Soit une courbe hyperelliptique de genre sur un corps totalement réel . Nous montrons que la représentation galoisienne modulo , associée à est résiduellement automorphe lorsque l’image de est un groupe isomorphe à et transitif par rapport à un isomorphisme fixé . Plus précisément, il existe une forme parabolique de Hilbert–Siegel sur de poids parallèle , propre pour les opérateurs de Hecke, dont la représentation galoisienne est isomorphe à .
Given a genus two hyperelliptic curve over a totally real field , we show that the mod Galois representation attached to is residually automorphic when the image of is isomorphic to and it is also a transitive subgroup under a fixed isomorphism . More precisely, there exists a Hilbert–Siegel Hecke eigen cusp form on of parallel weight two whose mod Galois representation is isomorphic to .
Révisé le :
Accepté le :
Publié le :
Mots clés : genus 2 curves, mod 2 Galois representations, automorphy
@article{JTNB_2024__36_2_637_0, author = {Alexandru Ghitza and Takuya Yamauchi}, title = {Automorphy of mod~2 {Galois} representations associated to certain genus 2 curves over totally real fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {637--660}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1291}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1291/} }
TY - JOUR AU - Alexandru Ghitza AU - Takuya Yamauchi TI - Automorphy of mod 2 Galois representations associated to certain genus 2 curves over totally real fields JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 637 EP - 660 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1291/ DO - 10.5802/jtnb.1291 LA - en ID - JTNB_2024__36_2_637_0 ER -
%0 Journal Article %A Alexandru Ghitza %A Takuya Yamauchi %T Automorphy of mod 2 Galois representations associated to certain genus 2 curves over totally real fields %J Journal de théorie des nombres de Bordeaux %D 2024 %P 637-660 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1291/ %R 10.5802/jtnb.1291 %G en %F JTNB_2024__36_2_637_0
Alexandru Ghitza; Takuya Yamauchi. Automorphy of mod 2 Galois representations associated to certain genus 2 curves over totally real fields. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 637-660. doi : 10.5802/jtnb.1291. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1291/
[1] A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., Volume 47 (2011) no. 1, pp. 29-98 | DOI | MR | Zbl
[2] Algorithms in real algebraic geometry, Algorithms and Computation in Mathematics, 10, Springer, 2006, x+662 pages | MR
[3] The sign of Galois representations attached to automorphic forms for unitary groups, Compos. Math., Volume 147 (2011) no. 5, pp. 1337-1352 | DOI | MR | Zbl
[4] Motives for Hilbert modular forms, Invent. Math., Volume 114 (1993) no. 1, pp. 55-87 | DOI | MR | Zbl
[5] A database of genus-2 curves over the rational numbers, LMS J. Comput. Math., Volume 19 (2016), pp. 235-254 | DOI | MR | Zbl
[6] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl
[7] Abelian surfaces over totally real fields are potentially modular, Publ. Math., Inst. Hautes Étud. Sci., Volume 134 (2021), pp. 153-501 | DOI | MR | Zbl
[8] Paramodular abelian varieties of odd conductor, Trans. Am. Math. Soc., Volume 366 (2014) no. 5, pp. 2463-2516 | DOI | MR | Zbl
[9] On the paramodularity of typical abelian surfaces, Algebra Number Theory, Volume 13 (2019) no. 5, pp. 1145-1195 | DOI | MR | Zbl
[10] On Serre’s conjecture for mod Galois representations over totally real fields, Duke Math. J., Volume 155 (2010) no. 1, pp. 105-161 | DOI | MR | Zbl
[11] The Artin conjecture for some -extensions, Math. Ann., Volume 356 (2013) no. 1, pp. 191-207 | DOI | MR | Zbl
[12] Formes modulaires de poids , Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 507-530 | DOI | Numdam | MR | Zbl
[13] Explicit computations of Hilbert modular forms on , Exp. Math., Volume 14 (2005) no. 4, pp. 457-466 | DOI | MR | Zbl
[14] Galois representations modulo and cohomology of Hilbert modular varieties, Ann. Sci. Éc. Norm. Supér., Volume 38 (2005) no. 4, pp. 505-551 | DOI | Numdam | MR | Zbl
[15] 3-torsion and conductor of genus 2 curves, Math. Comput., Volume 88 (2019) no. 318, pp. 1913-1927 | DOI | MR | Zbl
[16] The local Langlands conjecture for , Ann. Math., Volume 173 (2011) no. 3, pp. 1841-1882 | DOI | MR | Zbl
[17] Arthur’s multiplicity formula for and restriction to , J. Éc. Polytech., Math., Volume 6 (2019), pp. 469-535 | DOI | MR | Zbl
[18] An approach to nonsolvable base change and descent, J. Ramanujan Math. Soc., Volume 27 (2012) no. 2, pp. 143-211 | MR | Zbl
[19] Elliptic curves and icosahedral Galois representations, ProQuest LLC, 1999, 110 pages Thesis (Ph.D.)–Stanford University | MR
[20] On Galois representations associated to Hilbert modular forms, J. Reine Angew. Math., Volume 491 (1997), pp. 199-216 | DOI | MR | Zbl
[21] Generic polynomials. Constructive aspects of the inverse Galois problem, Mathematical Sciences Research Institute Publications, 45, Cambridge University Press, 2002, ix+258 pages | MR | Zbl
[22] Siegel modular forms of degree two attached to Hilbert modular forms, J. Number Theory, Volume 132 (2012) no. 4, pp. 543-564 | DOI | MR | Zbl
[23] Modularity of 2-adic Barsotti-Tate representations, Invent. Math., Volume 178 (2009) no. 3, pp. 587-634 | DOI | MR | Zbl
[24] Moduli of finite flat group schemes, and modularity, Ann. Math., Volume 170 (2009) no. 3, pp. 1085-1180 | DOI | MR | Zbl
[25] Icosahedral Galois extensions and elliptic curves, Manuscr. Math., Volume 93 (1997) no. 3, pp. 301-324 | DOI | MR | Zbl
[26] The L-functions and modular forms database, https://www.lmfdb.org, 2023 (accessed 1 October 2020)
[27] Galois representations attached to automorphic forms on over CM fields, Compos. Math., Volume 150 (2014) no. 4, pp. 523-567 | DOI | MR | Zbl
[28] Surconvergence, ramification et modularité, Arithmétique -adique des formes de Hilbert (Astérisque), Volume 382, Société Mathématique de France, 2016, pp. 195-266 | MR | Zbl
[29] Modularity of solvable Artin representations of -type, Int. Math. Res. Not., Volume 2002 (2002) no. 1, pp. 1-54 | DOI | MR | Zbl
[30] Global -packets for and theta lifts, Doc. Math., Volume 6 (2001), pp. 247-314 | DOI | MR | Zbl
[31] On Artin -functions associated to Hilbert modular forms of weight one, Invent. Math., Volume 74 (1983) no. 1, pp. 1-42 | DOI | MR | Zbl
[32] SageMath, the Sage Mathematics Software System (Version 10.0) (2023) (https://www.sagemath.org)
[33] On congruences between the coefficients of two -series which are related to a hyperelliptic curve over , Osaka J. Math., Volume 37 (2000) no. 4, pp. 789-799 | MR | Zbl
[34] Integral models of Hilbert modular varieties in the ramified case, deformations of modular Galois representations, and weight one forms, Invent. Math., Volume 215 (2019) no. 1, pp. 171-264 | DOI | MR | Zbl
[35] Modular forms of weight one and Galois representations, Algebraic number fields: -functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press Inc., 1977, pp. 193-268 | MR
[36] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009, xx+513 pages | DOI | MR
[37] A note on the -adic Galois representations attached to Hilbert modular forms, Doc. Math., Volume 14 (2009), pp. 241-258 | DOI | MR | Zbl
[38] Galois representations attached to Hilbert-Siegel modular forms, Doc. Math., Volume 15 (2010), pp. 623-670 | DOI | MR | Zbl
[39] Genus curves over , 2016 (https://math.mit.edu/~drew/genus2curves.html, accessed 1 October 2020)
[40] On the meromorphic continuation of degree two -functions, Doc. Math., Volume 2006 (2006), pp. 729-779 | MR | Zbl
[41] Automorphy of mod 2 Galois representations associated to the quintic Dwork family and reciprocity of some quintic trinomials (2022) | arXiv
[42] Artin’s conjecture for representations of octahedral type, Bull. Am. Math. Soc., Volume 5 (1981) no. 2, pp. 173-175 | DOI | MR | Zbl
[43] The faithful linear representation of least degree of and over a field of characteristic , Math. Z., Volume 151 (1976) no. 2, pp. 127-137 | DOI | MR | Zbl
[44] On the images of Galois representations attached to low weight Siegel modular forms, J. Lond. Math. Soc., Volume 106 (2022) no. 1, pp. 358-387 | DOI | MR | Zbl
[45] Applications of group theory to conjectures of Artin and Langlands, Int. J. Number Theory, Volume 14 (2018) no. 3, pp. 881-898 | DOI | MR | Zbl
Cité par Sources :