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Twisted Thue equations with multiple exponents
in fixed number fields

par Tobias HILGART et Volker ZIEGLER

Résumé. Soit K un corps de nombres de degré d ≥ 3. On fixe s ≤ d − 2
éléments multiplicativement indépendants et remplissant certaines conditions
techniques, qui se réduisent à une condition d’indépendance Q-linéaire si on
admet la conjecture de Schanuel. Nous considérons l’équation de Thue tordue

|NK/Q(X − γt1
1 · · ·γts

s Y )| = 1,

et prouvons qu’il n’existe qu’un nombre fini de solutions (x, y; t1, . . . , ts) dans
Z2 × Ns avec xy ̸= 0 et Q(γt1

1 · · ·γts
s ) = K. Ces solutions sont effectivement

calculables.

Abstract. Let K be a number field of degree d ≥ 3 and fix s ≤ d − 2
multiplicatively independent γ1, . . . ,γs ∈ K∗ that fulfil some technical re-
quirements, which can be vastly simplified to Q-linearly independence, given
Schanuel’s conjecture. We then consider the twisted Thue equation

|NK/Q(X − γt1
1 · · ·γts

s Y )| = 1,

and prove that it has only finitely many solutions (x, y; t1, . . . , ts) in Z2 ×Ns

with xy ̸= 0 and Q(γt1
1 · · ·γts

s ) = K, all of which are effectively computable.

1. Introduction
One of the first non-binary parametrised Thue equations to ever be solved

was

f(X, Y ; a) := X3 − (a − 1)X2Y − (a + 2)XY 2 − Y 3 = ±1,

done so by Thomas [9]. If we denote by α1,α2,α3 the roots of the polyno-
mial f(X, 1; a), then we can write equivalently as the norm-form equation

NK/Q(X − α1Y ) = ±1,

where for K = Q(α1), we denote by NK/Q the norm relative to the field
extension K/Q.
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Levesque and Waldschmidt extended this result [7] by twisting the equa-
tion by an exponential parameter t and showed that |NK/Q(X −αt

1Y )| = 1
still only has finitely many integer solutions (x, y; a, t) where |y| ≥ 2. They
conjectured that this still holds if the Thue equation is twisted by two ex-
ponents, i.e. |NK/Q(X −αt

1α
s
2Y )| = 1, and it is reasonable to expect that if

it works for two, it might work for finitely many – at least given sufficiently
“nice” conditions.

In a similar but different vein, Levesque and Waldschmidt [6] also showed
the following: Let K = Q(α), with embeddings Φ = {σ̃1, . . . , σ̃d} into C
and 0 < ν < 1. Furthermore, let ε ∈ ZK be an integral unit that fulfils
Q(αε) = K and

(1.1) |σ1(αε)| = max
i

(|σi(αε)|), |σ2(αε)| ≥ max
i

(|σi(αε)|)ν

for two distinct embeddings σ1,σ2 ∈ Φ. Then for any solution (x, y, ε) of
the inequality

|NK/Q(x − αε y)| ≤ m

the logarithms log|x|, log|y|, as well as the absolute logarithmic height h(αε)
can be bounded by mc for some effectively computable constant c. They
conjectured that the result would hold even without Condition (1.1). Proof
of the finiteness of the number of solutions is already established in [5] but
rests on Schmidt’s subspace theorem, which does not allow for an effective
upper bound for their heights.

For our result, we also fix the number field. The “base” elements of the
norm-form equation are fixed, too, but can be chosen somewhat more freely.
Our main result is as follows:

Theorem 1.1. Let K be a number field of degree d ≥ 3 and s ≤ d − 2.
Furthermore, let γ1, . . . ,γs ∈ K∗ be multiplicatively independent algebraic
integers, such that the following condition holds:

For each choice of d − 1 embeddings σ̃1, . . . , σ̃d−1 ∈ HomQ(K,C),

(∗) rank


log
∣∣∣ σ̃1(γ1)
σ̃d−1(γ1)

∣∣∣ · · · log
∣∣∣ σ̃1(γs)
σ̃d−1(γs)

∣∣∣
... . . . ...

log
∣∣∣ σ̃d−2(γ1)
σ̃d−1(γ1)

∣∣∣ · · · log
∣∣∣ σ̃d−2(γs)
σ̃d−1(γs)

∣∣∣

 = s,

i.e. the matrix has full column-rank s.
Then the Thue equation

(1.2) |NK/Q(X − γt1
1 · · ·γts

s Y )| = 1

has only finitely many solutions (x, y; t1, . . . , ts) ∈ Z2 × Ns, where xy ̸= 0
and Q(γt1

1 · · ·γts
s ) = K, all of which can be effectively computed.
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Remark 1.2. Given Schanuel’s conjecture [4, p. 30], that for any Q-linearly
independent complex numbers z1, . . . , zn, the transcendence degree of the
field Q(z1, . . . , zn, ez1 , . . . , ezn) over Q is at least n, our condition on the γi

can be relaxed in the following way:
Instead of requiring Condition (∗), it suffices that γ1, . . . ,γs are Q-

linearly independent. See Section 4 for more details.

The outline of the proof of Theorem 1.1 is that we follow the usual Baker
method of constructing a linear form in logarithms of the hypothetical solu-
tions to Equation (1.2) and looking at lower bounds to derive an effectively
computable upper bound for |t1|, . . . , |ts|. Using Bugeaud’s and Győry’s ex-
plicit upper bound for solutions of Thue equations [3] allows us to bound
log|x|, log|y| in terms of |t1|, . . . , |ts| and thus absolutely as well.

For this to work, however, we need that the embeddings of γt1
1 · · ·γts

s

are not all “close”, asymptotically in terms of maxi|ti|, to a distinguished
embedding, which is given by the type j of the solution. If they are, we need
a different argument, for which we require the Condition (∗) or Schanuel’s
conjecture.

2. Preliminaries
We start by listing the results of Baker and Wüstholz [1], or Bugeaud

and Győry [3] respectively, as well as two smaller lemmata, one of which
goes back to Tijdeman [10] and is stated in a slightly different setting.

For the sake of completeness, we briefly define the absolute (or Weil)
height and Mahler’s measure, see, for instance, [2] or [8]. If K is a number
field of degree d = [K : Q], and for every place ν, we write dν = [Kν : Qν] for
the completions Kν,Qν with respect to ν, then we normalise the absolute
value |·|ν so that

(1) if ν | p for a prime number p, then |p|ν = p−dν/d,
(2) if ν | ∞ and ν is real, then |x|ν = |x|1/d,
(3) if ν | ∞ and ν is complex, then |x|ν = |x|2/d,

and |x| denotes the Euclidian absolute value in R or C. Given this normal-
isation, the product formula ∏

ν

|α|ν = 1

holds for every α ∈ K∗. The absolute height of α ∈ K is then defined as

H(α) =
∏
ν

max(1, |α|ν),

and the absolute logarithmic height as h(α) = log H(α). The absolute
logarithmic height is then equal to the logarithm of the Mahler measure
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M(mα) of its minimal polynomial mα, i.e. if the minimal polynomial of
α ∈ K is mα(X) = an

∏n
i=1(X − αi) ∈ Z[X], then

h(α) = 1
n

log M(mα) = 1
n

(
log|an| +

n∑
i=1

log max(1, |αi|)
)

.

Proposition 2.1 (Baker, Wüstholz; [1]). Let γ1, . . . ,γt be algebraic num-
bers not 0 or 1 in K = Q(γ1, . . . ,γt), which is of degree D. Let b1, . . . , bt ∈ Z
and

Λ = b1 logγ1 + · · · + bt logγt ̸= 0.

Then
log|Λ| ≥ −C · h1 · · · ht · log B,

where C = 18(t + 1)!tt+1(32D)t+2 log(2tD), B ≥ max(3, |b1|, . . . , |bt|) and

hi ≥ max(h(γi), log|γi| D−1, 0.16 D−1)
for i ∈ {1, . . . , t}.

Proposition 2.2 (Bugeaud, Győry; [3]). Let B ≥ max(|m|, e), f be an
irreducible polynomial with root α and K = Q(α). Let R be the regulator of
K and r be the unit rank. Let H be an upper bound to the absolute values
of the coefficients of f and n = deg f ≥ 3. Let F (X, Y ) = Y nf(X

Y ), then
all solutions (x, y) ∈ Z2 of the Thue equation F (X, Y ) = m satisfy

log max(|x|, |y|) ≤ c · R · max(log R, 1)(R + log(HB)),
where c = 3r+27(r + 1)7r+19n2n+6r+14.

The following lemma goes back to a result of Tijdeman [10] on the differ-
ence of consecutive numbers comprised of primes up to some given bound.
We can adapt the statement to our setting–with only little alterations–and
prove it almost analogously.

Lemma 2.3. Let K be a number field of degree d ≥ s and γ1, . . . ,γs ∈ K∗

multiplicatively independent. Let γ = γ(t1, . . . , ts) = γt1
1 · · ·γts

s for non-zero
integers t1, . . . , ts.

Then for any two conjugates γ(1),γ(2) of γ with M = |γ(1)| > |γ(2)| = m
there exists an effectively computable constant c independent of t1, . . . , ts

such that
M − m >

M

h(M)c
.

Proof. We start with moving the conjugation of γ down to the conjugations
of the individual γi, i.e. if γ(1) is the conjugation of γ under the embedding
σ̃, let γ

(1)
i = σ̃(γi), then we write

M − m = |γ(1)| − |γ(2)| = |(γ(1)
1 )t1 · · · (γ(1)

s )ts | − |(γ(2)
1 )t1 · · · (γ(2)

s )ts |,
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and thus

1 − m

M
= 1 −

∣∣∣(γ(1)
1 )t1 · · · (γ(1)

s )ts(γ(2)
1 )−t1 · · · (γ(2)

s )−ts

∣∣∣︸ ︷︷ ︸
=:eΛ

.

We want to use Proposition 2.1 to bound Λ. We have that h(γi) ≪ 1.
If we also had |ti| ≪ h(M), then we would have, by Proposition 2.1, that
|Λ| > h(M)−c for some effectively computable c independent of the ti,
which is precisely the constant of the proposition multiplied with the heights
h(γi). And if |Λ| > h(M)−c, then 1 − eΛ ≫ h(M)−c which then proves
the assumption after multiplying the inequality with M (we can make the
inequality 1−eΛ ≫ h(M)−c a strict “>” by allowing for a larger constant c).

So what remains is to prove that |ti| ≪ h(M). For that let S be the
set of all places ν of K for which |γ(1)|ν ̸= 1 but in any case includes all
non-archimedean places ∞1, . . . , ∞d, that is S = {ν1, . . . ,νn, ∞1, . . . , ∞d}.

In the spirit of an S-adic version of Minkowski spaces, we identify γ with
the |S|-dimensional vector of logarithms of the individual valuations, i.e.

γ 7→



log|γ|∞1
...

log|γ|∞d

log|γ|ν1
...

log|γ|νn


︸ ︷︷ ︸

=:v

= t1



log|γ1|∞1
...

log|γ1|∞d

log|γ1|ν1
...

log|γ1|νn


+ · · · + ts



log|γs|∞1
...

log|γs|∞d

log|γs|ν1
...

log|γs|νn


.

We further see that the right-hand side is of the form v = Γ(t1, . . . , ts)⊤

for the (d+n)×s dimensional matrix Γ of the log|γi|ν. Since γ1, . . . ,γs are
multiplicatively independent, the matrix Γ has full column-rank. We can
thus multiply the equation with (Γ⊤Γ)−1Γ⊤ and apply the l1 norm. Using
the consistency ∥Ax∥ ≤ ∥A∥ · ∥x∥ and hiding the matrix norms inside a
constant c that does not depend on the ti, this gives

c · |v|l1 ≥

∣∣∣∣∣∣∣
t1

...
ts


∣∣∣∣∣∣∣
l1

,

which of course implies |ti| ≪ |v|l1 . For the final remaining estimate, note
that to compute the height h(γ) =

∑
ν max(log|γ|ν, 0), we can ignore all

the valuations where |γ|ν = 1 and thus sum precisely over all entries of the
vector v and take only the positive values. But by the product formula, we
have

∑d+n
i=1 vi = 0, i.e. the positive entries, which contribute to the height

cancel with the negative that do not. This, in turn, means that if we sum
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the absolute values, which is precisely what we do when calculating the l1-
norm |v|l1 , it must be two times the sum of all positive (or negative, resp.)
values, thus |v|l1 = 2h(γ). This gives us |ti| ≪ h(γ) and thus proves the
assertion. □

The final preliminary lemma gives a simple way to control the product
of pairwise maxima by the global maximum in a finite sequence of positive
numbers.

Lemma 2.4. Let a1, . . . , ad ∈ R with 0 < a1 ≤ · · · ≤ ad, where ad > 1 and
a1 · · · ad = 1. Then we get∏

i∈{1,...,d}
i ̸=j

max(ai, aj) ≥ a
1

d−1
d

for all fixed j ∈ 1, . . . , d.

Proof. We express everything in terms of the largest number, ad. The ex-
treme case, where a1 is as large as possible, is

1

a
1

d−1
d

· · · 1

a
1

d−1
d

· ad = 1,

where all terms except for ad are equal and thus have to be a
− 1

d−1
d for

the product to still be 1. In this situation, if j = d, then the maximum
max(ai, aj) is ad every time and the product is ad−1

d , which is greater than

our purported bound of a
1

d−1
d .

If j < d instead, then the maximum is a
1

d−1
d in d − 2 cases and ad once,

thus ∏
i∈{1,...,d}

i ̸=j

max(aj , ai) =

 1

a
1

d−1
d

d−2

ad = a
1− d−2

d−1
d = a

1
d−1
d .

Now we move from the extreme case to the general. Let ai = a
1

d−1
d ci,

where c1 ≤ · · · ≤ cn ≤ 1, and 1 ≤ cn+1 ≤ · · · ≤ cd−1. For the product
a1 · · · ad = 1 to still be 1, we need c1 · · · cd−1 = 1 to cancel.

If n < j < d, then it is only the constants ≥ 1 that show up in the product∏
i ̸=j max(aj , ai), and we can ignore them to get the purported lower bound.

If instead j ≤ n, we get the constant cj for the first j indices and ci

afterwards. But
∏j

i=1 cj
∏d

i=j+1 ci ≥ 1, since we substituted the possibly
smaller ci for cj and the product was 1 beforehand. Thus we can again
ignore the constants and get the purported bound. □
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3. Proof of the main theorem
Let (x, y; t1, . . . , ts) ∈ Z2 ×Ns be a solution to Thue Equation (1.2) and

assume that all ti are non-zero, as we would otherwise carry out the proof
with s′ ≤ s many γi that need to be written in the equation. We also
assume xy ̸= 0, as for y = 0, we get a solution with x = ±1 and any choice
for (t1, . . . , ts). Similarly, for x = 0, it depends on the γi whether there are
solutions, e.g. if they are units, then y = ±1 and any (t1, . . . , ts) would be
eligible.

Let t := maxi∈{1,...,s}|ti| and βi := σ̃i(x − γt1
1 · · ·γts

s y). We also write
σi = σ̃i(γt1

1 · · ·γts
s ) and γ

(i)
r for the individual embedments σ̃i(γr) to make

the expressions more readable.
After reshuffling the indices, we can assume that |σ1| ≥ · · · ≥ |σd|. The

polynomial f(X) = NK/Q(X − γt1
1 · · ·γts

s ) is irreducible, since we have
Q(γt1

1 · · ·γts
s ) = K per our requirement on (x, y; t1, . . . , ts).

We define the type of the solution to be the index j, for which the
equation |βj | = mini∈{1,...,d}|βi| holds. We distinguish between the following
two cases:

Case 1. There exist at least two distinct indices i ∈ {1, . . . , d}\{j} such
that |log| σi

σj
|| ≥ κ log t, where κ is a (fixed but) sufficiently large constant

independent of the solution (x, y; t1, . . . , ts).

Case 2. For all but one index i∈{1, ..., d}\{j}, we have that log| σi
σj

|≤κ log t.

We want to prove that t ≪ 1 in each case, i.e. that t can be bounded
by some effectively computable constant. This would imply |x|, |y| ≪ 1 and
thus prove the finiteness of the number of solutions to Thue Equation (1.2).

3.1. Case 1. Let k, l be two distinct indices that fulfil the condition of
Case 1, i.e.

(∗∗)
∣∣∣∣log

∣∣∣∣σk

σj

∣∣∣∣∣∣∣∣ ≥ κ log t,

∣∣∣∣log
∣∣∣∣σl

σj

∣∣∣∣∣∣∣∣ ≥ κ log t

holds. We state Siegel’s identity,
(3.1) βj(σk − σl) + βl(σj − σk) + βk(σl − σj) = 0,

and by dividing by the third term on the left-hand side and rearranging
things slightly, this is equivalent to

(3.2) βj

βk
· σk − σl

σj − σl︸ ︷︷ ︸
=:L

+ βl

βk
· σj − σk

σj − σl︸ ︷︷ ︸
=:L′

= 1.

We now show that it is possible to choose k, l so that L is very small: But
first, regardless of the choice of k and l, since (x, y; t1, . . . , ts) is a solution
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to Thue Equation (1.2), we have
1 = |NK/Q(x − γt1

1 · · ·γts
s y)| = |β1 · · ·βd|.

If we use the minimality of βj , we have 2|βi| ≥ |βi −βj | = |y(σj −σi)| and
get that

|βj | =
∏

i∈{1,...,d}
i ̸=j

1
|βi|

≪ 1
|y|d−1∏

i∈{1,...,d}
i ̸=j

|σj − σi|
.

We apply Lemma 2.3 on each of the |σj −σi| and use the equality to the
Mahler measure for the height to derive h(σi) ≪ log maxi|σi| = log|σ1|. We
thus have

|βj | ≪ log|σ1|(d−1)c

|y|d−1∏
i∈{1,...,d}

i ̸=j

max(|σj |, |σi|)
.

Next, we apply Lemma 2.4 on the product of the max(|σj |, |σi|), which
gives ∏

i∈{1,...,d}
i ̸=j

max(|σj |, |σi|) ≥ |σ1|
1

d−1 .

Combining this with the previous bound gives

|βj | ≪ log|σ1|(d−1)c

|y|d−1|σ1|
1

d−1
.

Plugging this into our expression L and once more applying the inequal-
ity |βk| ≥ y

2 |σj − σk| finally gives

(3.3) |L| = |βj

βk
· σk − σl

σj − σl
| ≪ log|σ1|(d−1)c

|y|d|σ1|
1

d−1
· |σk − σl|

|σj − σk||σj − σl|
.

The first factor already looks like it could be of order e−ct, but we first
check that the second term cannot ruin everything, at least for specific
choices for k, l.

Since x ̸= 0, we have |x| ≥ 1. Furthermore, |βj | = |x − σjy| ≤ q < 1 for
some q and thus 1 − q ≤ |x| − q ≤ |σjy|. Equivalent to this is
(3.4) |y|−1 ≪ |σj |.

In addition, we have |σj − σk| = |σmax(1 − σmin
σmax

)| if we denote, by abuse
of notation, σmax as the larger, and σmin as the smaller of the two. But
since k fulfils Condition (∗∗), we have | σmin

σmax
| ≤ t−κ, which is less than, say,

1
2 , and thus

(3.5) |σj − σk| =
∣∣∣∣σmax

(
1 − σmin

σmax

)∣∣∣∣ ≫ |σmax|,

which also holds for l.
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We now differentiate between different cases for j and show that for each
one, we can choose k, l that fulfil Condition (∗∗) and do not blow up the
expression L.

(1) Case j ∈ {1, d}:
(a) Case j = 1: We can choose any k, l that fulfil Condition (∗∗).

We have |σk −σl| ≤ 2 max(|σk|, |σl|) ≪ |σ1|, and since k fulfils
Condition (∗∗), we have |σ1 − σk| = |σ1||1 − σk

σ1
| ≫ |σ1| by

Equation (3.5), same for l.
Thus, we would even further improve Equation (3.3), i.e.

L ≪ log|σ1|(d−1)c

|y|d|σ1|
1

d−1
· |σk − σl|

|σj − σk||σj − σl|
≪ log|σ1|(d−1)c

|y|d|σ1|
1

d−1
· |σ1|

|σ1||σ1|

= log|σ1|(d−1)c

|y|d|σ1|1+ 1
d−1

.

(b) Case j = d: We choose k = 1, which fulfils Condition (∗∗), and
any other l that does too. Then, |σ1 − σl| ≪ |σ1| on the one
hand and |σd − σ1| ≫ |σ1|, |σd − σl| ≫ |σd| by Equation (3.5)
on the other, while |σd| ≫ |y|−1 by Equation (3.4).
Thus we worsen Equation (3.3) by a factor |y|,

L ≪ log|σ1|(d−1)c

|y|d|σ1|
1

d−1
· |σ1|

|σ1||y|−1 = log|σ1|(d−1)c

|y|d−1|σ1|
1

d−1
.

(2) Case j ̸∈ {1, d}:
(a) Case |σj | ≫ |σ1|

1
2 : We choose k = d, which fulfils Condi-

tion (∗∗), and any other l that does too. Then, |σd −σl| ≪ |σ1|,
and, as a combination of Equation (3.5) and the (sub-) case
condition, |σj − σd||σj − σl| ≫ |σj |2 ≫ |σ1|. Plugging every-
thing into Equation (3.3) gives

L ≪ log|σ1|(d−1)c

|y|d|σ1|
1

d−1
· |σ1|

|σ1|
= log|σ1|(d−1)c

|y|d|σ1|
1

d−1
.

(b) Case |σj | ≪ |σ1|
1
2 : We choose k = 1, which fulfils Condi-

tion (∗∗), and any other l that does too. Then, |σ1 − σl| ≪
|σ1|, |σj − σ1| ≫ |σ1|, while |σj − σl| ≫ |σj | ≫ |y|−1, as a
combination of Equation (3.5) and Equation (3.4).
Thus,

L ≪ log|σ1|(d−1)c

|y|d|σ1|
1

d−1
· |σ1|

|σ1||y|−1 = log|σ1|(d−1)c

|y|d−1|σ1|
1

d−1
.



630 Tobias Hilgart, Volker Ziegler

In all four cases, we have at least that

(3.6) L ≪ log|σ1|(d−1)c

|y|d−1|σ1|
1

d−1
,

and we now show that this bound is exponentially small (in t). To that end,
we write

log|σi| = log|σ̃i(γt1
1 · · ·γts

s )| = t1 log|γ(i)
1 | + · · · + ts log|γ(i)

s |.

This gives the system of linear equations
log|γ(1)

1 | · · · log|γ(1)
s |

... . . . ...
log|γ(d)

1 | · · · log|γ(d)
s |


︸ ︷︷ ︸

=:Γ

t1
...
ts

 =

log|σ1|
...

log|σd|



if done so for all i ∈ {1, . . . , d}. We take the maximum norm and use the
consistency ∥Ax∥ ≤ ∥A∥ · ∥x∥ to get
(3.7) log|σ1| ≤ c1t,

where c1 = ∥Γ∥max and does not depend on (x, y; t1, . . . , ts).
Similarly, since γ1, . . . ,γs are multiplicatively independent, the matrix

Γ has full column rank. Thus, Γ⊤Γ is invertible, we multiply with Γ⊤

and (Γ⊤Γ)−1 and take the maximum norm. This gives t ≤ c2 log|σ1| or
|σ1| ≥ e

1
c2

t.
We plug in the upper and lower bounds for |σ1| into Equation (3.6) and

get, by basically ignoring the contribution of |y| with |y| ≥ 1,

(3.8) L ≪ log|σ1|(d−1)c

|y|d−1|σ1|
1

d−1
≪ (c1t)(d−1)c

|y|d−1e
1

c2
t 1

d−1
≪ e−c3t

for some effectively computable constant c3.
We now return to Siegel’s Identity (3.2), apply the bound from Equa-

tion (3.8) and get log L′ = log|1 − L| ≪ e−c3t. Also note that L′ ̸= 1, since
L = βj

βk
· σk−σl
σj−σl

= 0 would imply that σk = σl but this is impossible per our
requirement that Q(γt1

1 · · ·γts
s ) = K. Thus,

0 ̸= |log L′| =
∣∣∣∣log

∣∣∣∣ βl

βk

∣∣∣∣+ log
∣∣∣∣σj − σk

σj − σl

∣∣∣∣∣∣∣∣ ≪ e−c3t.

Let us now call σA = max(|σj |, |σk|), σa = min(|σj |, |σk|) and σB =
max(|σj |, |σl|), σb = min(|σj |, |σl|). Then

log
∣∣∣∣σj − σk

σj − σl

∣∣∣∣ = log σA

σB
+ log

∣∣∣∣1 − σa
σA

1 − σb
σB

∣∣∣∣,
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and since k, l fulfil Condition (∗∗), both σa
σA

, σb
σB

≤ t−κ. Thus, log
∣∣∣∣ 1− σa

σA

1− σb
σB

∣∣∣∣ =

O(t−κ), which gives

Λ =
∣∣∣∣log

∣∣∣∣ βl

βk

∣∣∣∣+ log σA

σB

∣∣∣∣ ≪ t−κ.

Assume for now that Λ ̸= 0. Let r be the unit rank of our number
field. Then we have βk = (η(k)

1 )b1 · · · (η(k)
r )br in terms of the fundamental

units η1, . . . ,ηr of Z×
K , same for βl, while on the other hand we can write

σA = (γ(A)
1 )t1 · · · (γ(A)

s )ts , same for σB. We can thus write

(3.9) Λ =
∣∣∣∣∣

r∑
i=1

bi

(
log
∣∣∣η(l)

i

∣∣∣−log
∣∣∣η(k)

i

∣∣∣)+
s∑

i=1
ti

(
log
∣∣∣γ(A)

i

∣∣∣−log
∣∣∣γ(B)

i

∣∣∣)∣∣∣∣∣ ≪ t−κ.

We now argue that we can bound the bi and thus all coefficients of Λ by
t, then apply Proposition 2.1.

To that end, note that for any i ̸= j, we have that

log|βi| = log|x − σjy + y(σj − σi)|

= log|y| + log|σi − σj | + log
∣∣∣∣1 + βj

y|σi − σj |

∣∣∣∣
≪ log|y| + log|σi − σj |.

On the one hand, we have |σi − σj | ≤ 2 max(|σi|, |σj |) ≪ |σ1|. On the
other hand, we have by Lemma 2.3 and Equation (3.4) that

|σi − σj | ≥ max(|σi|, |σj |) − min(|σi|, |σj |) >
max(|σi|, |σj |)

h(σi)c
≫ 1

|y|h(σi)c
.

We thus have

|log|σi − σj || ≪ max(log|σ1|, log|y| + log h(σi)),

where we have, as a reminder, h(σi) ≪ log|σ1| by looking at the Mahler
measure to compute the height, and log|σ1| ≪ t by Equation (3.7). This
gives log|σi − σj | ≪ log y + t and thus

log|βi| ≪ log|y| + t

for all i ̸= j. We also get the same bound for the positive quantity − log|βj |,
since by the above inequality,

− log|βj | =
d∑

i=1,i ̸=j

log|βi| ≪ log|y| + t.

Next, we look at the coefficients of the polynomial (X −σ1) · · · (X −σd).
Their absolute values can obviously be bounded by |σ1|d and |σ1|d ≤ ed c1t
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by Equation (3.7). If we then apply Proposition 2.2 with H = ed c1t, since
R ≪ 1 as it does not depend on the ti, we get that

(3.10) log|x|, log|y| ≪ t

and thus

(3.11) |log|βi|| ≪ log|y| + t ≪ t

for all i ∈ {1, . . . , d}.
We return to our decomposition into powers of fundamental units,

βi = (η(i)
1 )b1 · · · (η(i)

r )br .

Doing this for all i = 1, . . . , r, and we only care that the unit rank r < d,
reveals that (b1, . . . , br) is a solution to the system of linear equations

log|η(1)
1 | · · · log|η(1)

r |
... . . . ...

log|η(r)
1 | · · · log|η(r)

r |


︸ ︷︷ ︸

=H

b1
...

br

 =

log|β1|
...

log|βr|

 .

Since the ηi are multiplicatively independent, the matrix H is invertible.
We multiply with the inverse H−1 and apply the maximum norm, which
gives, in combination with Equation (3.10),

(3.12) max
i

|bi| ≤ c4 max
i

log|βi| ≪ t,

where c4 = ∥H−1∥max.
If we return to Equation (3.9), we have bounded the absolute value of

every coefficient by t. The heights of the η
(·)
i ,γ

(·)
i do not depend on x, y

or the ti and are thus bounded by an effectively computable constant.
In the case that Λ ̸= 0, we plug everything into Proposition 2.1, with
hi ≪ 1, B ≪ t and get log|Λ| ≥ c5 log t for some effectively computable
constant c5. If we compare this with the logarithm of the upper bound
from Equation (3.9), we get that κ log t ≤ c5 log t.

Now, if κ is sufficiently large, i.e. larger than the constant c5 which itself
is independent from κ, we get that t ≪ 1.

We now have to check what happens if the linear form vanishes instead,
i.e. if Λ = 0. In this case, we have that βl

βk
= σB

σA
and have to differentiate

between four cases:
(1) Case A = B = j: This implies βl = βk and thus σl = σk, which we

again ruled out by requiring that Q(γt1
1 · · ·γts

s ) = K.
(2) Case A = k, B = l: This implies βlσk = βkσl, if we plug this into

Siegel’s Identity (3.1), it then gives βj(σk − σl) = βlσj + βkσj and
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thus
βj(σk − σl)

βlσj
− 1 = βk

βl
.

The fraction on the left-hand side is ≪ e−c6t, which follows com-
pletely analogously to how we showed Equation (3.8), that L ≪
e−c3t. Thus,

log
∣∣∣∣βk

βl

∣∣∣∣ = log(1 − O(e−c6t)) ≪ e−c6t,

and the first equality also implies that log|βk/βl| ̸= 0. We now do
the same thing, i.e. write βi = (η(i)

1 )b1 · · · (η(i)
r )br and apply Propo-

sition 2.1 to the linear form 0 ̸= log|βk/βl| ≪ e−c6t, since |bi| ≪ t
by Equation (3.12), and deduce t ≪ 1.

(3) Case A = k, B = j: First, this means that |σk| > |σj | > |σl|.
Second, this implies βlσk = βkσj and thus βj(σk − σl) + βlσj +
βkσl − 2βkσj = 0, if we plug it into Siegel’s Identity (3.1). This
gives

βj(σk − σl)
2βkσj

+ σl

2σj
− 1 = − βl

2βk
.

The first fraction on the left-hand side is ≪ e−c7t, analogously
to how we showed L ≪ e−c3t. The second fraction |σl/σj | ≪ t−κ,
since l fulfils Condition (∗∗) and |σj | ≥ |σl|. This gives

0 ̸=
∣∣∣∣log

∣∣∣∣ βl

βk

∣∣∣∣− log 2
∣∣∣∣ ≪ t−κ,

and thus t ≪ 1 analogously to the case Λ ̸= 0.
(4) Case A = j, B = l: This is analogous to the previous case. We now

have |σl| ≥ |σj | ≥ |σk| and βlσj = βkσl and get, by plugging this
into Siegel’s Identity (3.1),

−βj(σk − σl)
2βlσj

+ σk

2σj
− 1 = − βk

2βl
.

The first fraction on the left-hand side is again ≪ e−c8t, analogously
to L ≪ e−c3t, while the second fraction is ≪ t−κ, since k fulfils
Condition (∗∗) and |σj | ≥ |σk|. This gives

0 ̸=
∣∣∣∣log

∣∣∣∣βk

βl

∣∣∣∣− log 2
∣∣∣∣ ≪ t−κ

and thus t ≪ 1 analogously to the case Λ ̸= 0.
We have proven t ≪ 1 in all four subcases and thus throughout Case 1.

If we plug this into Equation (3.10), we have |x|, |y| ≪ 1 and thus an effec-
tively computable upper bound to the size of the solutions, which means
that there are only finitely many.
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3.2. Case 2. If Condition (∗∗) does not hold, then log|σi/σj | ≪ log t holds
instead for all but one index i ∈ {1, . . . , d}\{j}. We rename the indices so
it holds for i = 1, . . . , d − 2, while j = d. We lose the ordering of σ1, . . . ,σd

but do not need this in the following arguments.
If we rewrite log|σi/σd| ≪ log t for i ∈ {1, . . . , d − 2}, then this means

that

(3.13)


log|γ

(1)
1

γ
(d)
1

| · · · log|γ
(1)
s

γ
(d)
s

|
... . . . ...

log|γ
(d−2)
1
γ

(d)
1

| · · · log|γ
(d−2)
s

γ
(d)
s

|


︸ ︷︷ ︸

=Γ

t1
...
ts

 ≪

log t
...

log t



holds. The matrix Γ has full column rank per Condition (∗) in our theorem.
Thus Γ⊤Γ is invertible. We multiply both sides first with Γ⊤ and then
(Γ⊤Γ)−1 and apply the maximum norm.

Since the matrix does not depend on (x, y; t1, . . . , ts), neither does their
norm, and after using ∥Ax∥ ≤ ∥A∥ · ∥x∥, we get t ≪ log t and thus t ≪ 1.

If we plug this into Equation (3.10), we can use Proposition 2.2 in Case 2
as well to derive said inequality, we get that |x|, |y| ≪ 1, which proves
Theorem 1.1.

If we assume Schanuel’s conjecture, then it follows from the Q-linear
independency of γ1, . . . ,γs that the matrix Γ from Equation (3.13) has full
rank. For the sake of completeness, we state this as a second Theorem:

Theorem 3.1. Let K be a number field of degree d ≥ 3 and s ≤ d − 2.
Furthermore, let γ1, . . .γs ∈ K∗ be multiplicatively independent and Q-
linearly independent algebraic integers.

If Schanuel’s conjecture holds, then the Thue equation

|NK/Q(X − γt1
1 · · ·γts

s Y )| = 1

has only finitely many solutions (x, y; t1, . . . , ts) ∈ Z2 × Ns, where xy ̸= 0
and Q(γt1

1 · · ·γts
s ) = K, all of which can be effectively computed.

Proof. The proof for Case 1 of Theorem 1.1 can be carried over par for par.
We adapt it for Case 2, i.e. let Equation (3.13) hold.

Assume that the matrix Γ does not have full rank, that there exist
x1, . . . , xs, not all zero such that

x1


log|γ

(1)
1

γ
(d)
1

|
...

log|γ
(d−2)
1
γ

(d)
1

|

+ · · · + xs


log|γ

(1)
s

γ
(d)
s

|
...

log|γ
(d−2)
s

γ
(d)
s

|

 =

0
...
0

 .
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If we rewrite this slightly, then this means that
log|γ(1)

1 | · · · log|γ(1)
s |

... . . . ...
log|γ(d−2)

1 | · · · log|γ(d−2)
s |


x1

...
xs

 =

λ...
λ

 ,

where λ = x1 log|γ(d)
1 |+· · ·+xs log|γ(d)

s | ≠ 0, since the γi are multiplicatively
independent. Thus λ is a non-zero eigenvalue of the matrix on the left-hand
side, which in turn means that λ and log|γ(i)

1 |, . . . , log|γ(i)
s | are algebraically

dependent. But Schanuel’s conjecture asserts that if γ1, . . . ,γs are linearly
independent over Q then log|γ1|, . . . , log|γs| are algebraically independent
over Q. This gives the contradiction and thus the full rank for the original
matrix Γ .

We can then proceed analogously to the proof of Case 1 and derive t ≪ 1
and thus |x|, |y| ≪ 1. □
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