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The Hybrid Euler–Hadamard Product Formula
for Dirichlet L-functions in Fq[T ]

par Michael YIASEMIDES

Résumé. Nous donnons une formule de produit d’Euler–Hadamard hybride
pour les fonctions L de Dirichlet du corps Fq[T ]. Nous déterminons explici-
tement le terme principal du moment d’ordre 2k du produit eulérien et, en
utilisant la théorie des matrices aléatoires, proposons une formule conjectu-
rale pour le moment d’ordre 2k du produit d’Hadamard. Avec une conjecture
de scindage, ça nous ramène à une conjecture sur le moment d’ordre 2k des
fonctions L de Dirichlet. En faveur de la conjecture de scindage, nous démon-
trons qu’elle est vraie pour k = 1, 2. Ce travail est l’analogue pour les corps
de fonctions du travail de Bui et Keating. La différence la plus importante est
que dans notre cas la formule de produit d’Euler–Hadamard est exacte (sans
terme d’erreur).

Abstract. For Dirichlet L-functions in Fq[T ] we obtain a hybrid Euler–
Hadamard product formula. We explicitly obtain the main term of the 2k-th
moment of the Euler product, and we conjecture via random matrix theory
the main term of the 2k-th moment of the Hadamard product. Then mak-
ing a splitting conjecture, this leads to a conjecture for the 2k-th moment of
Dirichlet L-functions. Finally, we lend support for the splitting conjecture by
proving the cases k = 1, 2. This work is the function field analogue of the
work of Bui and Keating, with the most notable difference being that the
Euler–Hadamard product formula is exact in this setting (no error term).

1. Introduction and Statement of Results
Moments of L-functions are natural statistics to study if one wishes to

understand the L-functions; and they have several important applications
such as non-vanishing results, zero-density estimates, and the proportion
of zeros on the critical line [13]. Asymptotic results have been obtained
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up to the fourth moment, while for higher moments only bounds have
been rigorously obtained. Conjectures have been made for the asymptotic
behaviour of higher moments. To illustrate the progress, let us consider the
Riemann zeta-function and its behaviour on the critical line. Hardy and
Littlewood [15] showed that

1
T

∫ T

t=0

∣∣∣∣ζ(1
2 + it

)∣∣∣∣2dt ∼ log T,

as T → ∞, and it was shown by Ingham [19] that

1
T

∫ T

t=0

∣∣∣∣ζ(1
2 + it

)∣∣∣∣4dt ∼ 1
12

6
π2 (log T )4

as T → ∞. For higher moments we have what is often referred to as a
folklore conjecture: For integers k ≥ 0,

lim
T →∞

1
(log T )k2

1
T

∫ T

t=0

∣∣∣∣ζ(1
2 + it

)∣∣∣∣2k

dt = f(k)a(k),(1.1)

where f(k) is a real-valued function and

a(k) :=
∏
p

((
1 − 1

p

)k2 ∞∑
m=0

dk(pm)2

pm

)
.

We have a(0) = 1, a(1) = 1, a(2) = 1
ζ(2) = 6

π2 , and we have an understand-
ing of a(k) for higher values of k. The factor f(k) is more elusive. Clearly,
from the results described above, we have f(0) = 1, f(1) = 1, f(2) = 1

12 . It
has been conjectured via number-theoretic means that f(3) = 42

9! [10] and
f(4) = 24024

16! [11]. For conjectures on higher powers one can use the random
matrix theory approach of Keating and Snaith [22] or the recipe developed
by Conrey, Farmer, Keating, Rubinstein, and Snaith [9]. All conjectures are
in agreement with each other and the established rigorous results.

In this paper we focus on the random matrix theory aspect. Montgomery
and Dyson observed that the pair correlation of the non-trivial zeros of
ζ(s) behaves similarly to the pair correlation of eigenvalues of a random
Hermitian matrix [23]. Given that the eigenvalues of a matrix are the zeros
of its characteristic polynomial, one can consider modelling ζ(s) on the
critical line with the characteristic polynomials of unitary matrices. Indeed,
by calculating the moments of these characteristic polynomials, Keating
and Snaith [22] conjectured that f(k) :=

∏k−1
j=0

j!
(j+k)! . Note this agrees with

the results and conjectures that were established previously for k = 2, 4, 6, 8.
However, this approach did not introduce the factor a(k) in (1.1) in a nat-

ural way. In effect, the random matrices did not model ζ(s) in its entirety.
This was addressed by Gonek, Hughes, and Keating [14] who expressed ζ(s)
as a hybrid Euler–Hadamard product: ζ(s) ≈ PX(s)ZX(s), where PX(s) is
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a roughly a partial Euler product and ZX(s) is roughly a partial Hadamard
product (a product over the zeros of ζ(s)). The variable X determines the
contribution of each factor. They conjectured that, asymptotically, the 2k-
th moment of ζ(s) on the critical line can be factored into the 2k-th moment
of PX(s) multiplied by the 2k-th moment of ZX(s) (known as the splitting
conjecture); and they showed that the former contributes the factor a(k)
in (1.1) and conjectured via random matrix theory that the latter con-
tributes the factor f(k). That is, they obtained a conjecture for the 2k-th
moment of ζ(s) in a way that the factor a(k) appears naturally. They also
lent support for the splitting conjecture by demonstrating that it holds for
the cases k = 1, 2.

This approach, using an Euler–Hadamard hybrid formula, was later ap-
plied to discrete moments of the derivative of the Riemann zeta-function
by Bui, Gonek, and Milinovich [6].

Furthermore, the relationship between random matrix theory and the
Riemann zeta-function extends to families of L-functions [20]. Indeed, the
proportion of L-functions in a certain family that have j-th zero in some
interval [a, b] appears to be the same as the proportion of matrices in a
certain matrix ensemble that have j-th eigenvalue in [a, b]. The ensemble
depends on the family; the size of the matrices depends on the conductor
q of the family; and the observation is made as q → ∞.

We can consider, for example, the family of Dirichlet L-functions. The as-
sociated ensemble of matrices is the unitary matrices [8, p. 887]. By making
use of this relationship, and using the Euler–Hadamard product approach
described above, Bui and Keating [7] conjectured that

(1.2) 1
ϕ∗(q)

∑∗

χ mod q

∣∣∣∣L(1
2 , χ

)∣∣∣∣2k

∼ a(k) G2(k + 1)
G(2k + 1)

∏
p|q

( ∞∑
m=0

dk(pm)2

pm

)−1

(log q)k2

as q → ∞. L(s, χ) is the Dirichlet L-function associated with the Dirichlet
character χ; ϕ∗(q) is the number of primitive Dirichlet characters of modu-
lus q; the star in the sum indicates the sum is over primitive characters only;
and G(z) is the Barnes G-function. This had been conjectured previously
(see [21]), but this approach allows for all the factors to appear naturally.

One can consider the above problems in the function field setting. In
fact, it is this setting that gives some insight into the relationship between
random matrix theory and number theory [20, Section 3]. In function fields,
Bui and Florea [5] developed the hybrid Euler–Hadamard product model for
the family of quadratic Dirichlet L-functions. In this paper we do the same
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for Dirichlet L-functions of any primitive character, which is the function
field analogue of the work of Bui and Keating described above.

In what follows, we define A := Fq[T ], where q is a prime power (not to
be confused with q previously which represents the conductor); and L(s, χ)
is the Dirichlet L-function associated to the Dirichlet character χ on A.
The set of monics are represented by M, and the set of monic primes by
P. For a general S ⊂ A, the restriction to elements of degree n is denoted
by Sn. For A ∈ A\{0} we define |A| := qdeg A, and we take |0| := 0. The
aim of this paper is to provide support for the following conjecture, which
is the analogue of (1.2), in such a way that all factors appear naturally.

Conjecture 1.1. For all non-negative integers k, it is conjectured that

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)∣∣∣∣2k

∼ f(k)a(k)
∏
P |R

( ∞∑
m=0

dk(P m)2

|P |m

)−1

(deg R)k2
,

as deg R → ∞, where

a(k) :=
∏

P ∈P

((
1 − 1

|P |

)k2 ∞∑
m=0

dk

(
P m

)2
|P |m

)
.

and

f(k) := G2(k + 1)
G(2k + 1) =

k−1∏
i=0

i!
(i + k)! ,

where G is the Barnes G-function. (Again, the star indicates the sum is
over primitive characters, and ϕ∗(R) is the number of primitive Dirichlet
characters of modulus R).

This conjecture has been verified for the cases k = 1, 2 by Andrade and
Yiasemides [2]: As deg R → ∞,

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)∣∣∣∣2 ∼ ϕ(R)
|R|

deg R(1.3)

and

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)∣∣∣∣4∼ 1 − q−1

12
∏
P |R

((
1 − |P |−1)3
1 + |P |−1

)
(deg R)4.(1.4)

It can be shown that a(2) = 1 − q−1 and f(2) = 1
12 , and so we have

agreement with Conjecture 1.1.
First we will require an Euler–Hadamard hybrid formula, which we prove

in Section 2.
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Theorem 1.2. Let X ≥ 1 be an integer and let u(x) be a positive C∞-
function with support in [e, e1+q−X ]. Let

v(x) =
∫ ∞

t=x
u(t)dt

and take u to be normalised so that v(0) = 1. Furthermore, for y ∈ C\{0}
with arg(y) ̸= π, we define E1(y) :=

∫ y+∞
w=y

e−w

w dw; and for z ∈ C\{0} with
arg(z) ̸= π, we define

U(z) :=
∫ ∞

x=0
u(x)E1(z log x)dx.

Let χ be a primitive Dirichlet character of modulus R ∈ M\{1}, and let
ρn = 1

2 + iγn be the n-th zero of L(s, χ). Then, for all s ∈ C we have
L(s, χ) = PX(s, χ)ZX(s, χ),(1.5)

where

PX(s, χ) = exp
( ∑

A∈M
deg A≤X

χ(A)Λ(A)
|A|s log|A|

)

and

ZX(s, χ) = exp
(

−
∑
ρn

U
(
(s − ρn)(log q)X

))
.

Strictly speaking, if s = ρ or arg(s−ρ) = π for some zero ρ of L(s, χ), then
ZX(s, χ) is not well defined. In this case, we take

ZX(s, χ) = lim
s0→s

ZX(s0, χ)

and we show that this is well defined.

Remark 1.3. We note that our hybrid Euler–Hadamard product formula,
(1.5), does not involve an error term, unlike the analogous Theorem 1 in [14]
and Theorem 1 in [7]. This is due to the fact that we are working in the
function field setting. Indeed, this can also be seen in [1, 5], where they
consider the Euler–Hadamard product formula over function fields for qua-
dratic Dirichlet L-functions.

We also note that ZX(s, χ) is expressed in terms of u(x). Whereas,
PX(s, χ) and L(s, χ) are independent of u(x). Thus, given the equality (1.5),
we can see that, as long as u(x) satisfies the conditions in the theorem, the
value of ZX(s, χ) is independent of any further restrictions made on u(x).
Ultimately, this is due to the fact that we are working in the function field
setting and due to our choice of support for u(x). Indeed, this is why our
support for u(x) is not quite the exact analogy to the support of u(x) in
Theorem 1 of [7]. We note that in Theorem 1 in [7], PX(s, χ) and L(s, χ)
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also do not depend on u(x), but this is because the dependency exists in
the error term.

Next, we make a splitting conjecture.

Conjecture 1.4 (Splitting Conjecture). For integers k ≥ 0, we have

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)∣∣∣∣2k

∼
(

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣PX

(1
2 , χ

)∣∣∣∣2k)
·
(

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣ZX

(1
2 , χ

)∣∣∣∣2k
)

as X, deg R → ∞ with X ≤ logq deg R.

We then obtain the 2k-th moment of the partial Euler product in Sec-
tion 3, and we use a random matrix theory model to conjecture the 2k-th
moment of the Hadamard product in Section 4:

Theorem 1.5. For positive integers k, we have

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣PX

(1
2 , χ

)∣∣∣∣2k

∼ a(k)

 ∏
deg P ≤X

P |R

( ∞∑
m=0

dk

(
P m

)2
|P |m

)−1
(eγX

)k2

as X, deg R → ∞ with X ≤ (2 − δ) logq deg R, where δ > 0 can be taken to
be arbitrarily small. Here, γ is the Euler–Mascheroni constant, and a(k) is
an in Conjecture 1.1.

Conjecture 1.6. For integers k ≥ 0, we have

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣ZX

(1
2 , χ

)∣∣∣∣2k

∼ G2(k + 1)
G(2k + 1)

(deg R

eγX

)k2

,

as deg R → ∞, where γ is the Euler–Mascheroni constant and G is the
Barnes G-function.1

Similarly as in [7], Conjecture 1.4, Theorem 1.5, and Conjecture 1.6 to-
gether reproduce Conjecture 1.1 as desired, but only for certain cases, such
as when the largest prime divisor of R has degree less than X, or when R
is prime.

In Sections 5 and 7 we rigorously obtain the second and fourth moments
of the Hadamard product, respectively.

1Recall that for integers k ≥ 0 we have G2(k+1)
G(2k+1) =

∏k−1
i=0

i!
(i+k)! .
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Theorem 1.7. We have that
1

ϕ∗(R)
∑∗

χ mod R

∣∣∣∣ZX

(1
2 , χ

)∣∣∣∣2 = 1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)
PX

(1
2 , χ

)−1∣∣∣∣2

∼ deg R

eγX

∏
deg P >X

P |R

(
1 − 1

|P |

)

as X, deg R → ∞ with X ≤ (2 − δ) logq deg R, where δ > 0 can be taken to
be arbitrarily small.

Theorem 1.8. We have
1

ϕ∗(R)
∑∗

χ mod R

∣∣∣∣ZX

(1
2 , χ

)∣∣∣∣4 = 1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)
PX

(1
2 , χ

)−1∣∣∣∣4

∼ 1
12

(deg R

eγX

)4 ∏
deg P >X

P |R

(
1 − |P |−1)3
1 + |P |−1

as X, deg R → ∞ with X ≤ logq log deg R.

In Theorems 1.7 and 1.8, a product over P appears on the right side
that does not appear in Conjecture 1.6 (which is based on random matrix
theory). Given certain restrictions on R, the product is asymptotic to 1,
and thus we have agreement with Conjecture 1.6, but this does not hold
generally. Regardless of this discrepancy between our results and the con-
jecture, we can see that Theorems 1.7 and 1.8, along with Theorem 1.5,
(1.3), and (1.4) verify the Splitting Conjecture for the cases k = 1, 2.

Note that in Theorem 1.8 we required the condition X ≤ logq log deg R
which is more restrictive than the condition X ≤ (2 − δ) logq deg R in the
Splitting Conjecture. However, given recent progress [16] and the results
that have been establish in the area of twisted moments (see, for example,
[3, 12, 18, 24] for ζ(s) and [17, 27] for Dirichlet L-functions), we expect
that one can improve upon this restriction for Theorem 1.8.

Before proceeding, let us make a brief notational remark required in later
sections. Let a ∈ C and b ∈ C\{0}, and let f be an integrable complex
function. The integral

∫ a+b∞
t=a f(t)dt is defined to be over the straight line

starting at a and in the direction of b. That is,
∫ a+b∞

t=a f(t)dt =
∫∞

s=0 f
(
a +

b
|b|s
)
ds. If a = 0 then we will simply write

∫ b∞
t=0 f(t)dt, and if b = ±1 then

we will write
∫ a±∞

t=a f(t)dt.

2. The Hybrid Euler–Hadamard Product Formula
The proof of Theorem 1.2 follows by some alterations to results given

in [4, 7, 14]. However, to demonstrate that the product formula is exact
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in the function field setting, and in the interest of clarity, we provide the
full proof. First, let us recall that for Dirichlet characters χ and Re(s) > 1,
taking the logarithmic derivative of L(s, χ) gives

−L′

L
(s, χ) =

∑
A∈M

χ(A)Λ(A)
|A|s

.

It is well-known [26] that for non-trivial characters of modulus R ∈ M,
L(s, χ) is a finite polynomial in q−s:

L(s, χ) =
∑

A∈M

χ(A)
|A|s

=
∑

A∈M
deg A<deg R

χ(A)
|A|s

.

From this, we can deduce that as Re(s) → ∞,

L′

L
(−s, χ) = Oχ(1).(2.1)

Lemma 2.1. Let X be a positive integer, and let u(x) be a positive C∞-
function with support in [e, e1+q−X ]. Let ũ(s) be its Mellin transform.
That is,

ũ(s) =
∫ ∞

x=0
xs−1u(x)dx

and

u(x) = 1
2πi

∫
Re(s)=c

x−sũ(s)ds,

where c can take any value in R (due to our restrictions on the support of
u, we can see that ũ(s) is well-defined for all s ∈ C, and so, by the Mellin
inversion theorem, c can take any value in R). Then,

ũ(s) ≪


1

|s|+1 maxx{|u′(x)|}e2 Re(s) if Re(s) > 0
1

|s|+1 maxx{|u′(x)|}eRe(s) if Re(s) ≤ 0.

Proof. We have, by integration by parts, that

ũ(s) =
∫ e1+q−X

x=e
xs−1u(x)dx = −1

s

∫ e1+q−X

x=e
xsu′(x)dx.

If |s| > 1, then it is not difficult to deduce that the above is

≪


1

|s|+1 maxx{|u′(x)|}e2 Re(s) if Re(s) > 0
1

|s|+1 maxx{|u′(x)|}eRe(s) if Re(s) ≤ 0.
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If |s| ≤ 1, then, by using the fact that
∫ e1+q−X

x=e u′(x)dx = 0, we obtain

ũ(s) =
∫ e1+q−X

x=e

1 − xs

s
u′(x)dx = −

∫ e1+q−X

x=e

(∫ x

y=1
ys−1dy

)
u′(x)dx

≪
∫ e1+q−X

x=e
|u′(x)|dx ≪ max

x
{|u′(x)|},

from which the result follows. □

Lemma 2.2. Let X be a positive integer, and let u(x) be a positive C∞-
function with support in [e, e1+q−X ], and let ũ(s) be its Mellin transform. Let

v(x) =
∫ ∞

t=x
u(t)dt

and take u to be normalised so that v(0) = 1. Note that its Mellin trans-
form is

ṽ(s) = ũ(s + 1)
s

.

Let χ be a primitive Dirichlet character of modulus R ∈ M\{1}. Then, for
s ∈ C not being a zero of L(s, χ), we have

−L′

L
(s, χ) =

∑
A∈M

deg A≤X

χ(A)Λ(A)
|A|s

+
∑
ρn

ũ
(
1 + (ρn − s)(log q)X

)
ρn − s

,(2.2)

where ρn = 1
2 + iγn is the n-th zero of L(s, χ). Note that, by Lemma 2.1,

we can see that the sum over the zeros is absolutely convergent.

Proof. Let c > max{0,
(
1 − Re(s)

)
(log q)X}. By the Mellin inversion theo-

rem, we have

∑
A∈M

χ(A)Λ(A)
|A|s

v
(
e

deg A
X

)
= 1

2πi

∑
A∈M

χ(A)Λ(A)
|A|s

∫
Re(w)=c

ũ(w + 1)
w

|A|−
w

(log q)X dw

= 1
2πi

∫
Re(w)=c

ũ(w + 1)
w

∑
A∈M

χ(A)Λ(A)
|A|s+ w

(log q)X

dw

= − 1
2πi

∫
Re(w)=c

ũ(w + 1)
w

L′

L

(
s + w

(log q)X , χ

)
dw.

The interchange of integral and summation is justified by absolute conver-
gence, which holds because c >

(
1 − Re(s)

)
(log q)X and by Lemma 2.1.
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We now shift the line of integration to Re(w) = −M , for some M >
max{0, Re(s)(log q)X}, giving

∑
A∈M

χ(A)Λ(A)
|A|s

v
(
e

deg A
X

)

= −L′

L
(s, χ) −

∑
ρn

ũ
(
1 + (ρn − s)(log q)X

)
ρn − s

− 1
2πi

∫
Re(w)=−M

ũ(w + 1)
w

L′

L

(
s + w

(log q)X , χ

)
dw,

where the sum over the zeros counts multiplicities. This requires some jus-
tification. We make use of the contour that is the rectangle with vertices at

c ± i
((

d − Im(s)
)
(log q)X + 2πnX

)
and

−M ± i
((

d − Im(s)
)
(log q)X + 2πnX

)
.

Here, d > 0 is such that 1
2 + id is not a pole of L′

L (s, χ) (that is, not a zero of
L(s, χ)). It is clear that as n → ∞ we capture all the poles and the left edge
tends to the integral over Re(w) = −M . Due to the vertical periodicity of
L′

L , and our choice of d, we can see that the top and bottom integrals are
equal to Oc,M (n−1), which vanishes as n → ∞. By (2.1) and Lemma 2.1, if
we let M → ∞ then we see that the integral over Re(w) = −M vanishes.
Finally, we note that

v
(
e

deg A
X

)
=
{

1 if deg A ≤ X

0 if deg A ≥ X(1 + q−X).

Also, since X is a positive integer, there are no integers in the interval(
X, X(1 + q−X)

)
⊆
(
X, X + 1

2
)
, and so there are no A ∈ A that have

degree in this interval. It follows that∑
A∈M

χ(A)Λ(A)
|A|s

v
(
e

log|A|
(log q)X

)
=

∑
A∈M

deg A≤X

χ(A)Λ(A)
|A|s

. □

Lemma 2.3. Suppose u(x) has support in [e, e1+q−X ]. For all z ∈ C\{0}
with arg(z) ̸= π we define

U(z) :=
∫ ∞

x=0
u(x)E1(z log x)dx.
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(Recall, for y ∈ C\{0} with arg(y) ̸= π, we define E1(y) :=
∫ y+∞

w=y
e−w

w dw).
Let χ be a primitive Dirichlet character of modulus R ∈ M\{1}, and sup-
pose ρ is a zero of L(s, χ) and s ∈ C\{ρ} with arg(s − ρ) ̸= π. Then,∫ s+∞

s0=s

ũ
(
1 + (ρ − s0)(log q)X

)
ρ − s0

ds0 = −U
(
(s − ρ)(log q)X

)
.

Proof. We have

∫ s+∞

s0=s

ũ
(
1 + (ρ − s0)(log q)X

)
ρ − s0

ds0

=
∫ s+∞

s0=s

1
ρ − s0

∫ ∞

x=0
x(ρ−s0)(log q)Xu(x)dxds0

=
∫ ∞

x=0
u(x)

∫ s+∞

s0=s

e(ρ−s0)(log q)X log x

ρ − s0
ds0dx

= −
∫ ∞

x=0
u(x)

∫ (s−ρ)(log q)X log x+∞

w=(s−ρ)(log q)X log x

e−w

w
dwdx

= −
∫ ∞

x=0
u(x)E1

(
(s − ρ)(log q)X log x

)
dx

= −U
(
(s − ρ)(log q)X

)
.

The interchange of integration is justified by absolute convergence, which
holds for X > 1. □

We can now proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose s ∈ C is not a zero of L(s, χ) and
arg(s − ρ) ̸= π for all zeros ρ of L(s, χ). We recall that (2.2) gives us

−L′

L
(s0, χ) =

∑
A∈M

deg A≤X

χ(A)Λ(A)
|A|s0

+
∑
ρn

ũ
(
1 + (ρn − s0)(log q)X

)
ρn − s0

,

to which we apply the integral
∫ s+∞

s0=s ds0 to both sides to obtain

log L(s, χ) =
∑

A∈M
deg A≤X

χ(A)Λ(A)
|A|s log|A|

−
∑

ρ

U
(
(s − ρ)(log q)X

)
.(2.3)

For the integral over the sum over zeros, we applied Lemma 2.3, after an
interchange of summation and integration that is justified by Lemma 2.1.
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We now take exponentials of both sides of (2.3) to obtain

L(s, χ) = exp
( ∑

A∈M
deg A≤X

χ(A)Λ(A)
|A|s log|A|

)
exp

(
−
∑

ρ

U
(
(s − ρ)(log q)X

))

= PX(s, χ)ZX(s, χ).

Now suppose we have s ∈ C, not being a zero of L(s, χ), but with
arg(s−ρ) = π for some zero ρ of L(s, χ). We can see that lims0→s L(s0, χ) =
L(s, χ) and lims0→s PX(s0, χ) = PX(s, χ) ̸= 0. The latter is non-zero as
PX(s, χ) is the exponential of a polynomial. From this, we can deduce that
lims0→s ZX(s0, χ) = L(s, χ)

(
PX(s, χ)

)−1 ∈ C. Similarly, if s is a zero of
L(s, χ), then we can see that lims0→s ZX(s0, χ) = L(s, χ)

(
PX(s, χ)

)−1 = 0.
This completes the proof. □

3. Moments of the Partial Euler Product
Recall the prime polynomial theorem (see [26]):

|Pn| = 1
n

∑
d|n

µ(d)q
n
d = qn

n
+ O

(
q

n
2

n

)
.(3.1)

Let us define

S(X) := {A ∈ A : P | A −→ deg P ≤ X},

SM(X) := {A ∈ M : P | A −→ deg P ≤ X}.

Furthermore, for all Re(s) > 0 and primitive characters χ we define

P ∗
X(s, χ) :=

∏
deg P ≤X

(
1 − χ(P )

|P |s
)−1 ∏

X
2 <deg P ≤X

(
1 + χ(P )2

2|P |2s

)−1
,(3.2)

and for positive integers k and A ∈ SM(X) we define αk(A) by

P ∗
X(s, χ)k =

∑
A∈SM(X)

αk(A)χ(A)
|A|s

.

To prove Theorem 1.5, we require the following Lemma.

Lemma 3.1. For positive integers k, we have

PX

(1
2 , χ

)k

=
(
1 + Ok

(
X−1))P ∗

X

(1
2 , χ

)k

=
(
1 + Ok

(
X−1)) ∑

A∈SM(X)

αk(A)χ(A)
|A|

1
2

.
(3.3)
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We also have that

αk(A) = dk(A) if A ∈ SM

(
X

2

)
or A is prime

0 ≤ αk(A) ≤ dk(A) if A ̸∈ SM

(
X

2

)
and A is not prime.

(3.4)

Proof. First we note that

PX

(1
2 , χ

)
= exp

( ∑
A∈M

deg A≤X

χ(A)Λ(A)
|A|

1
2 log|A|

)
= exp

( ∑
deg P ≤X

NP∑
j=1

χ(P )j

j|P |
j
2

)
,

where NP :=
⌊

X
deg P

⌋
. Also, by using the Taylor series for log, we have

P ∗
X

(1
2 , χ

)
= exp

( ∑
deg P ≤X

∞∑
j=1

χ(P )j

j|P |
j
2

+
∑

X
2 <deg P ≤X

∞∑
j=1

(−1)jχ(P )2j

j2j |P |j

)
.

Hence,

PX

(1
2 , χ

)
P ∗

X

(1
2 , χ

)−1

= exp
(

−
∑

deg P ≤X

∞∑
j=Np+1

χ(P )j

j|P |
j
2

−
∑

X
2 <deg P ≤X

∞∑
j=1

(−1)jχ(P )2j

j2j |P |j

)
.

We now show that the terms inside the exponential are equal to O
(
X−1),

from which we easily deduce

PX

(1
2 , χ

)k

=
(
1 + Ok

(
X−1))P ∗

X

(1
2 , χ

)k

.
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To this end, using the prime polynomial theorem for the last line below,
we have

(3.5)
∑

deg P ≤X

∞∑
j=NP +1

χ(P )j

j|P |
j
2

+
∑

X
2 <deg P ≤X

∞∑
j=1

(−1)jχ(P )2j

j2j |P |j

=
∑

deg P ≤ X
2

∞∑
j=NP +1

χ(P )j

j|P |
j
2

+
∑

X
2 <deg P ≤X

∞∑
j=2

χ(P )j

j|P |
j
2

+
∑

X
2 <deg P ≤X

∞∑
j=1

(−1)jχ(P )2j

j2j |P |j

=
∑

deg P ≤ X
2

∞∑
j=NP +1

χ(P )j

j|P |
j
2

+
∑

X
2 <deg P ≤X

∞∑
j=3

χ(P )j

j|P |
j
2

+
∑

X
2 <deg P ≤X

∞∑
j=2

(−1)jχ(P )2j

j2j |P |j

≪
∑

deg P ≤ X
2

|P |−
NP +1

2 +
∑

X
2 <deg P ≤X

|P |−
3
2

≪ q− X
2

∑
deg P ≤ X

2

1 +
∑

X
2 <n≤X

q− n
2

n

≪ 1
X

.

We now proceed to prove (3.4). The first case is clear, so assume that
A ̸∈ SM

(
X
2
)

and A is not prime. We note that

(
1 − χ(P )

|P |
1
2

)−1(
1 + χ(P )2

2|P |

)−1

=
(

1 + χ(P )
|P |

1
2

+ χ(P )2

|P |
+ . . .

)(
1 − χ(P )2

2|P |
+ χ(P )4

22|P |2
− . . .

)

=
∞∑

r=0

( ∑
r1,r2≥0

r1+2r2=r

(
−1

2

)r2
)

χ(P )r

|P |
r
2

=
∞∑

r=0

2
3

(
1 −

(
−1

2

)⌊ r
2 ⌋+1)χ(P )r

|P |
r
2

.
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Since

0 ≤ 2
3

(
1 −

(
−1

2
)⌊ r

2 ⌋+1)
≤ 1

for all r ≥ 0, the result follows. □

We can now prove Theorem 1.5, but before doing so let us recall Mertens’s
Third Theorem in Fq[T ], the proof of which is very similar to that of The-
orem 3 in [25]: As n → ∞,∏

deg P ≤n

(
1 − 1

|P |

)−1
∼ eγn.(3.6)

Proof of Theorem 1.5. Throughout this proof, any asymptotic relations are
to be taken as X, deg R → ∞ with X ≤ (2 − δ) logq deg R. By Lemma 3.1
it suffices to prove that

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣∣ ∑
A∈SM(X)

αk(A)χ(A)
|A|

1
2

∣∣∣∣∣
2

∼ a(k)
∏

deg P ≤X
P |R

( ∞∑
m=0

dk

(
P m

)2
|P |m

)−1(
eγX

)k2

.

We will truncate our Dirichlet series. This will allow us to bound the lower
order terms later. We have∑

A∈SM(X)

αk(A)χ(A)
|A|

1
2

=
∑

A∈SM(X)
deg A≤ 1

4 deg R

αk(A)χ(A)
|A|

1
2

+ Oδ

(
|R|−

δ
6
)
.(3.7)

This makes use of the following, where ϵ = δ
5 :∑

A∈SM(X)
deg A> 1

4 deg R

αk(A)χ(A)
|A|

1
2

≤ |R|−ϵ
∑

A∈SM(X)

dk(A)
|A|

1
2 −ϵ

(3.8)

= |R|−ϵ
∏

deg P ≤X

(
1 − 1

|P |
1
2 −ϵ

)−k

= |R|−ϵ exp
( ∑

deg P ≤X

−k log
(

1 − 1
|P |

1
2 −ϵ

))

= |R|−ϵ exp
(

kO

( ∑
deg P ≤X

1
|P |

1
2 −ϵ

))
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= |R|−ϵ exp
(

kO

(
q( 1

2 +ϵ)X+
√

X

√
X

))

= Oδ

(
|R|−

δ
6
)
,

where, using the prime polynomial theorem, the fifth relation is justified
by the following:

∑
deg P ≤X

1
|P |

1
2 −ϵ

≤

√
X∑

k=0

∑
kX≤deg P ≤(k+1)X

1
|P |

1
2 −ϵ

≤

√
X∑

k=0

1
q( 1

2 −ϵ)k
√

X

q(k+1)
√

X

(k + 1)
√

X

= q
√

X

√
X

√
X∑

k=0

qk( 1
2 +ϵ)

√
X

k + 1 ≤ q( 1
2 +ϵ)X+

√
X

√
X

.

By the Cauchy–Schwarz inequality, it suffices to prove that

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣∣ ∑
A∈SM(X)

deg A≤ 1
4 deg R

αk(A)χ(A)
|A|

1
2

∣∣∣∣∣
2

∼ a(k)
∏

deg P ≤X
P |R

( ∞∑
m=0

dk

(
P m

)2
|P |m

)−1(
eγX

)k2

.

Now, we have that

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣∣ ∑
A∈SM(X)

deg A≤ 1
4 deg R

αk(A)χ(A)
|A|

1
2

∣∣∣∣∣
2

(3.9)

= 1
ϕ∗(R)

∑
A,B∈SM(X)

deg A,deg B≤ 1
4 deg R

(AB,R)=1

αk(A)αk(B)
|AB|

1
2

∑
EF =R

F |(A−B)

µ(E)ϕ(F )

= 1
ϕ∗(R)

∑
EF =R

µ(E)ϕ(F )
∑

A,B∈SM(X)
deg A,deg B≤ 1

4 deg R

(AB,R)=1
A≡B(mod F )

αk(A)αk(B)
|AB|

1
2
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=
∑

A∈SM(X)
deg A≤ 1

4 deg R

(A,R)=1

αk(A)2

|A|

+ 1
ϕ∗(R)

∑
EF =R

µ(E)ϕ(F )
∑

A,B∈SM(X)
deg A,deg B≤ 1

4 deg R

(AB,R)=1
A≡B(mod F )

A ̸=B

αk(A)αk(B)
|AB|

1
2

.

We first consider the second term on the far right side: The off-diagonal
terms. We note that the inner sum is zero if deg F > 1

4 deg R, and we also
make use of (3.4), to obtain

1
ϕ∗(R)

∑
EF =R

µ(E)ϕ(F )
∑

A,B∈SM(X)
deg A,deg B≤ 1

4 deg R

(AB,R)=1
A≡B(mod F )

A ̸=B

αk(A)αk(B)
|AB|

1
2

≪ 1
ϕ∗(R)

∑
EF =R

deg F ≤ 1
4 deg R

ϕ(F )
∑

A,B∈SM(X)

dk(A)dk(B)
|AB|

1
2

≤ 1
ϕ∗(R)

∏
deg P ≤X

(
1 − |P |−

1
2
)−2k ∑

EF =R
deg F ≤ 1

4 deg R

ϕ(F )

≤ 1
ϕ∗(R)

∏
deg P ≤X

(
1 − |P |−

1
2
)−2k ∑

F ∈M
deg F ≤ 1

4 deg R

|R|
1
4

≤ |R|
1
2

ϕ∗(R)
∏

deg P ≤X

(
1 − |P |−

1
2
)−2k

= o(1).

The last relation makes use of a similar result to (3.8). Now we consider the
first term on the far right side of (3.9): The diagonal terms. We required a
truncated sum only for the off-diagonal terms, and so we extend our sum
using similar means as in (3.8):∑

A∈SM(X)
deg A≤ 1

4 deg R

(A,R)=1

αk(A)2

|A|
=

∑
A∈SM(X)
(A,R)=1

αk(A)2

|A|
+ O

(
|R|−

δ
6
)
.
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Now, using (3.4) for the first relation below (and part of the second rela-
tion), we have that

(3.10)
∑

A∈SM(X)
(A,R)=1

αk(A)2

|A|
=

∏
deg P ≤X

P ∤R

( ∞∑
m=0

αk

(
P m

)2
|P |m

)

=
∏

deg P ≤X
P ∤R

( ∞∑
m=0

dk

(
P m

)2
|P |m

) ∏
X
2 <deg P ≤X

P ∤R

1 + dk(P )2

|P | +
∑∞

m=2
αk

(
P m
)2

|P |m

1 + dk(P )2

|P | +
∑∞

m=2
dk

(
P m
)2

|P |m



=
∏

deg P ≤X
P |R

( ∞∑
m=0

dk

(
P m

)2
|P |m

)−1 ∏
deg P ≤X

((
1 − 1

|P |

)k2 ∞∑
m=0

dk

(
P m

)2
|P |m

)

·
∏

deg P ≤X

(
1 − 1

|P |

)−k2 ∏
X
2 <deg P ≤X

(
1 + Ok

( 1
|P |2

))

=
(
1 + o(1)

)
a(k)

∏
deg P ≤X

P |R

( ∞∑
m=0

dk

(
P m

)2
|P |m

)−1(
eγX

)k2

.

For the last equality, we used (3.6). The proof follows. □

4. Moments of the Hadamard Product
In this section we provide support for the Conjecture 1.6. The approach

is similar to [7, 14], but we provide some additional heuristic support in
Remark 4.2. We require the following lemma.

Lemma 4.1. For real y > 0 define

Ci(y) := −
∫ ∞

t=y

cos(t)
t

dt,

and let x be real and non-zero. Then,

Re E1(ix) = − Ci(|x|).

Proof. If x > 0, then

Re E1(ix) = Re
∫ ix+∞

w=ix

e−w

w
dw = Re

∫ i∞

w=ix

e−w

w
dw = Re

∫ ∞

t=x

e−it

t
dt

= − Ci(|x|),
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where the second relation follows from a contour shift. Similarly, if x < 0,
then

Re E1(ix) = Re
∫ ix+∞

w=ix

e−w

w
dw = Re

∫ −i∞

w=ix

e−w

w
dw = Re

∫ ∞

t=|x|

eit

t
dt

= − Ci(|x|). □

Now, writing γn(χ) for the imaginary part of the n-th zero of L(s, χ), we
can see that

(4.1) 1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣ZX

(1
2 , χ

)∣∣∣∣2k

= 1
ϕ∗(R)

∑∗

χ mod R

exp
(

−2k Re
∑

γn(χ)
U

(
−iγn(χ)(log q)X

))

= 1
ϕ∗(R)

∑∗

χ mod R

exp
(

−2k Re
∑

γn(χ)

∫ ∞

x=0
u(x)E1

(
−iγn(χ)(log q)X log x

)
dx

)

= 1
ϕ∗(R)

∑∗

χ mod R

exp
(

2k
∑

γn(χ)

∫ ∞

x=0
u(x) Ci

(
|γn(χ)|(log q)X log x

)
dx

)
.

We note that the terms in the exponential tend to zero as |γn(χ)| tends
to infinity, and so the above is primarily concerned with the zeros close
to 1

2 . As described in Section 1, there is a relationship between the zeros
of Dirichlet L-functions near 1

2 and the eigenphases of random unitary
matrices near 0: The proportion of Dirichlet L-functions of modulus R that
have j-th zero (that is, its imaginary part) in some interval [a, b] appears to
be the same as the proportion of unitary N(R) × N(R) matrices that have
j-th eigenphase in [a, b] (at least, this is the case in an appropriate limit).
Naturally, one asks what value N(R) should take in terms of R. We note
that the mean spacing between zeros of Dirichlet L-functions of modulus R
is 2π

log q deg R , while the mean spacing between eigenphases of unitary N × N

matrices is 2π
N . Therefore, we take N(R) = ⌊log q deg R⌋. So, we replace

the imaginary parts of the zeros with eigenphases of N(R) × N(R) unitary
matrices, and instead of averaging over primitive characters we average over
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unitary matrices. That is, we conjecture

(4.2) 1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣ZX

(1
2 , χ

)∣∣∣∣2k

= 1
ϕ∗(R)

∑∗

χ mod R

exp
(

2k
∑

γn(χ)

∫ ∞

x=0
u(x) Ci

(
|γn(χ)|(log q)X log x

)
dx

)

∼
∫

A∈U
(

N(R)
) exp

(
2k

∑
θn(A)

∫ ∞

x=0
u(x) Ci

(
|θn(A)|(log q)X log x

)
dx

)
dA

as deg R → ∞, where the integral is with respect to the Haar measure,
and θn(A) is the n-th eigenphase of A. The eigenphases are periodic with
period 2π, and these periodicised eigenphases are included in the sum.
An asymptotic evaluation of the right side can be made identically as in
Section 4 of [14]; but we simply replace their log X with our (log q)X, and
we replace their N = ⌊log T ⌋ with our N(R) = ⌊log q deg R⌋. This leads us
to the conjecture that

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣ZX

(1
2 , χ

)∣∣∣∣2k

∼ G2(k + 1)
G(2k + 1)

(deg R

eγX

)k2

,

as deg R → ∞. We note that in [14], their u(x) has a slightly different
support than the support of our u(x). However, this does not affect the
result.

Remark 4.2. We will provide further justification for one of the steps
above, which is not given in [14]. In the middle line of (4.2) we have a sum
over all γn(χ). This includes zeros that are far away from 1

2 . We mentioned
previously that their contribution is small, but a closer inspection reveals
that we cannot dismiss them so easily, and so we must justify replacing
them with the eigenphases of our unitary matrices. For the zeros close to 1

2
(that is, for γn(χ) close to 0) we have already provided this justification. For
the zeros further away, one can argue that the zeros of a typical Dirichlet
L-function are equidistributed in some manner, and that the eigenphases
of a typical unitary matrix are also equidistributed in some manner. Thus,
we could replace the former with the latter. This is based on the idea that
if you sum a function over a set of equidistributed points on some interval
I, then the result is roughly equal to the integral over I of that function
multiplied by the reciprocal of the mean spacing of the points. Recall that
the mean spacing of our eigenphases is equal to that of our zeros. Naturally,
one asks why we do not use the same justification for the zeros close to 1

2 .
The answer is that the function Ci(x) has a discontinuity at x = 0, and so
we require a stronger justification for the zeros near 1

2 (that is, the γn(χ)
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close to 0). Finally, we remark that we do not provide any rigorous support
for the claims on equidistribution above.

5. The Second Hadamard Moment
Before proving Theorem 1.7, we prove several lemmas. First, by (3.3)

we have

PX

(1
2 , χ

)
=
(
1 + O

(
X−1))P ∗

X

(1
2 , χ

)
.

Rearranging and using (3.2) gives

(5.1) PX

(1
2 , χ

)−1

=
(
1 + O

(
X−1))P ∗

X

(1
2 , χ

)−1

=
(
1 + O

(
X−1)) ∏

deg P ≤X

(
1 − χ(P )

|P |
1
2

) ∏
X
2 <deg P ≤X

(
1 + χ(P )2

2|P |

)

=
(
1 + O

(
X−1)) ∑

A∈SM(X)

α−1(A)χ(A)
|A|

1
2

,

where α−1 is defined multiplicatively by

α−1(P ) :=
{

−1 if deg P ≤ X

0 if deg P > X;

α−1(P 2) :=


0 if deg P ≤ X

2
1
2 if X

2 < deg P ≤ X

0 if deg P > X;

α−1(P 3) :=


0 if deg P ≤ X

2
−1

2 if X
2 < deg P ≤ X

0 if deg P > X;
α−1(P m) := 0 for m ≥ 4.
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Later, we will require the following two simple bounds: For all R ∈ M,
as X → ∞,

(5.2)
∑

HST ∈SM(X)
(S,T )=1

(HST,R)=1
deg HS,deg HT ≤ 1

10 deg R

|α−1(HS)α−1(HT )|
|HST |

≪
( ∑

H∈SM(X)

1
|H|

)3

=
∏

deg P ≤X

(
1 − |P |−1

)−3
≪ X3,

where we have used (3.6); and

(5.3)
∑

HST ∈SM(X)
(S,T )=1

(HST,R)=1
deg HS,deg HT ≤ 1

10 deg R

α−1(HS)α−1(HT )
|HST |

deg ST

≪
∑

H∈SM(X)

1
|H|

∑
S,T ∈SM(X)

deg ST

|ST |
≪ X4,

where the last equality is obtained by taking the derivative of f(s) :=∑
S,T ∈SM(X)

1
|ST |s =

∏
deg P ≤X

(
1 − |P |−s

)−2, evaluating at 1, and using the
prime polynomial theorem to get∑

S,T ∈SM(X)

deg ST

|ST |
= 2

∏
deg P ≤X

(
1 − |P |−1

)−2 ∑
deg P ≤X

deg P

|P | − 1 ≪ X3.

Lemma 5.1. Let V ∈ M. V may or may not depend on R. As X, deg R →
∞ with X ≤ (2 − δ) logq deg R, we have∑

HST ∈SM(X)
(S,T )=1

(HST,V )=1
deg HS,deg HT ≤ 1

10 deg R

α−1(HS)α−1(HT )
|HST |

=
(

1 + O
(
q− X

2
)) ∏

deg P ≤X
P ∤V

(
1 − 1

|P |

)
+ O

( 1
|R|

1
21

)

∼
∏

deg P ≤X
P ∤V

(
1 − 1

|P |

)
.
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Proof. The second relation in the Lemma follows easily from (3.6). We will
prove the first. In this proof, all asymptotic relations are to be taken as
X, deg R → ∞ with X ≤ (2 − δ) logq deg R. Similar to (3.7), we can remove
the conditions deg HS, deg HT ≤ 1

10 deg R from the sum and this only adds
an O

(
|R|−

1
40 ) term. Now, writing C = HS and D = HT , we have

∑
HST ∈SM(X)

(S,T )=1
(HST,V )=1

α−1(HS)α−1(HT )
|HST |

=
∑

CD∈SM(X)
(CD,V )=1

α−1(C)α−1(D)
|CD|

|(C, D)|

=
∑

CD∈SM(X)
(CD,V )=1

α−1(C)α−1(D)
|CD|

∑
G|(C,D)

ϕ(G)

=
∑

G∈SM(X)
(G,V )=1

ϕ(G)
|G|2

( ∑
C∈SM(X)
(C,V )=1

α−1(CG)
|C|

)2

.

Before continuing, let us make a definition: For all A ∈ M and all P ∈ P,
let eP (A) be the largest integer such that P eP (A) | A. Continuing, we note
that we can restrict the sums to polynomials that are fourth power free.
Indeed, α−1(P m) = 0 for all P ∈ P and all m ≥ 4. Note that if P | G
then we must have that 0 ≤ eP (C) ≤ 3 − eP (G), while if P ∤ G then
0 ≤ eP (C) ≤ 3. So, we have

∑
C∈SM(X)
(C,V )=1

α−1(CG)
|C|

=
∏
P |G

( 3−eP (G)∑
j=0

α−1(P j+eP (G))
|P |j

) ∏
deg P ≤X

P ∤G
P ∤V

( 3∑
j=0

α−1(P j)
|P |j

)

=
∏

deg P ≤X
P ∤V

( 3∑
j=0

α−1(P j)
|P |j

) ∏
P |G

( 3−eP (G)∑
j=0

α−1(P j+eP (G))
|P |j

)

×
∏
P |G

( 3∑
j=0

α−1(P j)
|P |j

)−1

.
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So,

∑
G∈SM(X)
(G,V )=1

ϕ(G)
|G|2

( ∑
C∈SM(X)
(C,V )=1

α−1(CG)
|C|

)2

=
∏

deg P ≤X
P ∤V

( 3∑
j=0

α−1(P j)
|P |j

)2

×
∏

deg P ≤X
P ∤V

( 3∑
i=0

ϕ(P i)
|P |2i

( 3−i∑
j=0

α−1(P j+i)
|P |j

)2( 3∑
j=0

α−1(P j)
|P |j

)−2)

=
∏

deg P ≤X
P ∤V

( 3∑
i=0

ϕ(P i)
|P |2i

( 3−i∑
j=0

α−1(P j+i)
|P |j

)2)

=
∏

deg P ≤X
P ∤V

( 3∑
i=0

3−i∑
j=0

3−i∑
k=0

ϕ(P i)α−1(P j+i)α−1(P k+i)
|P 2i+j+k|

)

=
∏

deg P ≤X
P ∤V

(
1 − 1

|P |

) ∏
X
2 ≤deg P ≤X

P ∤V

(
1 + O

( 1
|P 2|

))

=
(

1 + O
(
q− X

2
)) ∏

deg P ≤X
P ∤V

(
1 − 1

|P |

)
.

The result follows. □

Lemma 5.2. Let R ∈ M. Suppose Z1 ≤ deg R and F | R. Further, suppose
C, D ∈ SM(X) with deg C, deg D ≤ 1

10 deg R. Then, we have

∑
A,B∈M

deg AB=Z1
AC≡BD(mod F )

AC ̸=BD
(AB,R)=1

1
|AB|

1
2

≪ q
Z1
2 (Z1 + 1)|CD|

|F |
.

Proof. Consider the case where deg AC > deg BD, and suppose that
deg A = i. We have that AC = LF + BD for some L ∈ M with deg L =
deg AC − deg F = i + deg C − deg F , and deg B = Z1 − deg A = Z1 − i.
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Hence,

∑
A,B∈M

deg AB=Z1
AC≡BD(mod F )

(AB,R)=1
deg AC>deg BD

1
|AB|

1
2

≤ q− Z1
2

Z1∑
i=0

∑
L∈M

deg L=i+deg C−deg F

∑
B∈M

deg B=Z1−i

1

= q
Z1
2

Z1∑
i=0

∑
L∈M

deg L=i+deg C−deg F

q−i = q
Z1
2 |C|
|F |

Z1∑
i=0

1 = q
Z1
2 (Z1 + 1)|C|

|F |
.

Similarly, when deg BD > deg AC we have

∑
A,B∈M

deg AB=Z1
AC≡BD(mod F )

(AB,R)=1
deg AC>deg BD

1
|AB|

1
2

≤ q
Z1
2 (Z1 + 1)|D|

|F |
.

Suppose now that deg AC = deg BD = i. Then, 2i = deg ABCD = Z1 +
deg CD. We have deg B = i−deg D = Z1+deg C−deg D

2 , and AC = LF +BD

for some L ∈ A with deg L < i − deg F = Z1+deg CD
2 − deg F . Hence,∑

A,B∈M
deg AB=Z1

AC≡BD(mod F )
(AB,R)=1

deg AC=deg BD

1
|AB|

1
2
≦− Z1

2
∑

B∈M
deg B= Z1+deg C−deg D

2

∑
L∈A

deg L<
Z1+deg CD

2 −deg F

1

= |CD|
1
2

|F |
∑

B∈M
deg B= Z1+deg C−deg D

2

1 = q
Z1
2 |C|
|F |

.

The result follows. □

Lemma 5.3. Let χ a primitive character of modulus R ̸= 1. Then,∣∣∣∣L(1
2 , χ

)∣∣∣∣2 = 2
∑

A,B∈M
deg AB<deg R

χ(A)χ(B)
|AB|

1
2

+ c(χ),

where, if χ is odd, we define

c(χ) := −
∑

A,B∈M
deg AB=deg R−1

χ(A)χ(B)
|AB|

1
2

,
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and if χ is even we define

c(χ) := − q(
q

1
2 − 1

)2 ∑
A,B∈M

deg AB=deg R−2

χ(A)χ(B)
|AB|

1
2

− 2q
1
2

q
1
2 − 1

∑
A,B∈M

deg AB=deg R−1

χ(A)χ(B)
|AB|

1
2

+ 1(
q

1
2 − 1

)2 ∑
A,B∈M

deg AB=deg R

χ(A)χ(B)
|AB|

1
2

.

Proof. See Lemmas 3.10 and 3.11 in [2]. □

Lemma 5.4. Let R ∈ M and let x be a positive integer. Then,

∑
A∈M

deg A≤x
(A,R)=1

1
|A|

=


ϕ(R)
|R| x + O

(
ϕ(R)
|R| log ω(R)

)
if x ≥ deg R,

ϕ(R)
|R| x + O

(
ϕ(R)
|R| log ω(R)

)
+ O

(
2ω(R)x

qx

)
if x < deg R.

Proof. See Lemma 4.12 in [2]. This result is slightly stronger, but the proof
is identical. □

The big O terms in Lemma hold for any x is the given ranges, and no
limits are required. Note that, in certain cases these terms are larger than
the first term. Regardless, this does not cause us any problems, and we only
require the two cases in the following corollary.

Corollary 5.5. If a > 0 and x = a deg R, then,∑
A∈M

deg A≤x
(A,R)=1

1
|A|

= ϕ(R)
|R|

x + Oa

(
ϕ(R)
|R|

log ω(R)
)

.

If b > 2 and x = logq bω(R), then∑
A∈M

deg A≤x
(A,R)=1

1
|A|

= ϕ(R)
|R|

x + Ob

(
ϕ(R)
|R|

log ω(R)
)

.

Proof. First consider the case where x = a deg R. If q > e
4 log 2

a , then

2ω(R)x

qx
≪ 2ω(R)

q
x
2

≤ q
log 2
log q

deg R− a
2 deg R

< q− a
4 deg R ≪a

ϕ(R)
|R|

.
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If q ≤ e
4 log 2

a , then

2ω(R)x

qx
≪ 2ω(R)

q
x
2

= q
O

(
deg R

log deg R

)
− a

2 deg R
≤ q− a

4 deg R ≪a
ϕ(R)
|R|

,

where the second relation holds for deg R > ca, where ca is some constant
that is dependent on a, but independent of q. Finally, there are only a finite
number of cases where q ≤ e

4 log 2
a and deg R ≤ ca, and so

2ω(R)x

qx
≪a

ϕ(R)
|R|

for these cases too. The proof follows from Lemma 5.4.
Now consider the case where x = logq bω(R). We have that

2ω(R)x

qx
=

2ω(R)(logq b)ω(R)
bω(R) ≪b

2ω(R)(
b+2

2

)ω(R) =
( 4

b + 2
)ω(R)

=
∏
P |R

( 4
b + 2

)
≪b

∏
P |R

(
1 − 1

|P |

)
≪b

ϕ(R)
|R|

.

Again, the proof follows from Lemma 5.4. □

We can now prove Theorem 1.7.

Proof of Theorem 1.7. Throughout the proof, all asymptotic relations will
be taken as X, deg R → ∞ with X ≤ (2 − δ) logq deg R. Now, by (5.1), we
have

(5.4) 1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)
PX

(1
2 , χ

)−1∣∣∣∣2

∼ 1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)
P ∗

X

(1
2 , χ

)−1∣∣∣∣2.

Similar to (3.7), we truncate our sum:

P ∗
X

(1
2 , χ

)−1
=

∑
C∈SM(X)

deg C≤ 1
10 deg R

α−1(C)χ(C)
|C|

1
2

+ Oδ

(
|R|−

δ
6
)
.
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Using this, the Cauchy–Schwarz inequality, and (1.3), it suffices to prove
that

(5.5) 1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)∣∣∣∣2 ∑
C,D∈SM(X)

deg C,deg D≤ 1
10 deg R

α−1(C)α−1(D)χ(C)χ(D)
|CD|

1
2

∼ deg R

eγX

∏
deg P >X

P |R

(
1 − 1

|P |

)
.

Now, by Lemma 5.3, we have

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)∣∣∣∣2 ∑
C,D∈SM(X)

deg C,deg D≤ 1
10 deg R

α−1(C)α−1(D)χ(C)χ(D)
|CD|

1
2

= 1
ϕ∗(R)

∑∗

χ mod R

(
a(χ) + c(χ)

) ∑
C,D∈SM(X)

deg C,deg D≤ 1
10 deg R

α−1(C)α−1(D)χ(C)χ(D)
|CD|

1
2

,

where

a(χ) := 2
∑

A,B∈M
deg AB<deg R

χ(A)χ(B)
|AB|

1
2

and c(χ) is defined in Lemma 5.3. We first consider the case with a(χ). We
have

1
ϕ∗(R)

∑∗

χ mod R

a(χ)
∑

C,D∈SM(X)
deg C,deg D≤ 1

10 deg R

α−1(C)α−1(D)χ(C)χ(D)
|CD|

1
2

(5.6)

= 2
ϕ∗(R)

∑∗

χ mod R

∑
A,B∈M

C,D∈SM(X)
deg AB<deg R

deg C,deg D≤ 1
10 deg R

α−1(C)α−1(D)χ(AC)χ(BD)
|ABCD|

1
2

= 2
ϕ∗(R)

∑
EF =R

µ(E)ϕ(F )
∑

A,B∈M
C,D∈SM(X)

deg AB<deg R
deg C,deg D≤ 1

10 deg R

(ABCD,R)=1
AC≡BD(mod F )

α−1(C)α−1(D)
|ABCD|

1
2
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= 2
∑

A,B∈M
C,D∈SM(X)

deg AB<deg R
deg C,deg D≤ 1

10 deg R

(ABCD,R)=1
AC=BD

α−1(C)α−1(D)
|ABCD|

1
2

+ 2
ϕ∗(R)

∑
EF =R

µ(E)ϕ(F )
∑

A,B∈M
C,D∈SM(X)

deg AB<deg R
deg C,deg D≤ 1

10 deg R

(ABCD,R)=1
AC≡BD(mod F )

AC ̸=BD

α−1(C)α−1(D)
|ABCD|

1
2

.

For the first term on the right side, the diagonal terms, we write A = GS,
B = GT , C = HT , D = HS where G, H, S, T ∈ M and (S, T ) = 1, giving

(5.7) 2
∑

A,B,C,D∈M
C,D∈SM(X)

deg AB<deg R
deg C,deg D≤ 1

10 deg R

(ABCD,R)=1
AC=BD

α−1(C)α−1(D)
|ABCD|

1
2

= 2
∑

G∈M
H,S,T ∈SM(X)

deg G2ST <deg R
deg HS,deg HT ≤ 1

10 deg R

(GHST,R)=1
(S,T )=1

α−1(HT )α−1(HS)
|GHST |

= 2
∑

H,S,T ∈SM(X)
deg HS,deg HT ≤ 1

10 deg R

(HST,R)=1
(S,T )=1

α−1(HS)α−1(HT )
|HST |

∑
G∈M

deg G≤ deg R−deg ST
2

(G,R)=1

1
|G|

.
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By Corollary 5.5, (5.2), (5.3), and Lemma 5.1 we obtain the asymptotic
relation below. The final relation uses (3.6).

(5.8) 2
∑

A,B∈M
C,D∈SM(X)

deg AB<deg R
deg C,deg D≤ 1

10 deg R

(ABCD,R)=1
AC=BD

α−1(C)α−1(D)
|ABCD|

1
2

∼ ϕ(R)
|R|

deg R
∏

deg P ≤X
P ∤R

(
1 − 1

|P |

)
∼ deg R

eγX

∏
deg P >X

P |R

(
1 − 1

|P |

)
.

For the second term on the far right side of (5.6), the off-diagonal terms,
we use Lemma 5.2 to obtain

(5.9) 2
ϕ∗(R)

∑
EF =R

µ(E)ϕ(F )
∑

A,B∈M
C,D∈SM(X)

deg AB<deg R
deg C,deg D≤ 1

10 deg R

(ABCD,R)=1
AC≡BD(mod F )

AC ̸=BD

α−1(C)α−1(D)
|ABCD|

1
2

= 2
ϕ∗(R)

∑
C,D∈SM(X)

deg C,deg D≤ 1
10 deg R

(CD,R)=1

α−1(C)α−1(D)
|CD|

1
2

×
∑

EF =R

µ(E)ϕ(F )
∑

A,B∈M
deg AB<deg R

(AB,R)=1
AC≡BD(mod F )

AC ̸=BD

1
|AB|

1
2

≪ |R|
1
2 deg R

ϕ∗(R)
∑

C,D∈SM(X)
deg C,deg D≤ 1

10 deg R

|CD|
1
2
∑

EF =R

|µ(E)|ϕ(F )
|F |

≪ |R|
4
5 2ω(R) deg R

ϕ∗(R) = o(1).

Finally, for the case with c(χ), we can proceed similarly as above to show
that it’s contribution is ≪ X3. □
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6. Preliminary Results for the Fourth Hadamard Moment
In this section we develop the preliminary results that are required for

the proof of Theorem 1.8. We begin with two results that will simplify the
problem.

Lemma 6.1. For X ≥ 12, we have that

PX

(1
2 , χ

)−2
=
(
1 + O(X−1)

)
PX

∗∗
(1

2 , χ

)
,

where

P ∗∗
X

(1
2 , χ

)
:=

∑
A∈SM(X)

β(A)χ(A)
|A|

1
2

and β is defined multiplicatively by

(6.1)

β(P ) :=
{

−2 if deg P ≤ X

0 if deg P > X

β(P 2) :=


1 if deg P ≤ X

2
2 if X

2 < deg P ≤ X

0 if deg P > X

β(P k) := 0 for k ≥ 3.

Proof. By Lemma 3.1 we have

PX

(1
2 , χ

)−2

=
(
1 + O(X−1)

) ∏
deg P ≤X

(
1 − χ(P )

|P |
1
2

)2 ∏
X
2 <deg P ≤X

(
1 + χ(P )2

2|P |

)2
.

By writing P ∗∗
X

(
1
2 , χ

)
as an Euler product, we see that

∏
deg P ≤X

(
1 − χ(P )

|P |
1
2

)2 ∏
X
2 <deg P ≤X

(
1 + χ(P )2

2|P |

)2

= P ∗∗
X

(1
2 , χ

) ∏
X
2 <deg P ≤X

(
1 +

−2χ(P )3

|P |
3
2

+ 5χ(P )4

4|P |2 − χ(P )5

2|P |
5
2

+ χ(P )6

4|P |6

1 − 2χ(P )
|P |

1
2

+ 2χ(P )2

|P |

)

= P ∗∗
X

(1
2 , χ

) ∏
X
2 <deg P ≤X

(
1 + O

(
|P |−

3
2
))
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= P ∗∗
X

(1
2 , χ

)
exp

(
O

( ∑
X
2 <deg P ≤X

|P |−
3
2

))

=
(
1 + O

(
X−1q− X

4
))

P ∗∗
X

(1
2 , χ

)
.

The result follows. The requirement that X ≥ 12 is so that the factor(
1 − 2χ(P )

|P |
1
2

+ 2χ(P )2

|P |

)−1
in the second line is guaranteed to be non-zero. □

Lemma 6.2. We define

P̂ ∗∗
x

(1
2 , χ

)
:=

∑
A∈SM(X)

deg A≤ 1
8 logq deg R

β(A)χ(A)
|A|

1
2

.

Then, as X, deg R → ∞ with X ≤ logq log deg R,

P ∗∗
X

(1
2 , χ

)
= P̂ ∗∗

x

(1
2 , χ

)
+ O

(
(deg R)− 1

33
)
.

Proof. We have, as X, deg R → ∞ with X ≤ logq log deg R,

∑
A∈SM(X)

deg A> 1
8 logq deg R

β(A)χ(A)
|A|

1
2

≪ 1
(deg R)

1
32

∑
A∈SM(X)

|β(A)|
|A|

1
4

= (deg R)− 1
32

∏
deg P ≤X

(
1 + 2|P |−

1
4 + 2|P |−

1
2
)

= (deg R)− 1
32 exp

(
O

( ∑
deg P ≤X

|P |−
1
4

))

= (deg R)− 1
32 exp

(
O

(
q

7
8 X

X

))

≤ (deg R)− 1
33 . □

We now prove several results that will be used to obtain the main asymp-
totic term in Theorem 1.8. The following two results are generally known
in the field, but as far as the author is aware they are not given explicitly
anywhere in the literature. As they are non-trivial, we provide them here
for completeness.



Euler–Hadamard Product for Dirichlet L-functions in Fq[T ] 589

Lemma 6.3. Suppose A1, A2, A3, B1, B2, B3 ∈ M satisfy A1A2A3 =
B1B2B3. Then, there are G1, G2, G3, V1,2, V1,3, V2,1, V2,3, V3,1, V3,2 ∈ M, sat-
isfying (Vi,j , Vk,l) = 1 when both i ̸= k and j ̸= l hold, such that

A1 = G1V1,2V1,3 B1 = G1V2,1V3,1

A2 = G2V2,1V2,3 B2 = G2V1,2V3,2

A3 = G3V3,1V3,2 B3 = G3V1,3V2,3.

Furthermore, this is a bijective correspondence. To clarify, Gi is the highest
common divisor of Ai and Bi; and in Vi,j the subscript i indicates that Vi,j

divides Ai and the subscript j indicates that Vi,j divides Bj.

Proof. Let us write Ai = GiSi and Bi = GiTi, where
Gi = (Ai, Bi)

(Si, Ti) = 1.
(6.2)

Since A1A2A3 = B1B2B3, we must have that
S1S2S3 = T1T2T3.(6.3)

First we note that, due to (6.3) and the coprimality relations in (6.2), we
have that Si | TjTk and Ti | SjSk for i, j, k distinct.

Second, again due to (6.3) and (6.2), we must have that (S1, S2, S3),
(T1, T2, T3) = 1.

Third, for i ̸= j, we define Si,j := (Si, Sj) and Ti,j := (Ti, Tj). Again due
to (6.3) and (6.2), we have (Si,j)2 | Tk and (Ti,j)2 | Sk for i, j, k distinct.
Furthermore, (Si1,j1 , Si2,j2) = 1 and (Ti1,j1 , Ti2,j2) = 1 for all {i1, j1} ≠
{i2, j2}, and (Si1,j1 , Ti2,j2) = 1 for all i1, j1, i2, j2.

From these three points we can deduce that
S1 = S1,2S1,3(T2,3)2S1

′ T1 = T1,2T1,3(S2,3)2T1
′

S2 = S1,2S2,3(T1,3)2S2
′ T2 = T1,2T2,3(S1,3)2T2

′

S3 = S1,3S2,3(T1,2)2S3
′ T3 = T1,3T2,3(S1,2)2T3

′

for some Si
′ and Ti

′ satisfying (Si
′, Ti

′) = 1 for all i and (Si
′, Sj

′), (Ti
′, Tj

′) =
1 for i ̸= j. By (6.3) we have that S1

′S2
′S3

′ = T1
′T2

′T3
′. From these points

we can deduce that
S1

′ = U1,2U1,3 T1
′ = U2,1U3,1

S2
′ = U2,1U2,3 T2

′ = U1,2U3,2

S3
′ = U3,1U3,2 T3

′ = U1,3U2,3

where the Ui,j are pairwise coprime. Also, for i, j, k distinct, because
Ui,j | Tj and (Sj , Tj) = 1, we have that (Ui,j , Sj) = 1, and hence
(Ui,j , Sj,k), (Ui,j , Sj,i) = 1. Similarly, for i, j, k distinct, we have
(Ui,j , Ti,k), (Ui,j , Ti,j) = 1.
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So, by defining
V1,2 = S1,3T2,3U1,2 V2,1 = S2,3T1,3U2,1 V3,1 = S2,3T1,2U3,1

V1,3 = S1,2T2,3U1,3 V2,3 = S1,2T1,3U2,3 V3,2 = S1,3T1,2U3,2

we complete the proof for the existence claim.
Uniqueness follows from the following observation: If we have Gi and Vi,j

satisfying the conditions in the Lemma, then we can deduce
Gi = (Ai, Bi) for all i, and

Vi,j =
(

Vi,jVk,j ,
Vi,jVk,jVj,iVk,i

Vk,iVk,j

)
=
(

B̂j ,
B̂iB̂j

Âk

)
for i, j, k distinct,

where we define B̂i, Âi by Bi = GiB̂i = (Ai, Bi)B̂i and Ai = GiÂi =
(Ai, Bi)Âi for all i. Since the far right side of each line above is expressed
entirely in terms of A1, A2, A3, B1, B2, B3, we must have uniqueness. □

Lemma 6.4. Suppose V1,3, V2,3, V3,1, V3,2 ∈ M, and (V1,3, V3,1V3,2) = 1 and
(V2,3, V3,1V3,2) = 1. Then,{

(V1,2, V2,1) ∈ M2 : (V1,2, V2,3V3,1) = 1, (V2,1, V1,3V3,2) = 1, (V1,2, V2,1) = 1
}

=
⋃

V ∈M(
V,(V1,3V3,1,V2,3V3,2)

)
=1

{
(V1,2, V2,1) ∈ M2 :

V1,2V2,1 = V, (V1,2, V2,3V3,1) = 1,

(V2,1, V1,3V3,2) = 1, (V1,2, V2,1) = 1

}
,

and for each such V we have

#
{

(V1,2, V2,1) ∈ M2 :
V1,2V2,1 = V, (V1,2, V2,3V3,1) = 1,

(V2,1, V1,3V3,2) = 1, (V1,2, V2,1) = 1

}

= 2
ω(V )−ω

((
V,V1,3V2,3V3,1V3,2

))
.

Proof. For the first claim we note that (V1,2, V2,3V3,1) = 1 and
(V2,1, V1,3V3,2) = 1 imply that(

V, (V1,3, V2,3) · (V3,1, V3,2)
)

= 1,

and, due to the given coprimality relations of V1,3,V2,3,V3,1, and V3,2 given
in Lemma 6.3, we have

(V1,3, V2,3) · (V3,1, V3,2) = (V1,3V3,1, V2,3V3,2).
The first claim follows.

We now look at the second claim. For A, B ∈ M, we define AB to be the
maximal divisor of A that is coprime to B, and we define AB by A = ABAB.
We then have that

V = VV1,3V2,3V3,1V3,2V V1,3V2,3V3,1V3,2 = VV1,3V2,3V3,1V3,2V V1,3V V2,3V V3,1V V3,2 ,
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where the last equality follows from
(
V, (V1,3V3,1, V2,3V3,2)

)
= 1 and the

fact that (V1,3, V3,1) = 1 and (V2,3, V3,2) = 1. Now, V = V1,2V2,1 and by the
coprimality relations we must have that V V1,3V V3,2 | V1,2 and V V2,3V V3,1 |
V2,1. So, we see that

#
{

(V1,2, V2,1) ∈ M2 :
V1,2V2,1 = V, (V1,2, V2,3V3,1) = 1,

(V2,1, V1,3V3,2) = 1, (V1,2, V2,1) = 1

}

= #
{

(V1,2, V2,1) ∈ M2 :
V1,2V2,1 = VV1,3V2,3V3,1V3,2V V1,3V V2,3V V3,1V V3,2 ,

V V1,3V V3,2 |V1,2 , V V2,3V V3,1 |V2,1 , (V1,2, V2,1) = 1

}

= 2ω
(

VV1,3V2,3V3,1V3,2

)
= 2

ω(V )−ω

((
V,V1,3V2,3V3,1V3,2

))
. □

Lemma 6.5. Let R, M ∈ M with deg M ≤ deg R, k be a non-negative
integer, and z be an integer-valued function of R such that z ∼ deg R as
deg R → ∞. Then, as deg R → ∞, we have

∑
N∈M

deg N≤z
(N,R)=1

2ω(N)−ω
(

(N,M)
)

|N |
(z − deg N)k

(1 − q−1)
(k + 2)(k + 1)

∏
P |MR

(1 − |P |−1

1 + |P |−1

) ∏
P |M
P ∤R

( 1
1 − |P |−1

)

×
(
zk+2 + Ok

(
zk+1 log deg R

))
and

∑
N∈M

deg N≤z
(N,R)=1

2ω(N)−ω
(

(N,M)
)

|N |
(deg N)k

= (1 − q−1)
(k + 2)

∏
P |MR

(1 − |P |−1

1 + |P |−1

) ∏
P |M
P ∤R

( 1
1 − |P |−1

)

×
(
zk+2 + Ok

(
zk+1 log deg R

))
.

Proof. The second result follows easily from the first by using the binomial
theorem. The first result is proved using the standard approach (see [7], for
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example). We take

F (s) =
∑

N∈M
(N,R)=1

2ω(N)−ω
(

(N,M)
)

|N |s

= ζA(s)2

ζA(2s)
∏

P |MR

(1 − |P |−s

1 + |P |−s

) ∏
P |M
P ∤R

( 1
1 − |P |−s

)
.

Then, for a positive c we have

1
2πi

∫ c+i∞

c−i∞
F (1 + s) ys

sk+1 ds

= (log q)k

k!
∑

N∈M
deg N≤z
(N,R)=1

2ω(N)−ω
(

(N,M)
)

|N |
(
z − deg N

)k
,

where we have used Perron’s formula and the summation representation
of F (1 + s). This gives the left-side of the first result in the lemma. The
right side is obtained by using the product representation of F (1 + s) and
shifting the line of integration to Re(s) = 1

4 . □

Lemma 6.6. Suppose ν is a multiplicative function on A and that there
exists a non-negative integer r such that ν(P k) = O(kr) for all primes P
(the implied constant is independent of P ). Furthermore, suppose there is
an η > 0 such that ν(A) ≪η |A|η as deg A → ∞.

Let R ∈ M be a variable, a, b > 0 be constants, and X = X(R), y =
y(R) be non-negative, increasing, integer-valued functions such that X ≤
a logq log deg R and y ≥ b logq deg R for large enough deg R.

Let c and ϵ be such that c > ϵ > max
{
0, 1 − 1

a

}
and c > η, and let θ > 0

be small. Finally, let S ∈ M; S may depend on R. We then have that

∑
A∈SM(X)
deg A≤y
(A,S)=1

ν(A)
|A|c

=
∏

deg P ≤X
(P,S)=1

(
1 + ν(P )

|P |c
+ ν(P 2)

|P |2c
+ . . .

)
+ Oq,a,b,c,r,ϵ,θ

(
(deg R)−b(c−ϵ)(1−θ)

)

as deg R → ∞.
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Proof. The proof is similar to Lemma 6.5. We begin with

F (s) :=
∑

A∈SM(X)
(A,S)=1

ν(A)
|A|s+c

=
∏

deg P ≤X
(P,S)=1

(
1 + ν(P )

|P |s+c
+ ν(P 2)

|P |2(s+c) + . . .

)
.

By letting d ≥ 2 and using Perron’s formula on

1
2πi

∫ d+i∞

d−i∞

∑
A∈SM(X)
(A,S)=1

ν(A)
|A|s+c

q(y+ 1
2 )s

s
ds,

we get the left side of the lemma. Using the Euler product representation
of F (s) and a contour shift to Re(s) = −c+ϵ gives the right side. The main
term comes from the singularity at 0. □

We now prove a result that is required to bound the lower order terms
in the proof of Theorem 1.8, but first we require three results from [2]. (See
Theorem 6.1, Lemma 7.7, and Lemma 7.8 in [2])
Theorem 6.7. Suppose α, β are fixed and satisfy 0 < α < 1

2 and 0 < β < 1
2 .

Let X ∈ M and y be a positive integer satisfying β deg X < y ≤ deg X.
Also, let A ∈ A and G ∈ M satisfy (A, G) = 1 and deg G < (1 − α)y.
Then, we have that ∑

N∈M
deg(N−X)<y
N≡A(mod G)

d(N) ≪α,β
qy deg X

ϕ(G) .

Lemma 6.8. Let F, K ∈ M, x ≥ 0, and a ∈ F∗
q. Suppose also that 1

2x <

deg KF ≤ 3
4x. Then,∑

N∈M
deg N=x−deg KF

(N,F )=1

d(N)d(KF + aN) ≪ qxx2 1
|KF |

∑
H|K

deg H≤ x−deg KF
2

d(H)
|H|

.

Lemma 6.9. Let F ∈ M, K ∈ A\{0}, and x ≥ 0 satisfy deg KF < x.
Then, ∑

N∈M
deg N=x
(N,F )=1

d(N)d(KF + N) ≪ qxx2 ∑
H|K

deg H≤ x
2

d(H)
|H|

.

Lemma 6.10. Let F ∈ M, A3, B3 ∈ SM(X) with (A3B3, F ) = 1, and
z1, z2 be non-negative integers. Also, we define

d̂eg(A) :=
{

1 if deg A = 0
deg A if deg A ≥ 1.
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Then, for all ϵ > 0 we have the following:∑
A1,A2,B1,B2∈M

deg A1B1=z1
deg A2B2=z2

(A1A2B1B2,F )=1
A1A2A3≡B1B2B3(mod F )

A1A2A3 ̸=B1B2B3

1 ≪ϵ

(
qz1qz2

)1+ϵ
|A3B3| d̂eg(A3B3)

|F |

if z1 + z2 + deg A3B3 ≤ 19
10 deg F ; and∑

A1,A2,B1,B2∈M
deg A1B1=z1
deg A2B2=z2

(A1A2B1B2,F )=1
A1A2A3≡B1B2B3(mod F )

A1A2A3 ̸=B1B2B3

1 ≪ qz1+z2 |A3B3|(z1 + z2 + deg A3B3)3 1
ϕ(F )

if z1 + z2 + deg A3B3 > 19
10 deg F .

Proof. We can split the sum into the cases deg A1A2A3 > deg B1B2B3,
deg A1A2A3 < deg B1B2B3, and deg A1A2A3 = deg B1B2B3 with
A1A2A3 ̸= B1B2B3.

When deg A1A2A3 > deg B1B2B3, we have that A1A2A3 = KF +
B1B2B3 where K ∈ M and deg KF > deg B1B2B3. Furthermore,

2 deg KF = 2 deg A1A2A3 > deg A1A2A3 + deg B1B2B3

= deg A1B1 + deg A2B2 + deg A3B3 = z1 + z2 + deg A3B3,

from which we deduce that

a0 := z1 + z2 + deg A3B3
2 < deg KF ≤ z1 + z2 + deg A3 =: a1.

Also,
deg KF + deg B1B2 = deg A1A2A3 + deg B1B2 = z1 + z2 + deg A3,

from which we deduce that
deg B1B2 = z1 + z2 + deg A3 − deg KF.

Similarly, if deg A1A2A3 < deg B1B2B3, we can show that

b0 := z1 + z2 + deg A3B3
2 < deg KF ≤ z1 + z2 + deg B3 =: b1

and
deg A1A2 = z1 + z2 + deg B3 − deg KF.
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When deg A1A2A3 = deg B1B2B3, we must have that

deg A1A2 = z1 + z2 + deg B3 − deg A3
2 ,

deg B1B2 = z1 + z2 + deg A3 − deg B3
2 .

Also, we can write A1A2A3 = KF + B1B2B3, where deg KF <
deg B1B2B3 = z1+z2+deg A3B3

2 and K ̸= 0 need not be monic.
So, writing N = B1B2 when deg A1A2A3 ≥ deg B1B2B3, and N = A1A2

when deg A1A2A3 < deg B1B2B3, we have that

∑
A1,A2,B1,B2∈M

deg A1B1=z1
deg A2B2=z2

(A1A2B1B2,F )=1
A1A2A3≡B1B2B3(mod F )

A1A2A3 ̸=B1B2B3

1(6.4)

≤
∑

K∈M
a0<deg KF ≤a1

∑
N∈M

deg N=z1+z2+deg A3−deg KF
(N,F )=1

d(N)d
(
(KF + NB3)A3

−1
)

+
∑

K∈M
b0<deg KF ≤b1

∑
N∈M

deg N=z1+z2+deg B3−deg KF
(N,F )=1

d(N)d
(
(KF + NA3)B3

−1
)

+
∑

K∈A\{0}
deg KF <a0

∑
N∈M

deg N= z1+z2+deg A3−deg B3
2

(N,F )=1

d(N)d
(
(KF + NB3)A3

−1
)
.

We must remark that if A3 | (KF + NB3) then we define (KF +
NB3)A3

−1 by (KF + NB3)A3
−1 · A3 = (KF + NB3). If A3 ∤ (KF + NB3),

then we ignore the term with (KF + NB3)A3
−1 in the sum; that is,

we take the definition d
(
(KF + NB3)A3

−1) := 0. We do the same for
(KF + NA3)B3

−1.
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Step 1. Let us consider the case when z1 + z2 + deg A3B3 ≤ 19
10 deg F . By

using well known bounds on the divisor function, we have that∑
K∈M

a0<deg KF ≤a1

∑
N∈M

deg N=z1+z2+deg A3−deg KF
(N,F )=1

d(N)d
(
(KF + NB3)A3

−1
)

≪ϵ

(
qz1qz2

) ϵ
2 ∑

K∈M
a0<deg KF ≤a1

∑
N∈M

deg N=z1+z2+deg A3−deg KF
(N,F )=1

1

≤
(
qz1qz2

)1+ ϵ
2 |A3|

∑
K∈M

a0<deg KF ≤a1

1
|KF |

≪
(
qz1qz2

)1+ ϵ
2 |A3|z1 + z2 + deg A3

|F |
≪ϵ

(
qz1qz2

)1+ϵ
|A3| d̂egA3

|F |
.

Similarly,∑
K∈M

b0<deg KF ≤b1

∑
N∈M

deg N=z1+z2+deg B3−deg KF
(N,F )=1

d(N)d
(
(KF + NA3)B3

−1
)

≪ϵ

(
qz1qz2

)1+ϵ
|B3| d̂egB3

|F |
.

As for the sum∑
K∈A\{0}

deg KF <a0

∑
N∈M

deg N= z1+z2+deg A3−deg B3
2

(N,F )=1

d(N)d
(
(KF + NB3)A3

−1
)
,

we note that it does not apply to this case where z1 + z2 + deg A3B3 ≤
19
10 deg F because this would imply deg KF ≥ deg F ≥ 20

19a0, which does
not overlap with range deg KF < a0 in the sum. Hence,

∑
A1,A2,B1,B2∈M

deg A1B1=z1
deg A2B2=z2

(A1A2B1B2,F )=1
A1A2A3≡B1B2B3(mod F )

A1A2A3 ̸=B1B2B3

1 ≪ϵ

(
qz1qz2

)1+ϵ
|A3B3| d̂eg(A3B3)

|F |

for z1 + z2 + deg A3B3 ≤ 19
10 deg F .
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Step 2. We now consider the case when z1 + z2 + deg A3B3 > 19
10 deg F .

Step 2.1. We consider the subcase where a0 < deg KF ≤ 3
2a0. This allows

us to apply Lemma 6.8 for the second relation below.

∑
K∈M

a0<deg KF ≤ 3
2 a0

∑
N∈M

deg N=z1+z2+deg A3−deg KF
(N,F )=1

d(N)d
(
(KF + NB3)A3

−1
)

≤
∑

K∈M
a0<deg KF ≤ 3

2 a0

∑
N∈M

deg N=2a0−deg KF
(N,F )=1

d(N)d
(
KF + N

)

≪ qz1qz2 |A3B3|(z1 + z2 + deg A3B3)2

× 1
|F |

∑
K∈M

a0<deg KF ≤ 3
2 a0

1
|K|

∑
H|K

deg H≤ 2a0−deg KF

2

d(H)
|H|

≤ qz1qz2 |A3B3|(z1 + z2 + deg A3B3)2 1
|F |

∑
K∈M

deg KF ≤2a0

1
|K|

∑
H|K

d(H)
|H|

≤ qz1qz2 |A3B3|(z1 + z2 + deg A3B3)2 1
|F |

∑
H∈M

deg H≤2a0

d(H)
|H|

∑
K∈M

deg K≤2a0
H|K

1
|K|

≤ qz1qz2 |A3B3|(z1 + z2 + deg A3B3)3 1
|F |

∑
H∈M

deg H≤2a0

d(H)
|H|2

≪ qz1qz2 |A3B3|(z1 + z2 + deg A3B3)3 1
|F |

.

Similarly,

∑
K∈M

b0<deg KF ≤ 3
2 b0

∑
N∈M

deg N=z1+z2+deg B3−deg KF
(N,F )=1

d(N)d
(
(KF + NA3)B3

−1
)

≪ qz1qz2 |A3B3|(z1 + z2 + deg A3B3)3

|F |
.
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Step 2.2. Now we consider the subcase where 3
2a0 < deg KF ≤ a1. We have

that

∑
K∈M

3
2 a0<deg KF ≤a1

∑
N∈M

deg N=z1+z2+deg A3−deg KF
(N,F )=1

d(N)d
(
(KF + NB3)A3

−1
)

≤
∑

K∈M
3
2 a0<deg KF ≤a1

∑
N∈M

deg N=2a0−deg KF
(N,F )=1

d(N)d(KF + N)

≤
∑

N∈M
deg N<

a0
2

(N,F )=1

∑
K∈M

deg KF =2a0−deg N

d(N)d(KF + N)

≤
∑

N∈M
deg N<

a0
2

(N,F )=1

d(N)
∑

M∈M
deg(M−X(N))<2a0−deg N

M≡N(mod F )

d(M)

where we define X(N) := T 2a0−deg N (The monic polynomial of degree 2a0 −
deg N with all non-leading coefficients equal to 0). We can now apply The-
orem 6.7. One may wish to note that

y := 2a0 − deg N ≥ 3
4(z1 + z2 + deg A3B3) ≥ 3

4
19
10 deg F

and so deg F ≤ 40
57y = (1 − α)y, where 0 < α < 1

2 , as required. Hence, we
have that

∑
K∈M

3
2 a0<deg KF ≤a1

∑
N∈M

deg N=z1+z2+deg A3−deg KF
(N,F )=1

d(N)d
(
(KF + NB3)A3

−1
)

≤ qz1qz2 |A3B3|(z1 + z2 + deg A3B3) 1
ϕ(F )

∑
N∈M

deg N<
a0
2

(N,F )=1

d(N)
|N |

≦z1 qz2 |A3B3|(z1 + z2 + deg A3B3)3 1
ϕ(F ) .
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Similarly, if 3
2b0 < deg KF ≤ b1 then∑

K∈M
3
2 b0<deg KF ≤b1

∑
N∈M

deg N=z1+z2+deg B3−deg KF
(N,F )=1

d(N)d
(
(KF + NA3)B3

−1
)

≤ qz1qz2 |A3B3|(z1 + z2 + deg A3B3)3 1
ϕ(F ) .

Step 2.3. We now look at the sum∑
K∈A\{0}

deg KF <a0

∑
N∈M

deg N= z1+z2+deg A3−deg B3
2

(N,F )=1

d(N)d
(
(KF + NB3)A3

−1
)
.

By Lemma 6.9 we have that∑
K∈A\{0}

deg KF <a0

∑
N∈M

deg N= z1+z2+deg A3−deg B3
2

(N,F )=1

d(N)d
(
(KF + NB3)A3

−1
)

≤
∑

K∈A\{0}
deg KF <a0

∑
N∈M

deg N=a0
(N,F )=1

d(N)d(KF + N)

≪ q
z1+z2

2 |A3B3|
1
2 (z1 + z2 + deg A3B3)2 ∑

K∈A\{0}
deg KF <a0

∑
H|K

d(H)
|H|

≤ qz1+z2−1|A3B3|(z1 + z2 + deg A3B3)2 1
|F |

∑
K∈A\{0}

deg KF <a0

1
|K|

∑
H|K

d(H)
|H|

≤ qz1+z2 |A3B3|(z1 + z2 + deg A3B3)3 1
|F |

,

where the second-to-last relation uses the fact that a0 is an integer (since
deg A1A2A3 = deg B1B2B3) and so deg KF < a0 implies deg KF ≤ a0 − 1,
and the last relation uses a similar calculation as that in Step 2.1.

Step 2.4. We apply Steps 2.1, 2.2, and 2.3 to (6.4) and we see that, for
z1 + z2 + deg A3B3 > 19

10 deg F ,∑
A1,A2,B1,B2∈M

deg A1B1=z1
deg A2B2=z2

(A1A2B1B2,F )=1
A1A2A3≡B1B2B3(mod F )

A1A2A3 ̸=B1B2B3

1 ≪ qz1+z2 |A3B3|(z1 + z2 + deg A3B3)3 1
ϕ(F ) . □
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7. The Fourth Hadamard Moment
We can now prove Theorem 1.8.

Proof of Theorem 1.8. In this proof, we assume all asymptotic relations are
as X, deg R → ∞ with X ≤ logq log deg R. Using Lemmas 6.1 and 6.2, we
have

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)
PX

(1
2 , χ

)−1∣∣∣∣4

∼ 1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)∣∣∣∣4∣∣∣∣P ∗∗
X

(1
2 , χ

)∣∣∣∣2

= 1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)∣∣∣∣4∣∣∣∣P̂ ∗∗
X

(1
2 , χ

)
+ O

(
(deg R)− 1

33
)∣∣∣∣2.

By the Cauchy–Schwarz inequality, (1.3), and (3.6), it suffices to prove

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)∣∣∣∣4∣∣∣∣P̂ ∗∗
X

(1
2 , χ

)∣∣∣∣2

∼ 1
12(deg R)4 ∏

deg P >X
P |R

((
1 − |P |−1)3
1 + |P |−1

) ∏
deg P ≤X

(
1 − |P |−1)4.

By Lemma 5.3, we have

1
ϕ∗(R)

∑∗

χ mod R

∣∣∣∣L(1
2 , χ

)∣∣∣∣4∣∣∣∣P̂ ∗∗
X

(1
2 , χ

)∣∣∣∣2

= 1
ϕ∗(R)

∑∗

χ mod R

(
2a(χ) + 2b(χ) + c(χ)

)2∣∣∣∣P̂ ∗∗
X

(1
2 , χ

)∣∣∣∣2,

where c(χ) is as in Lemma 5.3 and

zR := deg R − logq 2ω(R);

a(χ) :=
∑

A,B∈M
deg AB≤zR

χ(A)χ(B)
|AB|

1
2

;

b(χ) :=
∑

A,B∈M
zR<deg AB<deg R

χ(A)χ(B)
|AB|

1
2

.

By symmetry in A, B, the terms a(χ), b(χ), and c(χ) are equal to their
conjugates and so they are real. Hence, by the Cauchy–Schwarz inequality,
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it suffices to obtain the asymptotic main term of

4
ϕ∗(R)

∑∗

χ mod R

a(χ)2
∣∣∣∣P̂ ∗∗

X

(1
2 , χ

)∣∣∣∣2(7.1)

and show that

1
ϕ∗(R)

∑∗

χ mod R

b(χ)2
∣∣∣∣P̂ ∗∗

X

(1
2 , χ

)∣∣∣∣2 and 1
ϕ∗(R)

∑∗

χ mod R

c(χ)2
∣∣∣∣P̂ ∗∗

X

(1
2 , χ

)∣∣∣∣2

are of lower order. The reason we express the sum in terms of a(χ) and
b(χ) is because the fact that a(χ) is truncated allows us to bound the lower
order terms that it contributes. We cannot do this with b(χ) but, because
b(χ) is a relatively short sum, we can apply others methods to bound it.

Step 1: the asymptotic main term of 4
ϕ∗(R)

∑∗
χ mod R a(χ)2∣∣P̂ ∗∗

X

(1
2 , χ

)∣∣2.
Recall the following two orthogonality relations: Let R ∈ M and A, B ∈ A.
Then,

∑∗

χ mod R

χ(A)χ̃(B) =


∑

EF =R
F |(A−B)

µ(E)ϕ(F ) if (AB, R) = 1,

0 otherwise;

∑∗

χ mod R
χ even

χ(A)χ(B) =


1

q−1
∑

a∈Fq
∗
∑

EF =R
F |(A−aB)

µ(E)ϕ(F ) if (AB, R) = 1,

0 otherwise.

By taking the trivial character, the first orthogonality relation gives
ϕ∗(R) =

∑
EF =R µ(E)ϕ(F ). Using these, we have

1
ϕ∗(R)

∑∗

χ mod R

a(χ)2
∣∣∣P̂ ∗∗

X

(1
2 , χ

)∣∣∣2(7.2)

= 1
ϕ∗(R)

∑∗

χ mod R

∑
A1,A2,B1,B2∈M
A3,B3∈SM(X)

deg A1B1,deg A2B2≤zR

deg A3,deg B3≤ 1
8 logq deg R

β(A3)β(B3)χ(A1A2A3)χ(B1B2B3)
|A1A2A3B1B2B3|

1
2
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=
∑

A1,A2,B1,B2∈M
A3,B3∈SM(X)

deg A1B1,deg A2B2≤zR

deg A3,deg B3≤ 1
8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

+ 1
ϕ∗(R)

∑
EF =R

µ(E)ϕ(F )
∑

A1,A2,B1,B2∈M
A3,B3∈SM(X)

deg A1B1,deg A2B2≤zR

deg A3,deg B3≤ 1
8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3≡B1B2B3(mod F )

A1A2A3 ̸=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

.

Step 1.1. Consider the first term on the far right side of (7.2): the diagonal
terms. Lemma 6.3 gives∑

A1,A2,B1,B2∈M
A3,B3∈SM(X)

deg A1B1,deg A2B2≤zR

deg A3,deg B3≤ 1
8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

=
∑

G1,G2,V1,2,V2,1∈M
G3,V1,3,V2,3,V3,1,V3,2∈SM(X)
deg(G1)2V1,2V1,3V2,1V3,1≤zR

deg(G2)2V2,1V2,3V1,2V3,2≤zR

deg G3V3,1V3,2≤ 1
8 logq deg R

deg G3V1,3V2,3≤ 1
8 logq deg R

(Gi,R),(Vj,k,R)=1 ∀i,j,k
(Vi,j ,Vk,l)=1 for (i ̸= k ∧ j ̸= l)

β(G3V3,1V3,2)β(G3V1,3V2,3)
|G1G2G3V1,2V1,3V2,1V2,3V3,1V3,2|

=
∑

G3,V1,3,V2,3,V3,1,V3,2∈SM(X)
deg G3V3,1V3,2≤ 1

8 logq deg R

deg G3V1,3V2,3≤ 1
8 logq deg R

(G3V1,3V2,3V3,1V3,2,R)=1
(V1,3V2,3,V3,1V3,2)=1

β(G3V3,1V3,2)β(G3V1,3V2,3)
|G3V1,3V2,3V3,1V3,2|

×
∑

V1,2,V2,1∈M
deg V1,2V2,1≤zR−deg V1,3V3,1
deg V1,2V2,1≤zR−deg V2,3V3,2

(V1,2V2,1,R)=1
(V1,2,V2,3V3,1)=1
(V2,1,V3,2V1,3)=1

(V1,2,V2,1)=1

1
|V1,2V2,1|

∑
G1,G2∈M

deg G1≤
zR−deg V1,2V2,1V1,3V3,1

2

deg G2≤
zR−deg V1,2V2,1V2,3V3,2

2
(G1G2,R)=1

1
|G1G2|

.
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By Lemma 6.4 we have

∑
V1,2,V2,1∈M

deg V1,2V2,1≤zR−deg V1,3V3,1
deg V1,2V2,1≤zR−deg V2,3V3,2

(V1,2V2,1,R)=1
(V1,2,V2,3V3,1)=1
(V2,1,V3,2V1,3)=1

(V1,2,V2,1)=1

1
|V1,2V2,1|

∑
G1,G2∈M

deg G1≤
zR−deg V1,2V2,1V1,3V3,1

2

deg G2≤
zR−deg V1,2V2,1V2,3V3,2

2
(G1G2,R)=1

1
|G1G2|

=
∑

V ∈M
deg V ≤zR−deg V1,3V3,1
deg V ≤zR−deg V2,3V3,2(

V,R(V1,3V3,1,V2,3V3,2)
)

=1

1
|V |

∑
V1,2,V2,1∈M
V1,2V2,1=V

(V1,2,V2,1)=1
(V1,2,V2,3V3,1)=1
(V2,1,V3,2V1,3)=1

∑
G1,G2∈M

deg G1≤
zR−deg V V1,3V3,1

2

deg G2≤
zR−deg V V2,3V3,2

2
(G1G2,R)=1

1
|G1G2|

=
∑

V ∈M
deg V ≤zR−deg V1,3V3,1
deg V ≤zR−deg V2,3V3,2(

V,R(V1,3V3,1,V2,3V3,2)
)

=1

2
ω(V )−ω

((
V,V1,3V2,3V3,1V3,2

))
|V |

∑
G1,G2∈M

deg G1≤
zR−deg V V1,3V3,1

2

deg G2≤
zR−deg V V2,3V3,2

2
(G1G2,R)=1

1
|G1G2|

.

So, we have

∑
A1,A2,B1,B2∈M
A3,B3∈SM(X)

deg A1B1,deg A2B2≤zR

deg A3,deg B3≤ 1
8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

(7.3)

=
∑

G3,V1,3,V2,3,V3,1,V3,2∈SM(X)
deg G3V3,1V3,2≤ 1

8 logq deg R

deg G3V1,3V2,3≤ 1
8 logq deg R

(G3V1,3V2,3V3,1V3,2,R)=1
(V1,3V2,3,V3,1V3,2)=1

β(G3V3,1V3,2)β(G3V1,3V2,3)
|G3V1,3V2,3V3,1V3,2|

×
∑

V ∈M
deg V ≤zR−deg V1,3V3,1
deg V ≤zR−deg V2,3V3,2(

V,R(V1,3V3,1,V2,3V3,2)
)

=1

2
ω(V )−ω

((
V,V1,3V2,3V3,1V3,2

))
|V |

∑
G1,G2∈M

deg G1≤
zR−deg V V1,3V3,1

2

deg G2≤
zR−deg V V2,3V3,2

2
(G1G2,R)=1

1
|G1G2|

.
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Now, by Corollary 5.5, if
zR − deg V V1,3V3,1

2 ≥ logq 3ω(R)

that is,

deg V ≤ deg R − logq 18ω(R) − deg V1,3V3,1

then

(7.4)
∑

G1∈M
deg G1≤

zR−deg V V1,3V3,1
2

(G1,R)=1

1
|G1|

= ϕ(R)
2|R|

(zR − deg V V1,3V3,1) + O

(
ϕ(R)
|R|

log ω(R)
)

= ϕ(R)
2|R|

(
deg R − deg V + O

(
log deg R + ω(R)

))
.

If

deg V > deg R − logq 18ω(R) − deg V1,3V3,1,

then ∑
G1∈M

deg G1≤
zR−deg V V1,3V3,1

2
(G1,R)=1

1
|G1|

≤
∑

G1∈M
deg G1≤logq 3ω(R)

(G1,R)=1

1
|G1|

≪ ϕ(R)
|R|

ω(R).(7.5)

Similar results hold for the sum over G2. So, let us define

m0 := min
{

deg R − logq 18ω(R) − deg V1,3V3,1 ,

deg R − logq 18ω(R) − deg V2,3V3,2

}
,

m1 := max
{

deg R − logq 18ω(R) − deg V1,3V3,1 ,

deg R − logq 18ω(R) − deg V2,3V3,2

}
.

Then, by (7.4) and (7.5), we have

∑
V ∈M

deg V ≤zR−deg V1,3V3,1
deg V ≤zR−deg V2,3V3,2(

V,R(V1,3V3,1,V2,3V3,2)
)

=1

2
ω(V )−ω

((
V,V1,3V2,3V3,1V3,2

))
|V |

∑
G1,G2∈M

deg G1≤
zR−deg V V1,3V3,1

2

deg G2≤
zR−deg V V2,3V3,2

2
(G1G2,R)=1

1
|G1G2|

(7.6)
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= ϕ(R)2

4|R|2
∑

V ∈M
deg V ≤m0(

V,R(V1,3V3,1,V2,3V3,2)
)

=1

2
ω(V )−ω

((
V,V1,3V2,3V3,1V3,2

))
|V |

×
(
deg R − deg V + O

(
log deg R + ω(R)

))2

+ l1(R, V1,3, V3,1, V2,3, V3,2),
where

(7.7) l1(R, V1,3, V3,1, V2,3, V3,2)

≪ ϕ(R)2ω(R) deg R

2|R|2
∑

V ∈M
m0<deg V ≤m1(

V,R(V1,3V3,1,V2,3V3,2)
)

=1

2
ω(V )−ω

((
V,V1,3V2,3V3,1V3,2

))
|V |

+ ϕ(R)2ω(R)2

|R|2
∑

V ∈M
m1<deg V ≤deg R(

V,R(V1,3V3,1,V2,3V3,2)
)

=1

2
ω(V )−ω

((
V,V1,3V2,3V3,1V3,2

))
|V |

.

We now apply Corollary 6.5 to both terms on the right side of (7.6). For
the second term, which is (7.7), it is just two direct applications. For the
first term, we must expand

(
deg R−deg V +O

(
log deg R+ω(R)

))2 and use
Corollary 6.5 on each of the resulting terms. We obtain

∑
V ∈M

deg V ≤zR−deg V1,3V3,1
deg V ≤zR−deg V2,3V3,2(

V,R(V1,3V3,1,V2,3V3,2)
)

=1

2ω(V )−ω
((

V,V1,3V2,3V3,1V3,2
))

|V |
∑

G1,G2∈M
deg G1≤

zR−deg V V1,3V3,1
2

deg G2≤
zR−deg V V2,3V3,2

2
(G1G2,R)=1

1
|G1G2|

(7.8)

= 1 − q−1

48 (deg R)4
(

1 + O

(
ω(R) + log deg R

deg R

)) ∏
P |R

((
1 − |P |−1)3
1 + |P |−1

)

×
∏

P |V1,3V2,3V3,1V3,2

(
1 − |P |−1

1 + |P |−1

) ∏
P |V1,3V2,3V3,1V3,2

P ∤(V1,3,V2,3),(V3,1,V3,2)

(
1

1 − |P |−1

)

=: l2(R, V1,3, V2,3, V3,1, V3,2).
Before proceeding let us make the following definitions: For A ∈ A\{0}

and P ∈ P we define eP (A) to be the largest non-negative integer such that
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P eP (A) | A, and

γ(A) :=
∏
P |A

(
1 + eP (A)1 − |P |−1

1 + |P |−1

)
.(7.9)

Then, we can see that

(7.10)
∑

V1,3,V2,3∈SM(X)
V1,3V2,3=B3′

∏
P |V1,3V2,3

(1 − |P |−1

1 + |P |−1

) ∏
P |V1,3V2,3

P ∤(V1,3,V2,3)

( 1
1 − |P |−1

)

=
∏

P |B3′

(1 − |P |−1

1 + |P |−1

) ∑
W1W2=B3′

(W1,W2)=1

∑
V1,3,V2,3∈SM(X)

V1,3V2,3=B3′

rad(V1,3,V2,3)=rad W1

∏
P |W2

( 1
1 − |P |−1

)

=
∏

P |B3′

(1 − |P |−1

1 + |P |−1

) ∑
W1W2=B3′

(W1,W2)=1

∏
P |W2

( 1
1 − |P |−1

)
2ω(W2) ∏

P |W1

(
eP (B3

′) − 1
)

=
∏

P |B3′

(1 − |P |−1

1 + |P |−1

) ∏
P |B3′

( 2
1 − |P |−1 +

(
eP (B3

′) − 1
))

=
∏

P |B3′

(
1 + eP (B3

′)1 − |P |−1

1 + |P |−1

)
= γ(B3

′).

Similarly,

(7.11)
∑

V3,1,V3,2∈SM(X)
V3,1V3,2=A3′

∏
P |V3,1V3,2

(1 − |P |−1

1 + |P |−1

) ∏
P |V3,1V3,2

P ∤(V3,1,V3,2)

( 1
1 − |P |−1

)
= γ(A3

′).

We now substitute (7.8) to (7.3) and apply (7.10) and (7.11) to obtain

∑
A1,A2,B1,B2∈M
A3,B3∈SM(X)

deg A1B1,deg A2B2≤zR

deg A3,deg B3≤ 1
8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

(7.12)
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=
∑

G3,V1,3,V2,3,V3,1,V3,2∈SM(X)
deg G3V3,1V3,2≤ 1

8 logq deg R

deg G3V1,3V2,3≤ 1
8 logq deg R

(G3V1,3V2,3V3,1V3,2,R)=1
(V1,3V2,3,V3,1V3,2)=1

β(G3V3,1V3,2)β(G3V1,3V2,3)
|G3V1,3V2,3V3,1V3,2|

× l2(R, V1,3, V2,3, V3,1, V3,2)

=
∑

G3,A3′,B3′∈SM(X)
deg G3A3′≤ 1

8 logq deg R

deg G3B3′≤ 1
8 logq deg R

(G3A3′B3′,R)=1
(A3′,B3′)=1

β(G3A3
′)β(G3B3

′)
|G3A3

′B3
′|

×
∑

V3,1,V3,2∈SM(X)
V3,1V3,2=A3′

∑
V1,3,V2,3∈SM(X)

V1,3V2,3=B3′

l2(R, V1,3, V2,3, V3,1, V3,2)

= 1 − q−1

48
∏
P |R

((
1 − |P |−1)3
1 + |P |−1

)
(deg R)4

×
∑

G3,A3′,B3′∈SM(X)
deg G3A3′≤ 1

8 logq deg R

deg G3B3′≤ 1
8 logq deg R

(G3A3′B3′,R)=1
(A3′,B3′)=1

β(G3A3
′)β(G3B3

′)
|G3A3

′B3
′|

γ(A3
′)γ(B3

′)

+ l3(R),

where

(7.13) l3(R) ≪
∏
P |R

((
1 − |P |−1)3
1 + |P |−1

)
(deg R)3(ω(R) + log deg R

)
×

∑
G3,A3′,B3′∈SM(X)

deg G3A3′≤ 1
8 logq deg R

deg G3B3′≤ 1
8 logq deg R

(G3A3′B3′,R)=1
(A3′,B3′)=1

|β(G3A3
′)β(G3B3

′)|
|G3A3

′B3
′|

γ(A3
′)γ(B3

′).

Consider the first term on the far right side of (7.12). We recall that
β(A) = 0 if A is divisible by P 3 for any prime P . Hence, defining ΠP,X :=∏

deg P ≤X P , we may assume that G3 = IJ2 where I, J | ΠP,X , (IJ, R) = 1,
and (I, J) = 1. By similar reasoning, we may assume that A3

′ = KA3
′′

where K | I, (A3
′′, RIJ) = 1; and B3

′ = LB3
′′ where L | I, (L, K) = 1 and
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(B3
′′, RIJA3

′′) = 1. Then, by the multiplicativity of β and γ, we have∑
G3,A3′,B3′∈SM(X)

deg G3A3′≤ 1
8 logq deg R

deg G3B3′≤ 1
8 logq deg R

(G3A3′B3′,R)=1
(A3′,B3′)=1

β(G3A3
′)β(G3B3

′)
|G3A3

′B3
′|

γ(A3
′)γ(B3

′)(7.14)

=
∑

I|ΠP,X

deg I≤ 1
8 logq deg R

(I,R)=1

β(I)2

|I|
∑

J |ΠP,X

deg J≤ 1
16 logq deg R− deg I

2
(J,RI)=1

β(J2)2

|J |2
∑
K|I

β(K2)γ(K)
β(K)|K|

×
∑
L|I

(L,K)=1

β(L2)γ(L)
β(L)|L|

∑
A3′′|(ΠP,X)2

deg A3′′≤ 1
8 logq deg R−deg IJ2K

(A3′′,RIJ)=1

β(A3
′′)γ(A3

′′)
|A3

′′|

×
∑

B3′′|(ΠP,X)2

deg B3′′≤ 1
8 logq deg R−deg IJ2L

(B3′′,RIJA3′′)=1

β(B3
′′)γ(B3

′′)
|B3

′′|
.

Consider the case where deg I > 1
64 logq deg R or deg J > 1

64 logq deg R.
Without loss of generality, suppose the former. Then, all the sums above, ex-
cept that over I, can be bounded by O

(
(logq log deg R)c

)
for some constant

c > 0, while the sum over I can be bounded by O
(
(deg R)− 1

66
)

(this is ob-
tained in the same way we have done several times before, such as in (3.8)).
So, with these restrictions, we have that the above is O

(
(deg R)− 1

67
)
.

Now consider the case where deg I ≤ 1
64 logq deg R and deg J ≤

1
64 logq deg R. Then,

1
8 logq deg R − deg IJ2K ≥ 1

16 logq deg R

and
1
8 logq deg R − deg IJ2L ≥ 1

16 logq deg R.

In particular, we can apply Lemma 6.6 to the last two summations of (7.14):∑
A3′′|(ΠP,X)2

deg A3′′≤ 1
8 logq deg R−deg IJ2K

(A3′′,RIJ)=1

β(A3
′′)γ(A3

′′)
|A3

′′|
∑

B3′′|(ΠP,X)2

deg B3′′≤ 1
8 logq deg R−deg IJ2L

(B3′′,RIJA3′′)=1

β(B3
′′)γ(B3

′′)
|B3

′′|
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=
∏

deg P ≤X
(P,R)=1

(
1 + β(P )γ(P )

|P |
+ β(P 2)γ(P 2)

|P 2|

)

×
∏

P |IJ

(
1 + β(P )γ(P )

|P |
+ β(P 2)γ(P 2)

|P 2|

)−1 ∑
A3′′|(ΠP,X)2

deg A3′′≤ 1
8 logq deg R−deg IJ2K

(A3′′,RIJ)=1

β(A3
′′)γ(A3

′′)
|A3

′′|

×
∏

P |A3′′

(
1 + β(P )γ(P )

|P |
+ β(P 2)γ(P 2)

|P 2|

)−1

+ O
(
(deg R)− 1

17
)

Hence,

∑
A3′′|(ΠP,X)2

deg A3′′≤ 1
8 logq deg R−deg IJ2K

(A3′′,RIJ)=1

β(A3
′′)γ(A3

′′)
|A3

′′|
∑

B3′′|(ΠP,X)2

deg B3′′≤ 1
8 logq deg R−deg IJ2L

(B3′′,RIJA3′′)=1

β(B3
′′)γ(B3

′′)
|B3

′′|

=
∏

deg P ≤X
(P,R)=1

(
1 + β(P )γ(P )

|P |
+ β(P 2)γ(P 2)

|P 2|

)

×
∏

P |IJ

(
1 + β(P )γ(P )

|P |
+ β(P 2)γ(P 2)

|P 2|

)−1

×
∏

deg P ≤X
(P,R)=1

(
1 +

(
β(P )γ(P )

|P |
+ β(P 2)γ(P 2)

|P 2|

)

×
(

1 + β(P )γ(P )
|P |

+ β(P 2)γ(P 2)
|P 2|

)−1)

×
∏

P |IJ

(
1 +

(
β(P )γ(P )

|P |
+ β(P 2)γ(P 2)

|P 2|

)

×
(

1 + β(P )γ(P )
|P |

+ β(P 2)γ(P 2)
|P 2|

)−1)−1

+ O
(
(deg R)− 1

17
)
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and so

(7.15)
∑

A3′′|(ΠP,X)2

deg A3′′≤ 1
8 logq deg R−deg IJ2K

(A3′′,RIJ)=1

β(A3
′′)γ(A3

′′)
|A3

′′|
∑

B3′′|(ΠP,X)2

deg B3′′≤ 1
8 logq deg R−deg IJ2L

(B3′′,RIJA3′′)=1

β(B3
′′)γ(B3

′′)
|B3

′′|

=
∏

deg P ≤X
(P,R)=1

(
1 + 2β(P )γ(P )

|P |
+ 2β(P 2)γ(P 2)

|P 2|

)

×
∏

P |IJ

(
1 + 2β(P )γ(P )

|P |
+ 2β(P 2)γ(P 2)

|P 2|

)−1
+ O

(
(deg R)− 1

17
)
.

Consider now the two middle summations on the right side of (7.14). We
have

(7.16)
∑
K|I

β(K2)γ(K)
β(K)|K|

∑
L|I

(L,K)=1

β(L2)γ(L)
β(L)|L|

=
∏
P |I

(
1 + β(P 2)γ(P )

β(P )|P |

)∑
K|I

β(K2)γ(K)
β(K)|K|

∏
P |K

(
1 + β(P 2)γ(P )

β(P )|P |

)−1

=
∏
P |I

(
1 + β(P 2)γ(P )

β(P )|P |

)∏
P |I

(
1 + β(P 2)γ(P )

β(P )|P |

(
1 + β(P 2)γ(P )

β(P )|P |

)−1)

=
∏
P |I

(
1 + 2β(P 2)γ(P )

β(P )|P |

)
.

Applying (7.15) and (7.16) to (7.14), we obtain

∑
G3,A3′,B3′∈SM(X)

deg G3A3′≤ 1
8 logq deg R

deg G3B3′≤ 1
8 logq deg R

(G3A3′B3′,R)=1
(A3′,B3′)=1

β(G3A3
′)β(G3B3

′)
|G3A3

′B3
′|

γ(A3
′)γ(B3

′)

=
∏

deg P ≤X
(P,R)=1

(
1 + 2β(P )γ(P )

|P |
+ 2β(P 2)γ(P 2)

|P 2|

) ∑
I|ΠP,X

deg I≤ 1
64 logq deg R

(I,R)=1

β(I)2

|I|
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×
∑

J |ΠP,X

deg J≤ 1
64 logq deg R

(J,RI)=1

β(J2)2

|J |2
∏
P |I

(
1 + 2β(P 2)γ(P )

β(P )|P |

)

×
∏

P |IJ

(
1 + 2β(P )γ(P )

|P |
+ 2β(P 2)γ(P 2)

|P 2|

)−1
+ O

(
(deg R)− 1

67
)

=
∏

deg P ≤X
(P,R)=1

(
1 + 2β(P )γ(P )

|P |
+ 2β(P 2)γ(P 2)

|P 2|
+ β(P 2)2

|P |2
)

×
∑

I|ΠP,X

deg I≤ 1
64 logq deg R

(I,R)=1

β(I)2

|I|
∏
P |I

((
1 + 2β(P 2)γ(P )

β(P )|P |

)

×
(

1 + 2β(P )γ(P )
|P |

+ 2β(P 2)γ(P 2)
|P 2|

+ β(P 2)2

|P |2
)−1)

+ O
(
(deg R)− 1

67
)

=
∏

deg P ≤X
(P,R)=1

(
1 + 2β(P )γ(P )

|P |
+ 2β(P 2)γ(P 2)

|P 2|
+ β(P 2)2

|P |2

+ β(P )2

|P |

(
1 + 2β(P 2)γ(P )

β(P )|P |

))

+ O
(
(deg R)− 1

67
)
.

Now, recalling the definitions of β, γ (equations (6.1) and (7.9), respec-
tively) we see that the product above is equal to

∏
deg P ≤X

P ∤R

((
1 − |P |−1)3
1 + |P |−1

) ∏
X
2 <deg P ≤X

P ∤R

(
1 + O

(
|P |−2))

∼
∏
P |R

((
1 − |P |−1)3
1 + |P |−1

)−1 ∏
deg P >X

P |R

((
1 − |P |−1)3
1 + |P |−1

) ∏
deg P ≤X

((
1 − |P |−1)3
1 + |P |−1

)
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=
∏
P |R

((
1 − |P |−1)3
1 + |P |−1

)−1 ∏
deg P >X

P |R

((
1 − |P |−1)3
1 + |P |−1

) ∏
deg P ≤X

(
1 − |P |−1)4

×
∏

deg P ≤X

(
1 − |P |−2)−1

∼
(
1 − q−1)−1 ∏

P |R

((
1 − |P |−1)3
1 + |P |−1

)−1 ∏
deg P >X

P |R

((
1 − |P |−1)3
1 + |P |−1

)( 1
eγX

)4
,

where we have used (3.6) for the last equality. Recall that the above is to
be applied to the first term on the far right side of (7.12). We now consider
l3(R): the second term on the far right side of (7.12). By means similar to
those described in the paragraph after (7.14), we can show that there is
some constant c > 0 such that

∑
G3,A3′,B3′∈SM(X)

deg G3A3′≤ 1
8 logq deg R

deg G3B3′≤ 1
8 logq deg R

(G3A3′B3′,R)=1
(A3′,B3′)=1

|β(G3A3
′)β(G3B3

′)|
|G3A3

′B3
′|

γ(A3
′)γ(B3

′) ≪ Xc

≪
(
logq log deg R

)c
.

We apply this to (7.13) to obtain a bound for l3(R).
Hence, considering all of the above, (7.12) becomes

(7.17)
∑

A1,A2,B1,B2∈M
A3,B3∈SM(X)

deg A1B1,deg A2B2≤zR

deg A3,deg B3≤ 1
8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

∼ 1
48

(deg R

eγX

)4 ∏
deg P >X

P |R

((
1 − |P |−1)3
1 + |P |−1

)
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Step 1.2. We consider the second term on the far right side of (7.2): the
off-diagonal terms. We have

∑
EF =R

µ(E)ϕ(F )
∑

A1,A2,B1,B2∈M
A3,B3∈SM(X)

deg A1B1,deg A2B2≤zR

deg A3,deg B3≤ 1
8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3≡B1B2B3(mod F )

A1A2A3 ̸=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

≤
∑

A3,B3∈SM(X)
deg A3,deg B3≤ 1

8 logq deg R

(A3B3,R)=1

|β(A3)β(B3)|
|A3B3|

1
2

∑
EF =R

|µ(E)|ϕ(F )

×
zR∑

z1,z2=0
q− z1+z2

2
∑

A1,A2,B1,B2∈M
deg A1B1=z1
deg A2B2=z2

(A1A2B1B2,R)=1
A1A2A3≡B1B2B3(mod F )

A1A2A3 ̸=B1B2B3

1.

By Lemma 6.10 we have, for ϵ = 1
40 ,

zR∑
z1,z2=0

q− z1+z2
2

∑
A1,A2,B1,B2∈M

deg A1B1=z1
deg A2B2=z2

(A1A2B1B2,R)=1
A1A2A3≡B1B2B3(mod F )

A1A2A3 ̸=B1B2B3

1

≪ |A3B3|1+ ϵ
2

|F |

zR∑
z1,z2=0

z1+z2+deg A3B3≤ 19
10 deg F

q(z1+z2)
(

1
2 + ϵ

2

)

+ |A3B3|
ϕ(F )

zR∑
z1,z2=0

z1+z2+deg A3B3> 19
10 deg F

q
z1+z2

2 (z1 + z2 + deg A3B3)3

≪ |A3B3|1+ϵ

|F |
1

20 −ϵ
+ |A3B3|

ϕ(F ) qzR(deg R)3.
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We also have

∑
EF =R

|µ(E)|ϕ(F )
(

|A3B3|1+ϵ

|F |
1

20 −ϵ
+ |A3B3|

ϕ(F ) qzR(deg R)3
)

= |A3B3|1+ϵ
∑

EF =R

|µ(E)| ϕ(F )
|F |

1
20 −ϵ

+ |A3B3|qzR(deg R)3 ∑
EF =R

|µ(E)|

≪ |A3B3|1+ϵ|R| + |A3B3R|(deg R)3,

where the last relation uses

∑
EF =R

|µ(E)| ϕ(F )
|F |

1
20 −ϵ

≤
∑

EF =R

|µ(E)|ϕ(F )

= ϕ(R)
∑

EF =R

|µ(E)|
∏
P |E
P 2|R

( 1
|P |

) ∏
P |E
P 2∤R

( 1
|P | − 1

)

≤ ϕ(R)
∑

EF =R

|µ(E)|
∏
P |E

( 1
|P | − 1

)
= ϕ(R)

∏
P |R

(
1 + 1

|P | − 1

)
= ϕ(R) |R|

ϕ(R)

= |R|.

Finally, using the fact that

∑
A3,B3∈SM(X)

deg A3,deg B3≤ 1
8 logq deg R

(A3B3,R)=1

|β(A3)β(B3)||A3B3|
1
2 +ϵ

≤
( ∑

A∈M
deg A≤ 1

8 logq deg R

|β(A)||A|
1
2 +ϵ

)2

≤
( ∑

A∈M
deg A≤ 1

8 logq deg R

2ω(A)|A|
1
2 +ϵ

)2

≤
( ∑

A∈M
deg A≤ 1

8 logq deg R

d(A)|A|
1
2 +ϵ

)2

≤
( ∑

A∈M
deg A≤ 1

8 logq deg R

|A|
1
2 +ϵ

)4

≤ (deg R)
7
8 ,
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we see that

1
ϕ∗(R)

∑
EF =R

µ(E)ϕ(F )
∑

A1,A2,B1,B2∈M
A3,B3∈SM(X)

deg A1B1,deg A2B2≤zR

deg A3,deg B3≤ 1
8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3≡B1B2B3(mod F )

A1A2A3 ̸=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

≪ |R|
ϕ∗(R)(deg R)3+ 7

8 .

This is indeed of lower order than (7.17); Section 4 of [2] provides the
necessary results to confirm this.

Step 2: the asymptotic main term of 1
ϕ∗(R)

∑∗
χ mod R b(χ)2∣∣P̂ ∗∗

X

(1
2 , χ

)∣∣2.
We have that

(7.18) 1
ϕ∗(R)

∑∗

χ mod R

b(χ)2
∣∣∣∣P̂ ∗∗

X

(1
2 , χ

)∣∣∣∣2

≤ 1
ϕ∗(R)

∑
χ mod R

b(χ)2
∣∣∣∣P̂ ∗∗

X

(1
2 , χ

)∣∣∣∣2

≤ 1
ϕ∗(R)

∑
χ mod R

∑
A1,A2,B1,B2∈M
A3,B3∈SM(X)

zR<deg A1B1,deg A2B2<deg R
deg A3,deg B3≤ 1

8 logq deg R

β(A3)β(B3)χ(A1A2A3)χ(B1B2B3)
|A1A2A3B1B2B3|

1
2

= ϕ(R)
ϕ∗(R)

∑
A1,A2,B1,B2∈M
A3,B3∈SM(X)

zR<deg A1B1,deg A2B2<deg R
deg A3,deg B3≤ 1

8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

+ ϕ(R)
ϕ∗(R)

∑
A1,A2,B1,B2∈M
A3,B3∈SM(X)

zR<deg A1B1,deg A2B2<deg R
deg A3,deg B3≤ 1

8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3≡B1B2B3(mod R)

A1A2A3 ̸=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

.



616 Michael Yiasemides

Step 2.1. For the diagonal term, by similar means as in (7.3), we obtain

(7.19)
∑

A1,A2,B1,B2∈M
A3,B3∈SM(X)

zR<deg A1B1,deg A2B2<deg R
deg A3,deg B3≤ 1

8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

=
∑

G3,V1,3,V2,3,V3,1,V3,2∈SM(X)
deg G3V3,1V3,2≤ 1

8 logq deg R

deg G3V1,3V2,3≤ 1
8 logq deg R

(G3V1,3V2,3V3,1V3,2,R)=1
(V1,3V2,3,V3,1V3,2)=1

β(G3V3,1V3,2)β(G3V1,3V2,3)
|G3V1,3V2,3V3,1V3,2|

×
∑

V ∈M
deg V ≤deg R−deg V1,3V3,1
deg V ≤deg R−deg V2,3V3,2(
V,R(V1,3V3,1,V2,3V3,2)

)
=1

2ω(V )−ω
(

(V,V1,3V2,3V3,1V3,2)
)

|V |

×
∑

G1,G2∈M
max

{
0,

zR−deg V V1,3V3,1
2

}
<deg G1<

deg R−deg V V1,3V3,1
2

max
{

0,
zR−deg V V2,3V3,2

2

}
<deg G2<

deg R−deg V V2,3V3,2
2

(G1G2,R)=1

1
|G1G2|

.

Now, if zR−deg V V1,3V3,1
2 ≤ logq 3ω(R) then

deg R − deg V V1,3V3,1
2 ≤ logq 3ω(R) + 1

2 logq 2ω(R) < logq 6ω(R),

and so, by Corollary 5.5, we have

∑
G1∈M

max
{

0,
zR−deg V V1,3V3,1

2

}
<deg G1<

deg R−deg V V1,3V3,1
2

(G1,R)=1

1
|G1|

≤
∑

G1∈M
deg G1<logq 6ω(R)

(G1,R)=1

1
|G1|

≪ ϕ(R)
|R|

ω(R).



Euler–Hadamard Product for Dirichlet L-functions in Fq[T ] 617

If zR−deg V V1,3V3,1
2 > logq 3ω(R) then

∑
G1∈M

max
{

0,
zR−deg V V1,3V3,1

2

}
<deg G1<

deg R−deg V V1,3V3,1
2

(G1,R)=1

1
|G1|

=
∑

G1∈M
deg G1<

deg R−deg V V1,3V3,1
2

(G1,R)=1

1
|G1|

−
∑

G1∈M
deg G1<

zR−deg V V1,3V3,1
2

(G1,R)=1

1
|G1|

≪ ϕ(R)
|R|

ω(R),

where we have used Corollary 5.5 twice for the last relation. Similar re-
sults hold for the sum over G2. Hence, proceeding similarly as we did for
the diagonal terms of 1

ϕ∗(R)
∑∗

χ mod R

a(χ)2∣∣P̂ ∗∗
X

(1
2 , χ

)∣∣2, we see that there is a

constant c such that

ϕ(R)
ϕ∗(R)

∑
A1,A2,B1,B2∈M
A3,B3∈SM(X)

z<deg A1B1,deg A2B2<deg R
deg A3,deg B3≤ 1

8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2

≪ ϕ(R)3

|R|2ϕ∗(R)ω(R)2(deg R)2 ∏
P |R

((1 − |P |−1)3

1 + |P |−1

)
(logq log deg R)c.

Step 2.2. We now look at the second term on the far right side of (7.18):
the off-diagonal terms. Using Lemma 6.10, we have

ϕ(R)
ϕ∗(R)

∑
A1,A2,B1,B2∈M
A3,B3∈SM(X)

zR<deg A1B1,deg A2B2<deg R
deg A3,deg B3≤ 1

8 logq deg R

(A1A2A3B1B2B3,R)=1
A1A2A3≡B1B2B3(mod R)

A1A2A3 ̸=B1B2B3

β(A3)β(B3)
|A1A2A3B1B2B3|

1
2



618 Michael Yiasemides

= ϕ(R)
ϕ∗(R)

∑
A3,B3∈SM(X)

deg A3,deg B3≤ 1
8 logq deg R

(A3B3,R)=1

β(A3)β(B3)
|A3B3|

1
2

×
∑

zR<z1,z2<deg R

q− z1+z2
2

∑
A1,A2,B1,B2∈M

deg A1B1=z1
deg A2B2=z2

(A1A2A3B1B2B3,R)=1
A1A2A3≡B1B2B3(mod R)

A1A2A3 ̸=B1B2B3

1

≪ (deg R)3

ϕ∗(R)
∑

A3,B3∈SM(X)
deg A3,deg B3≤ 1

8 logq deg R

(A3B3,R)=1

|β(A3)β(B3)||A3B3|
1
2

∑
zR<z1,z2<deg R

q
z1+z2

2

≪ |R|(deg R)3

ϕ∗(R)
∑

A3,B3∈SM(X)
deg A3,deg B3≤ 1

8 logq deg R

(A3B3,R)=1

|β(A3)β(B3)||A3B3|
1
2 ≪ |R|(deg R)3+ 3

4

ϕ∗(R) .

Step 3. By similar means as in Steps 1 and 2, we can show

1
ϕ∗(R)

∑∗

χ mod R

c(χ)2
∣∣∣∣P̂ ∗∗

X

(1
2 , χ

)∣∣∣∣2 ≪ |R|(deg R)3+ 3
4

ϕ∗(R) .

Thus, considering this, and the other bounds we have established in Steps 1
and 2, we can see the main term comes from (7.17), and this completes the
proof. □
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