ N2.

Remark 1.3. We must assume in Theorem 1.1 that our elliptic curves are
non-CM to have the torsion group exponent bound cϵ · [F : Q]1/2+ϵ hold.
Indeed, one can show using e.g. [1, Corollary 1.8] that for any imaginary
quadratic field K, the geometric isogeny class of elliptic curves with CM
field K contains infinitely many elliptic curves E/F with [F : Q] arbitrarily
large and expE(F )[tors] > [F : Q]. Despite this, as noted earlier there
is an asymptotically sharp bound on the size of full torsion groups of CM
elliptic curves: one always has #E(F )[tors] ≤ C · [F : Q] log log[F : Q] when
[F : Q] > 2 for some absolute, effectively computable constant C ∈ Z+ [5,
Theorem 1].

With Remark 1.3 in mind, we will assume for the rest of this paper that
our elliptic curves have no geometric CM. A key step for us in polynomially
bounding torsion from a non-CM geometric isogeny class E will be to relate
the adelic indices of two rationally isogenous non-CM elliptic curves (this
is Corollary 2.3).

In contrast to [6, Theorem 1.3], the collection of elliptic curves in The-
orem 1.1 will contain curves whose j-invariants j′ have arbitrarily large
degrees [Q(j′) : Q]. However, both Theorem 1.1 and [6, Theorem 1.3] are
part of a natural uniformity conjecture on torsion groups that is motivated
by our current understanding of Galois representations of rational elliptic
curves.

Conjecture 2. There exist constants C,α > 0 such that for all elliptic
curves E/F geometrically isogenous to some elliptic curve defined over Q,
one has #E(F )[tors] ≤ C · [F : Q]α.

This is a special case of Conjecture 1. There is recent work which suggests
its tractability: a result of Bourdon and Najman [2, Proposition 4.1] can
be used to show that when [F : Q] is odd and E/F is Q-isogenous to a
rational elliptic curve, one has expE(F ) ≤ 720720

√
35 · [F : Q]1/2, and thus

#E(F )[tors] ≤ 1441440
√

35·[F : Q]1/2. On the other hand, if one assumes a
uniformity conjecture of Zywina on indices of adelic Galois representations
of non-CM elliptic curves over Q [21, Conjecture 1.3], then Conjecture 2
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follows “up to ϵ” with the same bounds as in Theorem 1.1; the principal
difference is that the constants in Theorem 1.1 will change and depend only
on ϵ.

Acknowledgments. The author thanks Pete L. Clark for his comments
on an earlier draft of this paper, and the suggestion that Greenberg’s proof
of [9, Proposition 2.1.1] might be adjustable to give a stronger result, which
is now Proposition 2.2. The author also thanks the referee for their insightful
comments, particularly on improving the degree bounds in Theorem 1.1.
Finally, the author thanks Jacob Mayle for his comment that the original
version of Corollary 2.3, which was an equality of n-adic indices, implied
an equivalence of adelic indices; this simplifies some of the presentation of
this paper.

2. Results on Galois Representations of Non-CM Elliptic Curves
2.1. Some profinite group theory. In this section, we will show that a
result of Greenberg on ℓ-adic Galois representations [9, Proposition 2.1.1]
has a proof which applies to n-adic representations for composite n ∈ Z+,
after some modifications. We will then use this composite version to prove
that rationally isogenous non-CM elliptic curves have adelic Galois repre-
sentations with equal indices in GL2(Ẑ), a fact we will use in our proof of
Theorem 1.1; this is recorded as Corollary 2.3.

Before we prove this adelic index result, we will prove a few general
facts about subgroups of GL2(Ẑ). For each integer n ∈ Z+, we will de-
note by πn : GL2(Ẑ) ↠ GL2(Z/nZ) the mod-n reduction map, and by
πn∞ : GL2(Ẑ) ↠ GL2(Zn) the n-adic reduction map.

By profinite group theory, for any subgroup G ⊆ GL2(Ẑ) one has that G
is open in GL2(Ẑ) iff G has finite index in GL2(Ẑ), iff G contains an open
neighborhood U(M) := kerπM for some M ∈ Z+. When G is open, we will
call the least such M for which U(M) ⊆ G the level of G.

Lemma 2.1. Let G be a subgroup of GL2(Ẑ).
(a) One has for all n ∈ Z+ that U(n) ⊆ G iff G = π−1

n (πn(G)).
(b) If U(n) ⊆ G then

[GL2(Ẑ) : G] = [GL2(Zn) : πn∞(G)] = [GL2(Z/nZ) : πn(G)].

(c) Suppose that G is open, and let G′ ⊆ GL2(Ẑ) be another open sub-
group. If for all n ∈ Z+ one has

[GL2(Zn) : πn∞(G)] = [GL2(Zn) : πn∞(G′)]

then one has the equality

[GL2(Ẑ) : G] = [GL2(Ẑ) : G′].
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Proof. For part (a), suppose first that U(n) ⊆ G. To check that G =
π−1

n (πn(G)), we note that the containment ⊆ is clear. For the reverse con-
tainment, observe that if x ∈ π−1

n (πn(G)) then πn(x) ∈ πn(G), and so
πn(x) = πn(g) for some g ∈ G; in particular, xg−1 ∈ kerπn ⊆ G, whence
we have x ∈ G. For the converse, assume that π−1

n (πn(G)) = G. Then we
have U(n) = π−1

n ({I}) ⊆ G, where I ∈ GL2(Z/nZ) is the identity matrix.
Part (b) follows from the general fact that if f : G0 → K is a group

homomorphism and G ⊆ G0 is a subgroup containing the kernel ker f ,
then a set of coset representatives {f(gi)}i for f(G) in f(G0) lifts to a set
of coset representatives {gi}i for G in G0. In particular, when G ⊆ GL2(Ẑ)
is a subgroup with U(n) ⊆ G, one has that [GL2(Ẑ) : G] = [GL2(Z/nZ) :
πn(G)]. It also follows that [GL2(Ẑ) : G] = [GL2(Zn) : πn∞(G)], via the
containment kerπn∞ ⊆ G (the map πn factors through πn∞).

For part (c), let us setN := lcm(M,M ′) whereM andM ′ are the levels of
G and G′ respectively. Since U(N) ⊆ U(M) ⊆ G and U(N) ⊆ U(M ′) ⊆ G′,
by part b. we have both

[GL2(Ẑ) : G] = [GL2(ZN ) : πN∞(G)]
and

[GL2(Ẑ) : G′] = [GL2(ZN ) : πN∞(G′)].
Thus, our hypothesis implies that [GL2(Ẑ) : G] = [GL2(Ẑ) : G′]. □

2.2. A composite version of a result of Greenberg. Our next goal
is to prove a composite version of [9, Proposition 2.1.1]. Given an integer
n ∈ Z+, let us recall that the ring of n-adic integers is

Zn := lim←−
ℓ|n,k≥1

Z/ℓkZ ∼=
∏
ℓ|n

Zℓ.

Following this, the ring of n-adic numbers is
Qn :=

∏
ℓ|n

Qℓ.

For a free Qn-module V of finite rank, we call the Zn-span of any basis of
V a Zn-lattice.

Proposition 2.2. Fix a positive integer n. Let V be a free finite rank Qn-
module. Suppose that G is a compact open subgroup of AutQn(V ). If T and
T ′ are two G-invariant Zn-lattices in V , then

[AutZn(T ) : G] = [AutZn(T ′) : G].

Proof. Suppose that V is free of rank d over Qn. Fixing a basis for V , one
has an isomorphism AutQn(V ) ∼= GLd(Qn) ∼=

∏
ℓ|n GLd(Qℓ).

For each prime ℓ ∈ Z+, the group GLd(Qℓ) is a locally compact topo-
logical group, and thus has a left Haar measure. In fact, since GLd(Qℓ)
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is a reductive ℓ-adic group it is also unimodular : every left Haar measure
is also a right Haar measure [8, Theorem 5.1]. It follows then that the fi-
nite product

∏
ℓ|n GLd(Qℓ) ∼= GLd(Qn) is also unimodular for composite

n ∈ Z+.
Fix a Haar measure µ on GLd(Qn); since G is compact open in GLd(Qn),

we have µ(G) > 0, so we may assume that µ(G) = 1. Given a Zn-lattice T
in V , we can identify AutZn(T ) ∼= GLd(Zn) once we choose a Zn-basis for
T . For any σ ∈ AutQn(V ) one has that σ(T ) is a Zn-lattice; this gives us
an action of AutQn(V ) on the set of Zn-lattices in V . This action is clearly
transitive, and the stabilizer of any Zn-lattice T is AutZn(T ). Additionally,
AutZn(T ) is a compact open subgroup of AutQn(V ), and G is contained in
AutZn(T ) and has finite index. Since AutZn(T ) is a finite disjoint union of
left cosets of G, and since µ(G) = 1 and µ is left invariant, it follows that
(2.1) µ(AutZn(T )) = [AutZn(T ) : G].

Let T and T ′ be G-invariant Zn-lattices of V . Since AutQn(V ) acts tran-
sitively on Zn-lattices, there exists σ ∈ AutQn(V ) with σ(T ) = T ′. It follows
then that AutZn(T ′) = σAutZn(T )σ−1. As µ is both left and right invari-
ant, we conclude that µ(AutZn(T ′)) = µ(AutZn(T )), which by (2.1) implies
our result. □

2.3. Galois representations of elliptic curves. Given an elliptic curve
E over a number field F , for each integer n ∈ Z+ the absolute Galois group
GF := Gal(F/F ) acts on the n-torsion subgroup E[n] of E. This action is
described by the mod-n Galois representation of E, denoted by

ρE,n : GF −→ Aut(E[n]).
Since E[n] is a free Z/nZ-module of rank two, choosing a basis {P,Q} for
E[n] gives an isomorphism Aut(E[n]) ∼= GL2(Z/nZ); we will often work
with a basis implicitly, suppressing dependence on one.

The action of GF on each torsion subgroup E[n] for all n ∈ Z+ induces
an action on their inverse limit T (E) := lim←−E[n], called the adelic Tate
module of E/F . Since each E[n] is a free rank two Z/nZ-module, it follows
that T (E) is free of rank two over the profinite integers Ẑ := lim←−Z/nZ.
The action of GF on T (E) is called the adelic Galois representation of
E/F , denoted by

ρE : GF −→ AutẐ(T (E)).
This also describes the action of GF on the full torsion subgroup E[tors].
Choosing a basis for T (E) gives an isomorphism AutẐ(T (E)) ∼= GL2(Ẑ).
Assume hereafter that our elliptic curves are non-CM; then it follows by [20,
Théorème 2] that the image ρE(GF ) is open in GL2(Ẑ). We say that the
adelic level of E/F is the level of ρE(GF ) as a subgroup of GL2(Ẑ). By
abuse of notation, we will often suppress its dependence on E and F .
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Given an integer n ∈ Z+, let us define the n-adic Tate module of E/F as
Tn(E) := lim←−k≥1E[nk]. We have that Tn(E) is a free rank two Zn-module.
The n-adic representation of E/F is the action of GF on Tn(E), denoted by

ρE,n∞ : GF −→ AutZn(Tn(E)).
This also describes the action of GF on the n-primary torsion subgroup
E[n∞] :=

⋃
k≥1E[nk] =

∑
ℓ|nE[ℓ∞]. Since ρE,n∞(GF ) is a projection of

ρE(GF ), it is open in GL2(Zn).
The action of GF on Tn(E) extends naturally to an action on the rational

n-adic Tate module Vn(E) := Tn(E)⊗Zn Qn. We can realize ρE,n∞(GF ) as
finite-index subgroup of AutZn(Tn(E)), the latter of which is a compact
open subgroup of AutQn(Vn(E)).

Suppose two elliptic curves E/F and E′
/F are F -isogenous; let us write

this isogeny as ϕ : E → E′. Choose an integer n ∈ Z+; then this isogeny
induces a Zn[GF ]-module homomorphism ϕ : Tn(E) → Tn(E′). In fact, we
have a short exact sequence of Zn[GF ]-modules,

0 −→ Tn(E) ϕ−→ Tn(E′) −→ C −→ 0,
for some finite module C. Tensoring this sequence to Qn shows that the
rational Tate modules Vn(E) and Vn(E′) are isomorphic GF -modules, and
so Tn(E) and Tn(E′) may be realized as GF -stable Zn-lattices in Vn(E).
By Proposition 2.2, this implies that

[GL2(Zn) : ρE,n∞(GF )] = [GL2(Zn) : ρE′,n∞(GF )].
Since n ∈ Z+ was arbitrary, we have proven the following key result after
applying Lemma 2.1.

Corollary 2.3. Let E/F and E′
/F be F -isogenous non-CM elliptic curves.

Then one has
[GL2(Ẑ) : ρE(GF )] = [GL2(Ẑ) : ρE′(GF )].

Let us note one more fact about Galois representations of elliptic curves
with a rational torsion point. For each integer n ≥ 2, we define a distin-
guished subgroup of GL2(Z/nZ),

B1(n) :=
{[

1 b
0 d

]
∈ GL2(Z/nZ)

}
.

When an elliptic curve E/F has an F -rational order n torsion point, it
follows that the image ρE,n(GF ) is contained in B1(n) up to conjugacy.
This implies the index divisibility

[GL2(Z/nZ) : B1(n)] | [GL2(Z/nZ) : ρE,n(GF )].
The former index can be written more explicitly. Let us recall Euler’s phi
function φ : Z+ → Z+ and the Dedekind psi function ψ : Z+ → Z+, both
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arithmetic multiplicative functions defined on prime powers via φ(ℓk) =
ℓk−1(ℓ− 1) and ψ(ℓk) = ℓk−1(ℓ+ 1) respectively.
Lemma 2.4. For n ≥ 2 one has

[GL2(Z/nZ) : B1(n)] = φ(n)ψ(n).
Proof. See e.g. [4, Section 7.2]. □

3. Polynomial Bounds on Torsion
We are ready to prove the main result of this paper.

Proof of Theorem 1.1. To recapitulate Theorem 1.1, we will show that for
any fixed non-CM elliptic curve E0/F0 , for all ϵ > 0 there exist constants
cϵ := cϵ(E0, F0), Cϵ := Cϵ(E0, F0) > 0 such that for all elliptic curves E/F

geometrically isogenous to E0, one has both
expE(F )[tors] ≤ cϵ · [F : Q]1/2+ϵ

and
#E(F )[tors] ≤ Cϵ · [F : Q]1+ϵ.

First, observe that the desired bound on #E(F )[tors] will follow from the
desired bound on the exponent expE(F )[tors], via the divisibility

#E(F )[tors] | (expE(F )[tors])2

(one can take Cϵ := c2
ϵ/2). To this end, our proof will focus on bounding

expE(F )[tors].
Let us write n := expE(F )[tors]. Then up to conjugacy we have

ρE,n(GF ) ⊆ B1(n), so by Lemma 2.4 we get
(3.1) φ(n)ψ(n) | [GL2(Z/nZ) : ρE,n(GF )].
By [15, Lemma 3.1] there exists a(n at worst) quadratic extension L/FF0
for which E and E0 are L-isogenous. Thus, Corollary 2.3 implies that
(3.2) [GL2(Ẑ) : ρE(GL)] = [GL2(Ẑ) : ρE0(GL)].
Since the extension F0(E0[tors])/F0 is normal, so is the extension
L(E0[tors])/L, and we have

Gal(L(E0[tors])/L) ∼= Gal(F0(E0[tors])/L ∩ F0(E0[tors]))
(this general fact is e.g. [18, Proposition 7.15]). Since ρE0(GL) ∼=
Gal(L(E0[tors])/L), we see that ρE0(GL) is a subgroup of ρE0(GF0) of index
[L ∩ F0(E0[tors]) : F0]. Thus, we deduce that
(3.3) [GL2(Ẑ) : ρE0(GL)] | [GL2(Ẑ) : ρE0(GF0)] · [L : F0].
Finally, since [FF0 : Q] = [FF0 : F ] · [F : Q] | [F0 : Q]! · [F : Q] and
[L : F0] | 2[FF0 : F0], we find that

[L : F0] | 2([F0 : Q]− 1)! · [F : Q].
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Combining this fact with (3.1), (3.2) and (3.3), we conclude that
(3.4) φ(n)ψ(n) | 2I([F0 : Q]− 1)! · [F : Q],

where I := [GL2(Ẑ) : ρE0(GF0)] is the adelic index of our fixed elliptic curve
E0/F0 .

One can check directly that ψ(n) > n for any n > 1. Fixing an ϵ ∈ (0, 1),
by [10, Theorem 327] there exists a constant bϵ > 0 such that for all n ∈ Z+

one has
φ(n) > bϵ · n1−ϵ.

Thus, from (3.4) we deduce that
n2−ϵ < 2Ib−1

ϵ ([F0 : Q]− 1)! · [F : Q].
Since n := expE(F )[tors], we conclude that

expE(F )[tors] < cϵ · [F : Q]1/2+ϵ

where cϵ := cϵ(E0, F0) := (2Ib−1
ϵ ([F0 : Q]− 1)!)1/(2−ϵ), which is the desired

upper bound on the exponent of E(F )[tors]. □
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