Twisted Thue equations with multiple exponents in fixed number fields
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 621-635.

Soit K un corps de nombres de degré d3. On fixe sd-2 éléments multiplicativement indépendants et remplissant certaines conditions techniques, qui se réduisent à une condition d’indépendance -linéaire si on admet la conjecture de Schanuel. Nous considérons l’équation de Thue tordue

|N K/ (X-γ 1 t 1 γ s t s Y)|=1,

et prouvons qu’il n’existe qu’un nombre fini de solutions (x,y;t 1 ,,t s ) dans 2 × s avec xy0 et (γ 1 t 1 γ s t s )=K. Ces solutions sont effectivement calculables.

Let K be a number field of degree d3 and fix sd-2 multiplicatively independent γ 1 ,,γ s K * that fulfil some technical requirements, which can be vastly simplified to -linearly independence, given Schanuel’s conjecture. We then consider the twisted Thue equation

|N K/ (X-γ 1 t 1 γ s t s Y)|=1,

and prove that it has only finitely many solutions (x,y;t 1 ,,t s ) in 2 × s with xy0 and (γ 1 t 1 γ s t s )=K, all of which are effectively computable.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1290
Classification : 11N56, 14G42
Mots clés : Multiplicative and norm form equations, Exponential Diophantine equations
Tobias Hilgart 1 ; Volker Ziegler 1

1 Hellbrunnerstraße 34 Austria
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_621_0,
     author = {Tobias Hilgart and Volker Ziegler},
     title = {Twisted {Thue} equations with multiple exponents in fixed number fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {621--635},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     year = {2024},
     doi = {10.5802/jtnb.1290},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1290/}
}
TY  - JOUR
AU  - Tobias Hilgart
AU  - Volker Ziegler
TI  - Twisted Thue equations with multiple exponents in fixed number fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 621
EP  - 635
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1290/
DO  - 10.5802/jtnb.1290
LA  - en
ID  - JTNB_2024__36_2_621_0
ER  - 
%0 Journal Article
%A Tobias Hilgart
%A Volker Ziegler
%T Twisted Thue equations with multiple exponents in fixed number fields
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 621-635
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1290/
%R 10.5802/jtnb.1290
%G en
%F JTNB_2024__36_2_621_0
Tobias Hilgart; Volker Ziegler. Twisted Thue equations with multiple exponents in fixed number fields. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 621-635. doi : 10.5802/jtnb.1290. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1290/

[1] Alan Baker; Gisbert Wüstholz Logarithmic forms and group varieties, J. Reine Angew. Math., Volume 442 (1993), pp. 19-62 | DOI | Zbl

[2] Enrico Bombieri On the Thue–Siegel–Dyson theorem, Acta Math., Volume 148 (1982), pp. 255-296 | DOI | Zbl

[3] Yann Bugeaud; Kálmán Győry Bounds for the solutions of Thue–Mahler equations and norm form equations, Acta Arith., Volume 74 (1996) no. 3, pp. 273-292 | DOI | Zbl

[4] Serge Lang Introduction to Transcendental Numbers, Addison-Wesley Publishing Group, 1966

[5] Claude Levesque; Michel Waldschmidt Familles d’équations de Thue-Mahler n’ayant que des solutions triviales, Acta Arith., Volume 155 (2012) no. 2, pp. 117-138 | DOI | Zbl

[6] Claude Levesque; Michel Waldschmidt Solving effectively some families of Thue Diophantine equations, Mosc. J. Comb. Number Theory, Volume 3 (2013) no. 3-4, pp. 118-144 | Zbl

[7] Claude Levesque; Michel Waldschmidt A family of Thue equations involving powers of units of the simplest cubic fields, J. Théor. Nombres Bordeaux, Volume 27 (2015) no. 2, pp. 537-563 | DOI | Numdam | Zbl

[8] Chris Smyth The Mahler measure of algebraic numbers: a survey, Number Theory and Polynomials (James McKee; Chris Smyth, eds.) (London Mathematical Society Lecture Note Series), Cambridge University Press, 2008, pp. 322-349 | DOI | Zbl

[9] Emery Thomas Complete solutions to a family of cubic Diophantine equations, J. Number Theory, Volume 34 (1990) no. 2, pp. 235-250 | DOI | Zbl

[10] Robert Tijdeman On integers with many small prime factors, Compos. Math., Volume 26 (1973) no. 3, pp. 319-330 | Numdam | Zbl

Cité par Sources :