Nous donnons une formule de produit d’Euler–Hadamard hybride pour les fonctions de Dirichlet du corps Nous déterminons explicitement le terme principal du moment d’ordre du produit eulérien et, en utilisant la théorie des matrices aléatoires, proposons une formule conjecturale pour le moment d’ordre du produit d’Hadamard. Avec une conjecture de scindage, ça nous ramène à une conjecture sur le moment d’ordre des fonctions de Dirichlet. En faveur de la conjecture de scindage, nous démontrons qu’elle est vraie pour Ce travail est l’analogue pour les corps de fonctions du travail de Bui et Keating. La différence la plus importante est que dans notre cas la formule de produit d’Euler–Hadamard est exacte (sans terme d’erreur).
For Dirichlet -functions in we obtain a hybrid Euler–Hadamard product formula. We explicitly obtain the main term of the -th moment of the Euler product, and we conjecture via random matrix theory the main term of the -th moment of the Hadamard product. Then making a splitting conjecture, this leads to a conjecture for the -th moment of Dirichlet -functions. Finally, we lend support for the splitting conjecture by proving the cases . This work is the function field analogue of the work of Bui and Keating, with the most notable difference being that the Euler–Hadamard product formula is exact in this setting (no error term).
Accepté le :
Publié le :
Mots clés : hybrid Euler–Hadamard product, moments, Dirichlet $L$-functions, function fields, random matrix theory
@article{JTNB_2024__36_2_557_0, author = {Michael Yiasemides}, title = {The {Hybrid} {Euler{\textendash}Hadamard} {Product} {Formula} for {Dirichlet} $L$-functions in $\mathbb{F}_q{[T]}$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {557--619}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1289}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/} }
TY - JOUR AU - Michael Yiasemides TI - The Hybrid Euler–Hadamard Product Formula for Dirichlet $L$-functions in $\mathbb{F}_q{[T]}$ JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 557 EP - 619 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/ DO - 10.5802/jtnb.1289 LA - en ID - JTNB_2024__36_2_557_0 ER -
%0 Journal Article %A Michael Yiasemides %T The Hybrid Euler–Hadamard Product Formula for Dirichlet $L$-functions in $\mathbb{F}_q{[T]}$ %J Journal de théorie des nombres de Bordeaux %D 2024 %P 557-619 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/ %R 10.5802/jtnb.1289 %G en %F JTNB_2024__36_2_557_0
Michael Yiasemides. The Hybrid Euler–Hadamard Product Formula for Dirichlet $L$-functions in $\mathbb{F}_q{[T]}$. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 557-619. doi : 10.5802/jtnb.1289. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/
[1] Truncated Product Representations for -functions in the Hyperelliptic Ensemble, Mathematika, Volume 64 (2018) no. 1, pp. 137-158 | DOI | Zbl
[2] The Fourth Power Mean of Dirichlet -functions in , Rev. Mat. Complut., Volume 34 (2021) no. 1, pp. 239-296 | DOI | Zbl
[3] A Quadratic Divisor Problem and Moments of the Riemann Zeta-function, J. Eur. Math. Soc., Volume 22 (2020) no. 12, pp. 3953-3980 | DOI | Zbl
[4] On the Distribution of Zeros of Linear Combinations of Euler Products, Duke Math. J., Volume 80 (1995) no. 3, pp. 821-862
[5] Hybrid Euler–Hadamard Product for Quadratic Dirichlet -functions in Function Fields, Proc. Lond. Math. Soc., Volume 117 (2018) no. 3, pp. 65-99 | Zbl
[6] A Hybrid Euler-Hadamard Product and Moments of , Forum Math., Volume 27 (2015) no. 3, pp. 1799-1828 | Zbl
[7] On the Mean Values of Dirichlet -functions, Proc. Lond. Math. Soc., Volume 95 (2007) no. 2, pp. 273-298 | Zbl
[8] Mean Values of -functions and Symmetry, Int. Math. Res. Not., Volume 2000 (2000) no. 17, pp. 883-908 | DOI | Zbl
[9] Integral Moments of -functions, Proc. Lond. Math. Soc., Volume 91 (2005) no. 1, pp. 33-104 | DOI | Zbl
[10] A Conjecture for the Sixth Power Moment of the Riemann Zeta-function, Int. Math. Res. Not., Volume 1998 (1998) no. 15, pp. 775-780 | DOI | Zbl
[11] High Moments Of The Riemann Zeta-Function, Duke Math. J., Volume 107 (1999) no. 3, pp. 577-604 | Zbl
[12] Asymptotic Mean Square of the Product of the Second Power of the Riemann Zeta Function and a Dirichlet Polynomial, Ph. D. Thesis, University of Rochester (1997)
[13] Applications of Mean Value Theorems to the Theory of the Riemann Zeta Function, Recent Perspectives in Random Matrix Theory and Number Theory (Francesco Mezzadri; Nina C. Snaith, eds.) (London Mathematical Society Lecture Note Series), Cambridge University Press, 2005, pp. 201-224 | DOI | Zbl
[14] A Hybrid Euler-Hadamard Product for the Riemann Zeta Function, Duke Math. J., Volume 136 (2007) no. 3, pp. 507-549 | Zbl
[15] Contributions to the Theory of the Riemann Zeta-function and the Theory of the Distribution of Primes, Acta Math., Volume 41 (1917), pp. 119-196 | DOI | Zbl
[16] On the Splitting Conjecture in the Hybrid Model for the Riemann Zeta Function, Forum Math., Volume 35 (2023) no. 2, pp. 329-362 | DOI | Zbl
[17] The Angle of Large Values of L-functions, J. Number Theory, Volume 167 (2016), pp. 353-393 | DOI | Zbl
[18] The Twisted Fourth Moment of the Riemann Zeta Function, J. Reine Angew. Math., Volume 641 (2010), pp. 203-236 | Zbl
[19] Mean-value Theorems in the Theory of the Riemann Zeta-function, Proc. Lond. Math. Soc., Volume 27 (1926), pp. 273-300 | Zbl
[20] Zeroes of Zeta Functions and Symmetry, Bull. Am. Math. Soc., Volume 36 (1999) no. 1, pp. 1-26 | DOI | Zbl
[21] Random Matrix Theory and -functions at , Commun. Math. Phys., Volume 214 (2000) no. 1, pp. 91-110 | DOI | Zbl
[22] Random Matrix Theory and , Commun. Math. Phys., Volume 214 (2000) no. 1, pp. 57-89 | DOI | Zbl
[23] The Pair Correlation of Zeros of the Zeta Function, Analytic Number Theory (Harold G. Diamond, ed.) (Proceedings of Symposia in Pure Mathematics), Volume 24, American Mathematical Society, 1973, pp. 181-193 | DOI | Zbl
[24] The Riemann Zeta-function and Hecke Congruence Subgroups. II, J. Res. Inst. Sci. Tech., Volume 2009 (2009) no. 119, pp. 29-64
[25] A Generalization of Mertens’ Theorem, J. Ramanujan Math. Soc., Volume 14 (1999), pp. 1-19 | Zbl
[26] Number Theory in Function Fields, Graduate Texts in Mathematics, 210, Springer, 2002, xii+358 pages | DOI
[27] Mollification of the Fourth Moment of Dirichlet -functions, Acta Arith., Volume 191 (2019) no. 3, pp. 201-257 | DOI | Zbl
Cité par Sources :