For Dirichlet
Nous donnons une formule de produit d’Euler–Hadamard hybride pour les fonctions
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1289
Mots-clés : hybrid Euler–Hadamard product, moments, Dirichlet
Michael Yiasemides 1

@article{JTNB_2024__36_2_557_0, author = {Michael Yiasemides}, title = {The {Hybrid} {Euler{\textendash}Hadamard} {Product} {Formula} for {Dirichlet} $L$-functions in $\mathbb{F}_q{[T]}$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {557--619}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1289}, mrnumber = {4830943}, zbl = {07948978}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/} }
TY - JOUR AU - Michael Yiasemides TI - The Hybrid Euler–Hadamard Product Formula for Dirichlet $L$-functions in $\mathbb{F}_q{[T]}$ JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 557 EP - 619 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/ DO - 10.5802/jtnb.1289 LA - en ID - JTNB_2024__36_2_557_0 ER -
%0 Journal Article %A Michael Yiasemides %T The Hybrid Euler–Hadamard Product Formula for Dirichlet $L$-functions in $\mathbb{F}_q{[T]}$ %J Journal de théorie des nombres de Bordeaux %D 2024 %P 557-619 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/ %R 10.5802/jtnb.1289 %G en %F JTNB_2024__36_2_557_0
Michael Yiasemides. The Hybrid Euler–Hadamard Product Formula for Dirichlet $L$-functions in $\mathbb{F}_q{[T]}$. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 557-619. doi : 10.5802/jtnb.1289. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/
[1] Truncated Product Representations for
[2] The Fourth Power Mean of Dirichlet
[3] A Quadratic Divisor Problem and Moments of the Riemann Zeta-function, J. Eur. Math. Soc., Volume 22 (2020) no. 12, pp. 3953-3980 | DOI | MR | Zbl
[4] On the Distribution of Zeros of Linear Combinations of Euler Products, Duke Math. J., Volume 80 (1995) no. 3, pp. 821-862 | MR
[5] Hybrid Euler–Hadamard Product for Quadratic Dirichlet
[6] A Hybrid Euler-Hadamard Product and Moments of
[7] On the Mean Values of Dirichlet
[8] Mean Values of
[9] Integral Moments of
[10] A Conjecture for the Sixth Power Moment of the Riemann Zeta-function, Int. Math. Res. Not., Volume 1998 (1998) no. 15, pp. 775-780 | DOI | MR | Zbl
[11] High Moments Of The Riemann Zeta-Function, Duke Math. J., Volume 107 (1999) no. 3, pp. 577-604 | MR | Zbl
[12] Asymptotic Mean Square of the Product of the Second Power of the Riemann Zeta Function and a Dirichlet Polynomial, Ph. D. Thesis, University of Rochester (1997)
[13] Applications of Mean Value Theorems to the Theory of the Riemann Zeta Function, Recent Perspectives in Random Matrix Theory and Number Theory (Francesco Mezzadri; Nina C. Snaith, eds.) (London Mathematical Society Lecture Note Series), Cambridge University Press, 2005, pp. 201-224 | DOI | Zbl
[14] A Hybrid Euler-Hadamard Product for the Riemann Zeta Function, Duke Math. J., Volume 136 (2007) no. 3, pp. 507-549 | MR | Zbl
[15] Contributions to the Theory of the Riemann Zeta-function and the Theory of the Distribution of Primes, Acta Math., Volume 41 (1917), pp. 119-196 | DOI | MR | Zbl
[16] On the Splitting Conjecture in the Hybrid Model for the Riemann Zeta Function, Forum Math., Volume 35 (2023) no. 2, pp. 329-362 | DOI | MR | Zbl
[17] The Angle of Large Values of L-functions, J. Number Theory, Volume 167 (2016), pp. 353-393 | DOI | MR | Zbl
[18] The Twisted Fourth Moment of the Riemann Zeta Function, J. Reine Angew. Math., Volume 641 (2010), pp. 203-236 | MR | Zbl
[19] Mean-value Theorems in the Theory of the Riemann Zeta-function, Proc. Lond. Math. Soc., Volume 27 (1926), pp. 273-300 | MR | Zbl
[20] Zeroes of Zeta Functions and Symmetry, Bull. Am. Math. Soc., Volume 36 (1999) no. 1, pp. 1-26 | DOI | MR | Zbl
[21] Random Matrix Theory and
[22] Random Matrix Theory and
[23] The Pair Correlation of Zeros of the Zeta Function, Analytic Number Theory (Harold G. Diamond, ed.) (Proceedings of Symposia in Pure Mathematics), Volume 24, American Mathematical Society, 1973, pp. 181-193 | DOI | Zbl
[24] The Riemann Zeta-function and Hecke Congruence Subgroups. II, J. Res. Inst. Sci. Tech., Volume 2009 (2009) no. 119, pp. 29-64
[25] A Generalization of Mertens’ Theorem, J. Ramanujan Math. Soc., Volume 14 (1999), pp. 1-19 | MR | Zbl
[26] Number Theory in Function Fields, Graduate Texts in Mathematics, 210, Springer, 2002, xii+358 pages | DOI | MR
[27] Mollification of the Fourth Moment of Dirichlet
Cité par Sources :