The Hybrid Euler–Hadamard Product Formula for Dirichlet L-functions in 𝔽 q [T]
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 557-619.

Nous donnons une formule de produit d’Euler–Hadamard hybride pour les fonctions L de Dirichlet du corps 𝔽 q [T]. Nous déterminons explicitement le terme principal du moment d’ordre 2k du produit eulérien et, en utilisant la théorie des matrices aléatoires, proposons une formule conjecturale pour le moment d’ordre 2k du produit d’Hadamard. Avec une conjecture de scindage, ça nous ramène à une conjecture sur le moment d’ordre 2k des fonctions L de Dirichlet. En faveur de la conjecture de scindage, nous démontrons qu’elle est vraie pour k=1,2. Ce travail est l’analogue pour les corps de fonctions du travail de Bui et Keating. La différence la plus importante est que dans notre cas la formule de produit d’Euler–Hadamard est exacte (sans terme d’erreur).

For Dirichlet L-functions in 𝔽 q [T] we obtain a hybrid Euler–Hadamard product formula. We explicitly obtain the main term of the 2k-th moment of the Euler product, and we conjecture via random matrix theory the main term of the 2k-th moment of the Hadamard product. Then making a splitting conjecture, this leads to a conjecture for the 2k-th moment of Dirichlet L-functions. Finally, we lend support for the splitting conjecture by proving the cases k=1,2. This work is the function field analogue of the work of Bui and Keating, with the most notable difference being that the Euler–Hadamard product formula is exact in this setting (no error term).

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1289
Classification : 11M06, 11M26, 11M50, 11R59
Mots clés : hybrid Euler–Hadamard product, moments, Dirichlet $L$-functions, function fields, random matrix theory
Michael Yiasemides 1

1 School of Mathematical Sciences University of Nottingham Nottingham, NG7 2RD, UK
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_557_0,
     author = {Michael Yiasemides},
     title = {The {Hybrid} {Euler{\textendash}Hadamard} {Product} {Formula} for {Dirichlet} $L$-functions in $\mathbb{F}_q{[T]}$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {557--619},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     year = {2024},
     doi = {10.5802/jtnb.1289},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/}
}
TY  - JOUR
AU  - Michael Yiasemides
TI  - The Hybrid Euler–Hadamard Product Formula for Dirichlet $L$-functions in $\mathbb{F}_q{[T]}$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 557
EP  - 619
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/
DO  - 10.5802/jtnb.1289
LA  - en
ID  - JTNB_2024__36_2_557_0
ER  - 
%0 Journal Article
%A Michael Yiasemides
%T The Hybrid Euler–Hadamard Product Formula for Dirichlet $L$-functions in $\mathbb{F}_q{[T]}$
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 557-619
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/
%R 10.5802/jtnb.1289
%G en
%F JTNB_2024__36_2_557_0
Michael Yiasemides. The Hybrid Euler–Hadamard Product Formula for Dirichlet $L$-functions in $\mathbb{F}_q{[T]}$. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 557-619. doi : 10.5802/jtnb.1289. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1289/

[1] Julio C. Andrade; Steven M. Gonek; Jonathan P. Keating Truncated Product Representations for L-functions in the Hyperelliptic Ensemble, Mathematika, Volume 64 (2018) no. 1, pp. 137-158 | DOI | Zbl

[2] Julio C. Andrade; Michael Yiasemides The Fourth Power Mean of Dirichlet L-functions in 𝔽 q [T], Rev. Mat. Complut., Volume 34 (2021) no. 1, pp. 239-296 | DOI | Zbl

[3] Sandro Bettin; Hung M. Bui; Xiannan Li; Maksym Radziwiłł A Quadratic Divisor Problem and Moments of the Riemann Zeta-function, J. Eur. Math. Soc., Volume 22 (2020) no. 12, pp. 3953-3980 | DOI | Zbl

[4] Enrico Bombieri; Dennis Hejhal On the Distribution of Zeros of Linear Combinations of Euler Products, Duke Math. J., Volume 80 (1995) no. 3, pp. 821-862

[5] Hung M. Bui; Alexandra Florea Hybrid Euler–Hadamard Product for Quadratic Dirichlet L-functions in Function Fields, Proc. Lond. Math. Soc., Volume 117 (2018) no. 3, pp. 65-99 | Zbl

[6] Hung M. Bui; Steven M. Gonek; Micah Milinovich A Hybrid Euler-Hadamard Product and Moments of ζ (ρ), Forum Math., Volume 27 (2015) no. 3, pp. 1799-1828 | Zbl

[7] Hung M. Bui; Jonathan P. Keating On the Mean Values of Dirichlet L-functions, Proc. Lond. Math. Soc., Volume 95 (2007) no. 2, pp. 273-298 | Zbl

[8] John B. Conrey; David W. Farmer Mean Values of L-functions and Symmetry, Int. Math. Res. Not., Volume 2000 (2000) no. 17, pp. 883-908 | DOI | Zbl

[9] John B. Conrey; David W. Farmer; Jonathan P. Keating; Michael O. Rubinstein; Nina C. Snaith Integral Moments of L-functions, Proc. Lond. Math. Soc., Volume 91 (2005) no. 1, pp. 33-104 | DOI | Zbl

[10] John B. Conrey; Amit Ghosh A Conjecture for the Sixth Power Moment of the Riemann Zeta-function, Int. Math. Res. Not., Volume 1998 (1998) no. 15, pp. 775-780 | DOI | Zbl

[11] John B. Conrey; Steven M. Gonek High Moments Of The Riemann Zeta-Function, Duke Math. J., Volume 107 (1999) no. 3, pp. 577-604 | Zbl

[12] J. A. Gaggero Jara Asymptotic Mean Square of the Product of the Second Power of the Riemann Zeta Function and a Dirichlet Polynomial, Ph. D. Thesis, University of Rochester (1997)

[13] Steven M. Gonek Applications of Mean Value Theorems to the Theory of the Riemann Zeta Function, Recent Perspectives in Random Matrix Theory and Number Theory (Francesco Mezzadri; Nina C. Snaith, eds.) (London Mathematical Society Lecture Note Series), Cambridge University Press, 2005, pp. 201-224 | DOI | Zbl

[14] Steven M. Gonek; C. P. Hughes; Jonathan P. Keating A Hybrid Euler-Hadamard Product for the Riemann Zeta Function, Duke Math. J., Volume 136 (2007) no. 3, pp. 507-549 | Zbl

[15] Godfrey H. Hardy; John E. Littlewood Contributions to the Theory of the Riemann Zeta-function and the Theory of the Distribution of Primes, Acta Math., Volume 41 (1917), pp. 119-196 | DOI | Zbl

[16] Winston Heap On the Splitting Conjecture in the Hybrid Model for the Riemann Zeta Function, Forum Math., Volume 35 (2023) no. 2, pp. 329-362 | DOI | Zbl

[17] Bob Hough The Angle of Large Values of L-functions, J. Number Theory, Volume 167 (2016), pp. 353-393 | DOI | Zbl

[18] C. P. Hughes; Matthew P. Young The Twisted Fourth Moment of the Riemann Zeta Function, J. Reine Angew. Math., Volume 641 (2010), pp. 203-236 | Zbl

[19] Albert E. Ingham Mean-value Theorems in the Theory of the Riemann Zeta-function, Proc. Lond. Math. Soc., Volume 27 (1926), pp. 273-300 | Zbl

[20] Nicholas M. Katz; Peter Sarnak Zeroes of Zeta Functions and Symmetry, Bull. Am. Math. Soc., Volume 36 (1999) no. 1, pp. 1-26 | DOI | Zbl

[21] Jonathan P. Keating; Nina C. Snaith Random Matrix Theory and L-functions at s=1 2, Commun. Math. Phys., Volume 214 (2000) no. 1, pp. 91-110 | DOI | Zbl

[22] Jonathan P. Keating; Nina C. Snaith Random Matrix Theory and ζ(1 2+it), Commun. Math. Phys., Volume 214 (2000) no. 1, pp. 57-89 | DOI | Zbl

[23] Hugh L. Montgomery The Pair Correlation of Zeros of the Zeta Function, Analytic Number Theory (Harold G. Diamond, ed.) (Proceedings of Symposia in Pure Mathematics), Volume 24, American Mathematical Society, 1973, pp. 181-193 | DOI | Zbl

[24] Yoichi Motohashi The Riemann Zeta-function and Hecke Congruence Subgroups. II, J. Res. Inst. Sci. Tech., Volume 2009 (2009) no. 119, pp. 29-64

[25] Michael Rosen A Generalization of Mertens’ Theorem, J. Ramanujan Math. Soc., Volume 14 (1999), pp. 1-19 | Zbl

[26] Michael Rosen Number Theory in Function Fields, Graduate Texts in Mathematics, 210, Springer, 2002, xii+358 pages | DOI

[27] Raphaël Zacharias Mollification of the Fourth Moment of Dirichlet L-functions, Acta Arith., Volume 191 (2019) no. 3, pp. 201-257 | DOI | Zbl

Cité par Sources :