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The Hybrid Euler-Hadamard Product Formula
for Dirichlet L-functions in F[T]

par MICHAEL YIASEMIDES

RESUME. Nous donnons une formule de produit d’Euler-Hadamard hybride
pour les fonctions L de Dirichlet du corps F,[T]. Nous déterminons explici-
tement le terme principal du moment d’ordre 2k du produit eulérien et, en
utilisant la théorie des matrices aléatoires, proposons une formule conjectu-
rale pour le moment d’ordre 2k du produit d’Hadamard. Avec une conjecture
de scindage, ¢a nous raméne a une conjecture sur le moment d’ordre 2k des
fonctions L de Dirichlet. En faveur de la conjecture de scindage, nous démon-
trons qu’elle est vraie pour k = 1,2. Ce travail est 'analogue pour les corps
de fonctions du travail de Bui et Keating. La différence la plus importante est
que dans notre cas la formule de produit d’Euler—-Hadamard est exacte (sans
terme d’erreur).

ABSTRACT. For Dirichlet L-functions in F,[T] we obtain a hybrid Euler—
Hadamard product formula. We explicitly obtain the main term of the 2k-th
moment of the Euler product, and we conjecture via random matrix theory
the main term of the 2k-th moment of the Hadamard product. Then mak-
ing a splitting conjecture, this leads to a conjecture for the 2k-th moment of
Dirichlet L-functions. Finally, we lend support for the splitting conjecture by
proving the cases k& = 1,2. This work is the function field analogue of the
work of Bui and Keating, with the most notable difference being that the
Euler-Hadamard product formula is exact in this setting (no error term).

1. Introduction and Statement of Results

Moments of L-functions are natural statistics to study if one wishes to
understand the L-functions; and they have several important applications
such as non-vanishing results, zero-density estimates, and the proportion
of zeros on the critical line [13]. Asymptotic results have been obtained
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up to the fourth moment, while for higher moments only bounds have
been rigorously obtained. Conjectures have been made for the asymptotic
behaviour of higher moments. To illustrate the progress, let us consider the
Riemann zeta-function and its behaviour on the critical line. Hardy and
Littlewood [15] showed that
.
¢ < 5 + zt)

1 T
T Ji=o
as T — oo, and it was shown by Ingham [19] that
1 (T /1 ! 16
- Stit)| dt ~——
T t:0C<2+Z) 12 72

as T — oo. For higher moments we have what is often referred to as a
folklore conjecture: For integers k > 0,
(1.1) lim

1
T500 (log TP T t04(2+z>
where f(k) is a real-valued function and

alk) = H<<1 - 1)k2 3 W).

» p By N

2
dt ~ log T,

(log T)*

2k

1 T
dt = f(k)a(k),

We have a(0) = 1,a(1) = 1,a(2) = ﬁ = %, and we have an understand-
ing of a(k) for higher values of k. The factor f(k) is more elusive. Clearly,
from the results described above, we have f(0) =1, f(1) =1, f(2) = &. It
has been conjectured via number-theoretic means that f(3) = %—? [10] and
f(4) = 2%%%4 [11]. For conjectures on higher powers one can use the random
matrix theory approach of Keating and Snaith [22] or the recipe developed
by Conrey, Farmer, Keating, Rubinstein, and Snaith [9]. All conjectures are
in agreement with each other and the established rigorous results.

In this paper we focus on the random matrix theory aspect. Montgomery
and Dyson observed that the pair correlation of the non-trivial zeros of
((s) behaves similarly to the pair correlation of eigenvalues of a random
Hermitian matrix [23]. Given that the eigenvalues of a matrix are the zeros
of its characteristic polynomial, one can consider modelling ((s) on the
critical line with the characteristic polynomials of unitary matrices. Indeed,
by calculating the moments of these characteristic polynomials, Keating
and Snaith [22] conjectured that f(k) := H?;é (jii'k)' Note this agrees with
the results and conjectures that were established previously for k = 2,4, 6, 8.

However, this approach did not introduce the factor a(k) in (1.1) in a nat-
ural way. In effect, the random matrices did not model ((s) in its entirety.
This was addressed by Gonek, Hughes, and Keating [14] who expressed ((s)
as a hybrid Euler-Hadamard product: {(s) ~ Px(s)Zx/(s), where Px(s) is
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a roughly a partial Euler product and Zx (s) is roughly a partial Hadamard
product (a product over the zeros of ((s)). The variable X determines the
contribution of each factor. They conjectured that, asymptotically, the 2k-
th moment of {(s) on the critical line can be factored into the 2k-th moment
of Px(s) multiplied by the 2k-th moment of Zx (s) (known as the splitting
conjecture); and they showed that the former contributes the factor a(k)
in (1.1) and conjectured via random matrix theory that the latter con-
tributes the factor f(k). That is, they obtained a conjecture for the 2k-th
moment of ((s) in a way that the factor a(k) appears naturally. They also
lent support for the splitting conjecture by demonstrating that it holds for
the cases k =1, 2.

This approach, using an Euler—-Hadamard hybrid formula, was later ap-
plied to discrete moments of the derivative of the Riemann zeta-function
by Bui, Gonek, and Milinovich [6].

Furthermore, the relationship between random matrix theory and the
Riemann zeta-function extends to families of L-functions [20]. Indeed, the
proportion of L-functions in a certain family that have j-th zero in some
interval [a,b] appears to be the same as the proportion of matrices in a
certain matrix ensemble that have j-th eigenvalue in [a,b]. The ensemble
depends on the family; the size of the matrices depends on the conductor
q of the family; and the observation is made as ¢ — oc.

We can consider, for example, the family of Dirichlet L-functions. The as-
sociated ensemble of matrices is the unitary matrices [8, p. 887]. By making
use of this relationship, and using the Euler-Hadamard product approach
described above, Bui and Keating [7] conjectured that

)

G2(k +1 < g (2 2
”““Mﬂ(%%) (log ¢)*

Z* 2k

x mod q

(1.2)

1
¢*(q)

as ¢ — 00. L(s,x) is the Dirichlet L-function associated with the Dirichlet
character y; ¢*(¢) is the number of primitive Dirichlet characters of modu-
lus ¢; the star in the sum indicates the sum is over primitive characters only;
and G(z) is the Barnes G-function. This had been conjectured previously
(see [21]), but this approach allows for all the factors to appear naturally.

One can consider the above problems in the function field setting. In
fact, it is this setting that gives some insight into the relationship between
random matrix theory and number theory [20, Section 3]. In function fields,
Bui and Florea [5] developed the hybrid Euler-Hadamard product model for
the family of quadratic Dirichlet L-functions. In this paper we do the same
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for Dirichlet L-functions of any primitive character, which is the function
field analogue of the work of Bui and Keating described above.

In what follows, we define A := F,[T], where ¢ is a prime power (not to
be confused with ¢ previously which represents the conductor); and L(s, x)
is the Dirichlet L-function associated to the Dirichlet character x on A.
The set of monics are represented by M, and the set of monic primes by
P. For a general S C A, the restriction to elements of degree n is denoted
by S,. For A € A\{0} we define |A| := ¢9°4 and we take [0| := 0. The
aim of this paper is to provide support for the following conjecture, which
is the analogue of (1.2), in such a way that all factors appear naturally.

Conjecture 1.1. For all non-negative integers k, it is conjectured that
-1
. 1\ > ) (P™)2 2
5 e ()|~ e IT (35 2507w
x mod R P|R \m=0
as deg R — oo, where

)

PeP m=0

1
¢*(R)

and

GAk+1) Al

0= Gaern ~ L armr

where G is the Barnes G-function. (Again, the star indicates the sum is
over primitive characters, and ¢*(R) is the number of primitive Dirichlet
characters of modulus R).

This conjecture has been verified for the cases k = 1,2 by Andrade and
Yiasemides [2]: As deg R — o0,

L5~ (L) L o)
(13) ¢%mX§%RL(rX> To
and
1 sl /1 N\ 1-g! (1— P71’
(1.4) ‘f’*(R)X%RL(?’X) i Jg%( e )(degR)4.

It can be shown that a(2) = 1 — ¢! and f(2) = 75, and so we have
agreement with Conjecture 1.1.

First we will require an Euler—Hadamard hybrid formula, which we prove
in Section 2.



Euler—-Hadamard Product for Dirichlet L-functions in Fq[T] 561

Theorem 1.2. Let X > 1 be an integer and let u(zx) be a positive C*-
function with support in [e, e““fx]. Let
o(z) = / u(t)dt

t=x
and take u to be normalised so that v(0) = 1. Furthermore, for y € C\{0}
with arg(y) # m, we define F1(y) := gi;o ¢ —dw; and for z € C\{0} with
arg(z) # m, we define

U(z) ::/ u(z)E1(zlogz)dx.
=0

Let x be a primitive Dirichlet character of modulus R € M\{1}, and let
Pn = % + vy be the n-th zero of L(s,x). Then, for all s € C we have

(15) L(S>X) = PX(S7X)ZX(S7X)7
where
x(A)A(A))
Px (s, x :exp< S 2
x(6:x) 2 TAFlogA
deg A<X
and

Zx(s,x) = exp (— > U((s — pn)(log q)X)) :

Strictly speaking, if s = p or arg(s—p) = m for some zero p of L(s, x), then
Zx(s,x) is not well defined. In this case, we take

Zx(s,x) = lim Zx(so,x)
S0—S
and we show that this is well defined.

Remark 1.3. We note that our hybrid Euler-Hadamard product formula,
(1.5), does not involve an error term, unlike the analogous Theorem 1 in [14]
and Theorem 1 in [7]. This is due to the fact that we are working in the
function field setting. Indeed, this can also be seen in [1, 5], where they
consider the Euler—-Hadamard product formula over function fields for qua-
dratic Dirichlet L-functions.

We also note that Zx(s,x) is expressed in terms of u(z). Whereas,
Px (s, x) and L(s, x) are independent of u(x). Thus, given the equality (1.5),
we can see that, as long as u(z) satisfies the conditions in the theorem, the
value of Zx (s, x) is independent of any further restrictions made on u(z).
Ultimately, this is due to the fact that we are working in the function field
setting and due to our choice of support for u(x). Indeed, this is why our
support for u(z) is not quite the exact analogy to the support of u(z) in
Theorem 1 of [7]. We note that in Theorem 1 in [7], Px(s, x) and L(s, x)
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also do not depend on u(x), but this is because the dependency exists in
the error term.

Next, we make a splitting conjecture.

Conjecture 1.4 (Splitting Conjecture). For integers k > 0, we have
* 1
> [e(z0)
x mod R
ES
(5w =

1
x mod R

2k

1

as X,deg R — oo with X < log,deg R.

¢*(R)

)

We then obtain the 2k-th moment of the partial Euler product in Sec-
tion 3, and we use a random matrix theory model to conjecture the 2k-th
moment of the Hadamard product in Section 4:

2k>-<¢*z}-{) 5

x mod R

Theorem 1.5. For positive integers k, we have

1

as X,deg R — oo with X < (2—4)log,deg R, where § > 0 can be taken to
be arbitrarily small. Here, vy is the Euler—Mascheroni constant, and a(k) is
an in Conjecture 1.1.

1
¢*(R)

N 2k [e'¢] d pPm AN k2
> ca| T (S %5EE) | )
x mod R degP]r]%X m=0

Conjecture 1.6. For integers k > 0, we have
1

i) 2x(5%)

x mod R
as deg R — oo, where 7 is the Euler—-Mascheroni constant and G is the
Barnes G-function.!

2k GQ(k+1)(degR>’“2
G2k+1)\ erX ) 7’

Similarly as in [7], Conjecture 1.4, Theorem 1.5, and Conjecture 1.6 to-
gether reproduce Conjecture 1.1 as desired, but only for certain cases, such
as when the largest prime divisor of R has degree less than X, or when R
is prime.

In Sections 5 and 7 we rigorously obtain the second and fourth moments
of the Hadamard product, respectively.

2 _ )
IRecall that for integers k > 0 we have g@(:iig = Hf:ol (ziilk)'
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Theorem 1.7. We have that
2
1 * 1 1 *
> Jox(3) )

B/ 2, RGN LG’X)PX(;’X)_l

deg R 1
~ eng 1] (1_ P>
€A qeg P>X 1P|
PIR

as X,deg R — oo with X < (2 —4)log,deg R, where § > 0 can be taken to
4 1 5

be arbitrarily small.
1 1 \!
¢ (R) x mod R 2 2

Theorem 1.8. We have
1
1 (degR)4 0 (1-1P71)°
~ — 771
2\eox ) AL 1+]P)

P|R

4

as X,deg R — oo with X < log,logdeg R.

In Theorems 1.7 and 1.8, a product over P appears on the right side
that does not appear in Conjecture 1.6 (which is based on random matrix
theory). Given certain restrictions on R, the product is asymptotic to 1,
and thus we have agreement with Conjecture 1.6, but this does not hold
generally. Regardless of this discrepancy between our results and the con-
jecture, we can see that Theorems 1.7 and 1.8, along with Theorem 1.5,
(1.3), and (1.4) verify the Splitting Conjecture for the cases k = 1, 2.

Note that in Theorem 1.8 we required the condition X < log,logdeg R
which is more restrictive than the condition X < (2 — §)log, deg R in the
Splitting Conjecture. However, given recent progress [16] and the results
that have been establish in the area of twisted moments (see, for example,
[3, 12, 18, 24] for ((s) and [17, 27] for Dirichlet L-functions), we expect
that one can improve upon this restriction for Theorem 1.8.

Before proceeding, let us make a brief notational remark required in later
sections. Let @ € C and b € C\{0}, and let f be an integrable complex
function. The integral [T f(t)dt is defined to be over the straight line

starting at a and in the direction of b. That is, ta;;boo f)dt = [, fla+

%s)ds. If @ = 0 then we will simply write ftbzog f(t)dt, and if b = £1 then

we will write [=°° f(t)dt.

2. The Hybrid Euler-Hadamard Product Formula

The proof of Theorem 1.2 follows by some alterations to results given
in [4, 7, 14]. However, to demonstrate that the product formula is exact
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in the function field setting, and in the interest of clarity, we provide the
full proof. First, let us recall that for Dirichlet characters y and Re(s) > 1,
taking the logarithmic derivative of L(s, x) gives

L’ Z x(A
AeM |A|s

It is well-known [26] that for non-trivial characters of modulus R € M,
L(s,x) is a finite polynomial in ¢—*:

x(A x(A
AeM AeM
deg A<deg R
From this, we can deduce that as Re(s) — oo,
L/
7

Lemma 2.1. Let X be a positive integer, and let u(x) be a positive C*°-

(2.1) —5,%) = O,(1).

function with support in [e,e”qix]. Let u(s) be its Mellin transform.
That is,

and

1 .
u(z) = m/}{e(s)ca: u(s)ds,

where ¢ can take any value in R (due to our restrictions on the support of
u, we can see that u(s) is well-defined for all s € C, and so, by the Mellin
inversion theorem, ¢ can take any value in R). Then,

?7(8) < {|s|+1

|s|+1

max,{|u/(z)|}e2Re()  if Re(s) > 0
max,{|u/(z)[}eR)  ifRe(s) <0

Proof. We have, by integration by parts, that

61+q_X

u(s) = /x 5 ty(z)de = 1/33 2°u’(z)dx.

=e

If |s| > 1, then it is not difficult to deduce that the above is

< {Milmaxmﬂu’(a:)]}eQRe(s) if Re(s) >0

T maxg {[u/ ()[R} if Re(s) <0
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—-X

If |s| <1, then, by using the fact that f;:;q v (x)dx = 0, we obtain

etta™ X 1— 5 eta™X x
u(s) = / o (x)dx = —/ </ ys_ldy>u'(m)d:n
T=e S T=e y=1
el+q7X
< / |u(z)|dz < max{|u'(x)|},
r=e r
from which the result follows. O

Lemma 2.2. Let X be a positive integer, and let u(x) be a positive C*°-
function with support in |e, el““fx}, and let u(s) be its Mellin transform. Let
oo
v(x) :/ u(t)de
t=x
and take u to be normalised so that v(0) = 1. Note that its Mellin trans-

form is

v(s) = ﬂ(s; 1).

Let x be a primitive Dirichlet character of modulus R € M\{1}. Then, for
s € C not being a zero of L(s,x), we have

9

U X(AAMA) | a1+ (o — 5)(log ) X)
2 peo= ¥ ONGER S
deg A<X

where p, = % + iy, is the n-th zero of L(s,x). Note that, by Lemma 2.1,
we can see that the sum over the zeros is absolutely convergent.

Proof. Let ¢ > max{0, (1 — Re(s))(log ¢)X }. By the Mellin inversion theo-
rem, we have

Z X |A‘S ( degA

AeM )
1 / ﬁ(w + 1) o w
- : 7|A| og )X dw
S or Z.;/l |A| Re(w)=c w
1 / u(w+1) Z x(A A)
270 JRe(w)=c w At |A| Jr(log q)X

T 2m Re(w)=c w L (log q)X’X '

The interchange of integral and summation is justified by absolute conver-
gence, which holds because ¢ > (1 — Re(s))(log¢)X and by Lemma 2.1.



566 Michael YIASEMIDES

We now shift the line of integration to Re(w) = —M, for some M >
max{0, Re(s)(log ¢) X}, giving

3 X(A)A(A)v(ey)

Aeta AP

L 5 (1 + (pn — s)(log ) X)

= —— S, —_
7 (50 > s

_1/ ﬂ(w+1)[/<8+ w )dw
271t JRe(w)=—m  w L (log q)X’X ’

where the sum over the zeros counts multiplicities. This requires some jus-
tification. We make use of the contour that is the rectangle with vertices at

c+ z((d —Im(s))(log ¢) X + 27mX)
and

—M + z((d —Im(s))(log ¢) X + 27mX).

Here, d > 0 is such that %+id is not a pole of %(3, X) (that is, not a zero of
L(s,x)). It is clear that as n — oo we capture all the poles and the left edge
tends to the integral over Re(w) = —M. Due to the vertical periodicity of
Lf/, and our choice of d, we can see that the top and bottom integrals are
equal to O ps(n™1), which vanishes as n — oo. By (2.1) and Lemma 2.1, if
we let M — oo then we see that the integral over Re(w) = —M vanishes.

Finally, we note that
deg A 1 ifdegA< X
v(e) =4 7X
0 ifdegA>X(1+4+q¢ 7).
Also, since X is a positive integer, there are no integers in the interval

(X, X(1+q¢) C (X, X+ %), and so there are no A € A that have
degree in this interval. It follows that

A)A(A) [ osla A)A(A
Zx()()v< “): 3 X(yius( ). 0

|A’5 e (logg) X

AeM AeM

deg A<X

Lemma 2.3. Suppose u(z) has support in [e,e! ™ " ]. For all = € C\{0}
with arg(z) # m we define

U(z) := /;:0 u(z)E1(zlogz)dx.
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(Recall, for y € C\{0} with arg(y) # m, we define Ey(y) := ngZO ¢ Zdw).
Let x be a primitive Dirichlet character of modulus R € M\{1}, and sup-
pose p is a zero of L(s,x) and s € C\{p} with arg(s — p) # w. Then,

/s-‘rOO a1+ (p = so)log@)X) \ ~U((s = p)(log ) X ).

0=S§ P — S0

Proof. We have

/5+°° u(1+ (p— s0)(log q) X) dsq

0=s P — 50
/s+oo / (pfso)(log q)XU(CC)ddeO
so=s P — S0 Jz=0
s+o00 e(p s0)(log q) X logx
/ / dspdz
=0 S0=s P — 30
(s—p)(log )X log z+00 o—w
/ / —dwdz
(s—p)(logg)X logz W

=~ [ wl@Ei((s - p)(logg) X logz)da
=0
=—U((s - p)(logg) X ).

The interchange of integration is justified by absolute convergence, which
holds for X > 1. g

We can now proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. Suppose s € C is not a zero of L(s,x) and
arg(s — p) # 7 for all zeros p of L(s, x). We recall that (2.2) gives us

L’ w(1 4 (pn — so0)(logq) X
LSU’ Z X|A|SO )+Z ( (n _)( ) )’
AeM Pn Pn — 50
deg A<X

to which we apply the integral [*T°°dsg to both sides to obtain

S0=S

(2.3) log L(s, x) = Z ]A\Slog]A\ ZU( s—p logq)X)
p

AeM
deg A<X

For the integral over the sum over zeros, we applied Lemma 2.3, after an
interchange of summation and integration that is justified by Lemma 2.1.
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We now take exponentials of both sides of (2.3) to obtain

L(SvX):eXp< Z

A)A(A
deg A<X

= Px(s,xX)Zx(s,X).

Now suppose we have s € C, not being a zero of L(s,x), but with
arg(s—p) = m for some zero p of L(s, x). We can see that limg, s L(so, x) =
L(s,x) and limg,—s Px(s0,Xx) = Px(s,x) # 0. The latter is non-zero as
Px (s, x) is the exponential of a polynomial. From this, we can deduce that

limgy—s Zx (S0, %) = L(s,x)(PX(s,X)Y1 € C. Similarly, if s is a zero of

L(s,x), then we can see that limg,_,s Zx (s, x) = L(s, x)(Px (s, X))—l _o
This completes the proof. 0

3. Moments of the Partial Euler Product

Recall the prime polynomial theorem (see [26]):

n

1 n_ q" ‘12>
(3.1) |7>n|—nd§|;u<d>qd - +o(n .

Let us define
S(X)={Ac€A:P|A— degP < X},
SmX)={AeM:P|A—degP < X}.
Furthermore, for all Re(s) > 0 and primitive characters x we define

o o IO I 003

deg P<X §<degP§X

and for positive integers k and A € Sy((X) we define o (A) by

s AN

P;((‘S)X)k: ‘A|s

AESM(X)

To prove Theorem 1.5, we require the following Lemma.

Lemma 3.1. For positive integers k, we have

Pe(3) = (e oux ) (h)

(iroux) ““%W

(3.3)
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We also have that

ar(A) =dp(A) if AeSm (f) or A is prime
(3.4) Y
0 <ap(4) <dp(4) if A& Sm (2> and A is not prime.

Proof. First we note that

), ) 30

dAeAM ’A| log| A deg P<X j 1J|P‘

where Np := {%J. Also, by using the Taylor series for log, we have

P)*((; )_exp< ) ZX RS Z ]2]|P|])2j>.

deg P<X j= 1J|P| 3 <deg P<X j=1
Hence,
1 1 \!
Px| = P3| =
x(P)! (P)*
:exp( Z Z - Z Z ]QJ‘P‘J )

deg P<X j=Np+1 ]|P\ X cdeg P<X J=1

We now show that the terms inside the exponential are equal to O(X *1),
from which we easily deduce
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To this end, using the prime polynomial theorem for the last line below,
we have

ORI S SIS mpa)

deg P<X j=Np+1 J\P’ 3 <deg P<x J=1

X X
DS SR
degP<X] =Np+1 ]|P| f<degP<Xj 2]|P‘
21

> Z 329!13!9

X <deg P<Xx J=1

-y » M, > sxb

deg P<X j=Np+1 JlPl2 —<degP<XJ 3J|P\
(=1)x(P)*
> Z J2J!PP

%<degP§X] =2
> IR

< >

deg P<3 §<degP<X
<q = o1+ >
deg P<% X <n<X
1
< ?

We now proceed to prove (3.4). The first case is clear, so assume that
Ad SM(g) and A is not prime. We note that

-1 _
x(P) x(P)?
( rP|%> (HZIP\)

- (1 L X(P) | XD’ +> (1 _ XD X(P)! —)
P

Pz |P] 2|P|  2%|P?

r=0 r1,r2>0 2 |P‘§
r1+2ro=r

v 2(1_ (_1) L““) X(P)"
r:03 2 |P|% .
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0§§<1— (_é)L;JJrl) <1

for all » > 0, the result follows. O

Since

We can now prove Theorem 1.5, but before doing so let us recall Mertens’s
Third Theorem in Fy[T, the proof of which is very similar to that of The-
orem 3 in [25]: As n — oo,

1 -1
. 1—— ~eTn.
(3.6) ) || ( ]P[) e'n
eg P<n

Proof of Theorem 1.5. Throughout this proof, any asymptotic relations are
to be taken as X,deg R — oo with X < (2 —d)log, deg R. By Lemma 3.1
it suffices to prove that

>

xmod R

1
¢*(R)

R GNE) ’

1
AeSm(X) | Al

oo d Pm 2 k2
cam T (X))
deg P<X \m=0
P|R

We will truncate our Dirichlet series. This will allow us to bound the lower
order terms later. We have

ap(A)x(A ap(A)x(A _s
AeSm(X) Eip AeSm(X) | Al
degAS%degR

This makes use of the following, where € = %:

ap(A)x(A e di(A
CONMEND SR C LGP !
AESm(X) Al Acs(x) Al
deg A>1deg R
m(-—-)
—ir I (1 =)
deg P<X |Pl2~¢

1
= |R| “exp ( Z —klog(l — ))
deg P<X IdEn

1
— |R]_Eexp<k30< > — ))
deg P<X |P|27¢
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e (o0
= exp JX

= 05(\R|_%),

where, using the prime polynomial theorem, the fifth relation is justified
by the following:

[u—y

1
> -
0 kX<deg P<(k+1)X |P|2

1 gFHOVX
J3VE (k+ )VX
VX \/qu(%ﬂ)\/)? gFroX+vx

= <
VX kil S X

15

>

1_
deg P<x P27 &

S

il
o

By the Cauchy—Schwarz inequality, it suffices to prove that

2
1

¢*(R)

Z* Z ar(A)x(A)
1
xmod Rl AeSp(X) ’A’2
degAgi deg R

1 (P™ 2\ 1 k2
~ak) ] (Zﬂ(P‘m)) ()"
deg P<X \m=0
PR

Now, we have that

2
1 * (092 A A
00 sty ¥y U
xmod Rl AeS (X) ’A‘2
degASidegR
1 ap(A)ag (B
— e Z L’ff) Z w(E)p(F)
¢(R) ) plsax) |AB|2  gr=gr
degA,degBSi deg R F|(A-B)
(AB,R)=1
1 (673 A (672 B
= (B Z w(E)é(F) Z L;()
EF=R A,BES(X) |AB|2
degA,degBS%degR
(AB,R)=1

A=B(mod F)
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_ Z ag(A)?
degAS%degR
(A,R)=1
op(A)ag (B
S DI IED Ve
EF=R A,BESM(X) |AB|2
deg A,deg BS% deg R
(AB,R)=1
A=B(mod F)
A4B

We first consider the second term on the far right side: The off-diagonal
terms. We note that the inner sum is zero if deg F' > %deg R, and we also
make use of (3.4), to obtain

1 Q. A (677 B
s SowEer) y et
EF=R ABESA(X) |AB|z
deg A,deg B< deg R
(AB,R)—1
A=B(mod F)
A£B
1 di(A)di(B)
L —= >  oF Y
¢*(R) gy ABesw(x) |AB?

deg ng deg R

1 1 —2k
< s L (1=1P172) > o)
deg P<X EF=R
degFSidegR
< g 1L (1-1017%) > RN
deg P<X Fe{\/l
deg F<;degR
1
K _1 T
<o L (-1P1m
¢ (R) degP§X< )
= o(1).

The last relation makes use of a similar result to (3.8). Now we consider the
first term on the far right side of (3.9): The diagonal terms. We required a
truncated sum only for the off-diagonal terms, and so we extend our sum
using similar means as in (3.8):

ai(A)? ai(A)? s
AeSMm(X) |A’ AeSMm(X) ’A|
deg Agi deg R (A,R)=1
(A,R)=1
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Now, using (3.4) for the first relation below (and part of the second rela-
tion), we have that

(310) > akfﬁ) = 1I (Zaﬁg:))

AeSm(X) deg P<X \m=0
(A,R)=1 PtR
o dy,(P)? Oék(Pm)
11 (de(Pm)2> 11 L+ i+ s
deg P<X \m=0 [P X cdegP<x \ 14 4 P Fy dk(Pm)
PIR PR P [P
-1
s (S <<1_1>” : wir)
deg P<X \m=0 |P|m deg P<X ‘P’ m=0 ’P’m
P|R
—k2
1 1
I (om) I (o)
deg P<X 2 <deg P<X
-1
e e] dk(Pm)2 k2
= (1+o(1))ak) ] <Z 1T (evx) :
deg P<X \m=0
P|R
For the last equality, we used (3.6). The proof follows. O

4. Moments of the Hadamard Product

In this section we provide support for the Conjecture 1.6. The approach
is similar to [7, 14], but we provide some additional heuristic support in
Remark 4.2. We require the following lemma.

Lemma 4.1. For real y > 0 define

o0 t

Ci(y) == —/ &()dt,

t=y t

and let x be real and non-zero. Then,
Re B (ix) = — Ci(|z]).
Proof. If © > 0, then
) 1x+00 e~ w 100 e~ w 0o e—it
Re Ei(iz) = Re/ —dw = Re/ —dw = Re/ " dt
t

w=ix w w=ix W =
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where the second relation follows from a contour shift. Similarly, if z < 0,
then

) 1z+00 o—W —i00 oW 00 gl it
Re Ey(iz) = Re/ —dw = Re/ —dw = Re/ —dt
w t

w=iz w=iz =|z|

= — Ci(|z]). 0

Now, writing 7, (x) for the imaginary part of the n-th zero of L(s, x), we
can see that

1 ¥ 1 2k
(4.1) Qﬁ*(R)Xr%;dR ZX(2,X>
Z* exp< QkReZ <—z’yn )(log ¢) X ))

x mod R

_ Z exp( ZkReZ/ (=i (x )(logq)Xlog:p)dx>
¢*(R) x mod R T (X) r=
1

:qﬁ*(R Xr%:dRexp<2kZ/ x) Ci(]yn( )](logq)Xlogx)dx>_

We note that the terms in the exponential tend to zero as |y,(x)| tends
to infinity, and so the above is primarily concerned with the zeros close
to % As described in Section 1, there is a relationship between the zeros
of Dirichlet L-functions near % and the eigenphases of random unitary
matrices near 0: The proportion of Dirichlet L-functions of modulus R that
have j-th zero (that is, its imaginary part) in some interval [a, b] appears to
be the same as the proportion of unitary N(R) x N(R) matrices that have
j-th eigenphase in [a, b] (at least, this is the case in an appropriate limit).
Naturally, one asks what value N(R) should take in terms of R. We note
that the mean spacing between zeros of Dirichlet L-functions of modulus R
is 102%’ while the mean spacing between eigenphases of unitary N x N
g qdeg

matrices is 27. Therefore, we take N(R) = |loggdeg R|. So, we replace
the imaginary parts of the zeros with eigenphases of N(R) x N(R) unitary
matrices, and instead of averaging over primitive characters we average over
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unitary matrices. That is, we conjecture

1 * 1 2k
(4.2) ¢*(R)XmZOdR‘ZX(2,X>
1 *
— & (R) XI%:dReXp<2k‘ Z / z) Ci|yn (x )|(10gq)Xlogx)dx>
~ e (v() exp<2kez(;l)/ z) Ci(]0, (A )](logq)Xlogx)dg;>dA

as deg R — oo, where the integral is with respect to the Haar measure,

and 0,,(A) is the n-th eigenphase of A. The eigenphases are periodic with

period 27, and these periodicised eigenphases are included in the sum.

An asymptotic evaluation of the right side can be made identically as in

Section 4 of [14]; but we simply replace their log X with our (log¢)X, and

we replace their N = |logT'| with our N(R) = |log ¢deg R]. This leads us
¢*(R) 2

to the conjecture that
1
xmod R

as deg R — oo. We note that in [14], their u(z) has a slightly different
support than the support of our u(z). However, this does not affect the
result.

1

2k Gz(k+1)<degR>k2
G2k+1)\ e X )

Remark 4.2. We will provide further justification for one of the steps
above, which is not given in [14]. In the middle line of (4. ) we have a sum
over all v, (x). This includes zeros that are far away from . We mentioned
previously that their contribution is small, but a closer 1nspect10n reveals
that we cannot dismiss them so easily, and so we must justify replacing
them with the eigenphases of our unitary matrices. For the zeros close to %
(that is, for v, (x) close to 0) we have already provided this justification. For
the zeros further away, one can argue that the zeros of a typical Dirichlet
L-function are equidistributed in some manner, and that the eigenphases
of a typical unitary matrix are also equidistributed in some manner. Thus,
we could replace the former with the latter. This is based on the idea that
if you sum a function over a set of equidistributed points on some interval
I, then the result is roughly equal to the integral over I of that function
multiplied by the reciprocal of the mean spacing of the points. Recall that
the mean spacing of our eigenphases is equal to that of our zeros. Naturally,
one asks why we do not use the same justification for the zeros close to %
The answer is that the function Ci(x) has a discontinuity at z = 0, and so
we require a stronger justification for the zeros near % (that is, the v, (x)
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close to 0). Finally, we remark that we do not provide any rigorous support
for the claims on equidistribution above.

5. The Second Hadamard Moment

Before proving Theorem 1.7, we prove several lemmas. First, by (3.3)
we have

Py (;x> = (1 + O(X*l))P;( <;><>

Rearranging and using (3.2) gives

B B X (P) x( )2
a (1+O(X 1)) degP<X(1_ ’P|%))§<d1_g[P§X( e )
= (1+o(x™) X a_ﬁi;x =,

AeSm(X)

where a_1 is defined multiplicatively by

—1 ifdegP <X
0 ifdegP > X;

Oé_l(P) = {

0 ifdegP <3
a1 (P?) =<1 if X <degP <X
0 ifdegP > X;

0 ifdegP <3
a_1(P?) = —1 if ¥ <degP <X
0 if deg P > X;
a_1(P™) =0 for m > 4.
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Later, we will require the following two simple bounds: For all R € M,
as X — oo,

la_y(HS)a_,(HT)
(5.2) > HST
HSTESm(X)
(S,T):l
(HST,R)=
degHSdegHT< deg R
1 ’ -3
< < 3 H) = II (t-1PY) "< x?
HeSm(X) | | deg P<X
where we have used (3.6); and
a_1 HS a_1 HT
(5.3) > ( |H)ST|( )degST
HSTESm(X)
(S,T):l
(HST,R)=

deg HS, degHT< deg R
1 deg ST
< > T > |§7T| < X4,
HESM(X) S,TESM(X)
where the last equality is obtained by taking the derivative of f(s) :=
Y S TeS M (X) ﬁ = [Taeg p<x (1 — |P|_S)_2, evaluating at 1, and using the

prime polynomial theorem to get

deg ST -2 deg P
> ez =2 I (-1e) T Y peg <Xt
S TeS M(X) ST deg P<X degP§X| |-

Lemma 5.1. Let V € M.V may or may not depend on R. As X,deg R —
oo with X < (2 —0)log,deg R, we have

Z a_l(HS)a_l(HT)
HSTeSm(X) ‘HST’
(S,T):l
(HST,V)=

deg HS, degHTS 70 deg R

= (o) I 0= m) o)

I=1%

1
deg P<X ’ |

PtV
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Proof. The second relation in the Lemma follows easily from (3.6). We will
prove the first. In this proof, all asymptotic relations are to be taken as
X,deg R — oo with X < (2—0)log, deg R. Similar to (3.7), we can remove

the conditions deg HS,deg HT < % deg R from the sum and this only adds
an O(|R|_4T10) term. Now, writing C = HS and D = HT, we have

a_1 HS a_1q HT a_1 C a_1 D
HSTeSMm(X) CDeSMm(X)
(S, 7)=1 (CD,V)=1
(HST,V)=1
a_1 C a_1 D
-y = S )
CDeSMm(X) G|(C,D)
(CD,V)=1
2
¢(G) a-1(CG)
2 Jepl 2 T
GESM(X) CeSpm(X)
(G,V)=1 (CV)=1

Before continuing, let us make a definition: For all A € M and all P € P,
let ep(A) be the largest integer such that P¢P(4) | A. Continuing, we note
that we can restrict the sums to polynomials that are fourth power free.
Indeed, a_1(P™) = 0 for all P € P and all m > 4. Note that if P | G
then we must have that 0 < ep(C) < 3 — ep(G), while if P { G then
0 <ep(C) < 3. So, we have

3 a-1(CG)

CesSm(X) Il

(cv)=1

e\ S [PV aespex \j=o PV
PIG
PV

- <Z<P>>H<”a<P“>)

aesp<x \j=o L) p =0 e

PV
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So,
2
(b(G) Oz_l(CG)
o 2 G2 2 C|
ESMm(X) CeSm(X)
(G V)=1 (CV)=1
3 L2
deg P<X \ j=0 P
PV
¢U”)< a—ﬂf”+ﬁ> ( a—ﬂf”)> >
X , =i bt Sl
deg11_5[<X <;) ‘PPZ jz() |P|J JZ(] |P|J
PV
- i L 2
[ (S (3
deg P<X \i=0 | P =0 [P}
PV
B 3 3—5 3—i ¢(Pz)a_1(P]+Z)a_l(Pk+Z)
- (RS Y A
deg P<X \1¢=035=0k=0
PV
1 1
- I (=) I (1+0(5m))
deg P<X 2 <deg P<X
PtV Ty
X 1
=140 q_z) H (1—).
( ( ) deg P<X ‘P‘
PV
The result follows. U

Lemma 5.2. Let R € M. Suppose Z1 < deg R and F' | R. Further, suppose
C,D € Sp(X) with deg C,deg D < 1—10 deg R. Then, we have

Z
1 2 (Z1+1)|CD
LTz nieD)
|F|

D

1
ABem  |ABJ?
deg AB=27;
AC=BD(mod F)
AC#BD
(AB.R)=1

Proof. Consider the case where deg AC' > deg BD, and suppose that
deg A = i. We have that AC = LF + BD for some L € M with degL =
deg AC —degF =i+ degC —degF, and deg B = Z1 —deg A = Z; —i.
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Hence,
Z1
1 _Z
> <r®Y Y >
ABem  |ABJ? i=0 LeM BeM
deg AB=27 deg L=i+deg C—deg F' deg B=Z1—1
AC=BD(mod F)
(AB,R)=1
deg AC>deg BD
Al 71
2 . g7 Z 2 (Z1+1)[C]
=q:?2 = 1= —.
X R 7

LeM
deg L=i+deg C—deg F'
Similarly, when deg BD > deg AC' we have

D

1
A,BEM |AB|2
deg AB=27;
AC=BD(mod F)
(AB,R)=1
deg AC>deg BD
Suppose now that deg AC' = deg BD = i. Then, 2i = deg ABCD = Z; +
deg CD. We have deg B = i —deg D = Z14+daC=deD 'anq AC = LF+BD

for some L € A with degL <i—degF = M — deg F'. Hence,

> < ?F Y > 1

L a7 (Zi+ 1|D|
£

A,BEM |AB|? BeM LeA
Acdigj;ll)f(;;f& F) deg B= 1B 0B D deg [< ALLTECD _deg F
(AB,R)=1
deg AC=deg BD
1 Zy
e ¥l
P R
BeM
deg B=— Z +deg26’—deg D
The result follows. O

Lemma 5.3. Let x a primitive character of modulus R # 1. Then,

1
ABEM |AB|?
deg AB<deg R
where, if x is odd, we define
x(A)x(B
c(x) = — Z ()72)’
A, BEM |AB|?

deg AB=deg R—1
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and if x is even we define

q x(A)x(B
o(x) == ——1 2 Z ()(1)
(g2 — 1) A,BEM |AB|2
deg AB=deg R—2
1 _
_ 2q2 Z x(4)x(B)
1 1
9?2 —1  ABem |AB|2
deg AB=deg R—1
1 Ax(B
+— . Z x( )X(; )
(@2 =1)"  aBem |AB|2
deg AB=deg R
Proof. See Lemmas 3.10 and 3.11 in [2]. O

Lemma 5.4. Let R € M and let x be a positive integer. Then,

1 {(bl(gl) T+ O( I(Rl) logw(R)) if x > deg R,

A%/:Vl [A] ¢|(I§T) + O( I(RI) logw(R)) + O(Qw;f)x) if v < deg R.
deg A<z

(A,R)=1

Proof. See Lemma 4.12 in [2]. This result is slightly stronger, but the proof
is identical. O

The big O terms in Lemma hold for any x is the given ranges, and no
limits are required. Note that, in certain cases these terms are larger than
the first term. Regardless, this does not cause us any problems, and we only
require the two cases in the following corollary.

Corollary 5.5. If a > 0 and ¢ = adeg R, then,

) H(R)
— O, I R) .
2 o m et (] osen)
deg A<z
(A,R)=1

If b> 2 and z = log, b*F), then

LGB (6B,
P v *0(\31 g () )

deg A<z
(A,R)=1

Proof. First consider the case where x = adegR. If ¢ > e . , then

QW(R)(I; 2UJ(R) log 2 ¢(R)
< — < qlogda b/
q° q2 |R|

deg R—35 deg R < q—%degR <
a
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4log 2
If g <e o , then

o(R)
[R]

logdeg R

2Ry 9o ofdwh ) sawn _
q 2 < qudegR<<a

where the second relation holds for deg R > ¢,, where ¢, is some constant
that is dependent on a, but independent of ¢. Finally, there are only a finite

number of cases where ¢ < 641?2 and deg R < ¢,, and so
Wz ¢(R)

<
@ " |R|

for these cases too. The proof follows from Lemma 5.4.
Now consider the case where x = log, b(R) We have that

20z 2 (log, b)w(R) 2(B) 4 \w(R)
o o (R) SN (b+2)
(%)
4 ) 1 ¢(R)
=1[(+— <<bH(1—)<<b :
Again, the proof follows from Lemma 5.4. O

We can now prove Theorem 1.7.

Proof of Theorem 1.7. Throughout the proof, all asymptotic relations will
be taken as X,deg R — oo with X < (2 — §)log, deg R. Now, by (5.1), we

have
(5.4) ¢*§R) Xr%j(; L<;,x>Px(;,X>l 2
L CRVA

x mod R
Similar to (3.7), we truncate our sum:
el -1 a_1(C)x(C _s
Pyn) = > OO o(r).

CESMm(X) |C2
deg C<{5degR



584 Michael YIASEMIDES

Using this, the Cauchy—Schwarz inequality, and (1.3), it suffices to prove
that

1
¢*(R)

> a_1(C)a_1(D)x(C)x(D)

1
C,DESM(X) |CD|z
deg C,deg Dfl—lﬂ deg R

deg R 1
~ % 11 (1 - p>-
€ deg P>X ’ |

P|R

(5.5)

Now, by Lemma 5.3, we have

2

Ly (L) v @ DXOXD)
* ) 1
¢*(R)  foirl \2 C,DESM(X) |CD|z
deg C,deg DS% deg R
1 * a_1(Ca_1(D)x(C)x(D
— ¢*(R) Z (G(X) +C(X)) Z 1( ) 1( ); ( ) ( )7
xmod R C,DES(X) |CD|2
deg C,deg D< % deg R

where

sy XAXE)

1
A, BEM |AB|?
deg AB<deg R

and c(x) is defined in Lemma 5.3. We first consider the case with a(x). We
have

Ly a_1(C)a_1(D)X(C)x(D)
66 S X A X e

1
ymod R C,DESM(X) |CD|z
deg C,deg D % deg R

_ 2 Z* Z a—1(C)a-1(D)x(AC)X(BD)

1
x mod R A,BeEM |félBC’D|2
C,DeSpm(X)
deg AB<deg R
deg C,deg DS% deg R

Oéfl(C)Oéfl(D)
= — 1(E)o(F) —
¢*(R) E;;R A,BZE:M |ABCD|2

C,DESM(X)
deg AB<deg R
deg C,deg DS% deg R
(ABCD,R)=1
AC=BD(mod F)

-

*
—~
N~—
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a_1 (C)Oé_l(D)

—9 Z -
A, BEM |ABCD|2
C,DeSMm(X)
deg AB<deg R
deg C\,deg DS%O deg R
(ABCD,R)=1
AC=BD
2 Oéfl(C)Oéfl(D)
b Y owmer) Y eitetd)
¢*(R) EF=R A,BEM |[ABCD|z
C,DGSM(X)
deg AB<deg R
deg C,deg D< % deg R
(ABCD,R)=1
AC=BD(mod F)
AC#BD

For the first term on the right side, the diagonal terms, we write A = G.S,
B=GT,C=HT,D=HS where G,H,S,T € M and (S,T) = 1, giving

a_l(C)a_l(D)

(5.7) 2 ) :
A,B,C,DEM |[ABCD>
C,DeSMm(X)
deg AB<deg R
deg C,deg D< % deg R
(ABCD,R)=1
AC=BD

—9 Z
GeM
H,5,TeSp(X)
deg G2ST<deg R
deg HS,deg HT< {5 deg R
(GHST,R)=1
(5,T)=1

=2 >
H,S,T€Spm(X)
deg HS,deg HT <15 deg R
(HST,R)=1
(S,7)=1

a_1(HT)o_1(HS)
|GHST]

a_1(HS)a_1(HT) Z 1

[HST| &, G
deg GS deg R—Qdeg ST

(G,R)=1
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By Corollary 5.5, (5.2), (5.3), and Lemma 5.1 we obtain the asymptotic
relation below. The final relation uses (3.6).

(5.8) 2 S a-1(C)a(D)

1
A, BeM |ABCD|>
C,DeSMm(X)
deg AB<deg R
deg C,deg D< - deg R
(ABCD,R)=1
AC=BD
R) 1 deg R 1
qﬁ(R degR [] (1—P> = 1 (1—P>.
|B| deg P<X [P ' Qeg P>X [P
PIR PIR

For the second term on the far right side of (5.6), the off-diagonal terms,
we use Lemma 5.2 to obtain

Oéfl(C)afl(D)
(5.9 Z A p:
) 572 R A, BEM |[ABCD|z
C,DESM(X)
degAB<degR
dengegD< degR
(ABCD, R)
ACEBD(modF)
AC#BD
. 2 Z a_l(C)a_l(D)
Tk 1
¢"(R) C.DESM(X) |CD|2
dengegD< degR
(CD,R)=
1
x Y w(E)$(F) > T
EF=R ABem  |AB|?
deg AB<deg R
(AB,R)=1
AC=BD(mod F)
AC#BD
1
R|2deg R
< B2 deg R |2* ;g > (S22l F)
¢( ) C,DESM(X) EF=R | ‘
dengegDSl—lodegR
\R[52W ) deg R
= o(1).
¢*(R)

Finally, for the case with ¢(x), we can proceed similarly as above to show
that it’s contribution is < X?3. O
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6. Preliminary Results for the Fourth Hadamard Moment

In this section we develop the preliminary results that are required for
the proof of Theorem 1.8. We begin with two results that will simplify the
problem.

Lemma 6.1. For X > 12, we have that

pe(32) " = 0o (L),

P;;(;,X> -y A

1
Acsm(x) A2

where

and B is defined multiplicatively by

B(P) — {—2 ifdeg P < X

0 ifdeg P > X

1 ifdegPS%
B(P?):={2 if¥ <degP<X

0 ifdegP > X
B(P*):=0 for k > 3.

(6.1)

Proof. By Lemma 3.1 we have

1 —2

—(1+ox M I (1—X<P>)2 11 <1+X2(|];)|2>2.

1
deg P<X P> X cdeg P<X

By writing PY* (%, X) as an Euler product, we see that

1,0,

1
deg P<X ’P’2 §<degP§X

_2x(P)? | (P x(P)° | x(P)°

(1 piz ~ APE gp3 - AIPP
-r(50) I (” Ao
x 12
X <deg P<X P

Pz 1P
:Pj}*(i,x) 11 <1+0(\P\3)>

X <deg P<X
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r()eolo(, £ )

X
5 <deg P<X

-~ (rror ) (L),

The result follows. The requirement that X > 12 is so that the factor

-1
(1 — % + %) in the second line is guaranteed to be non-zero. [
2

Lemma 6.2. We define

mla)- oy W

2 1
ACSm(X) |Al2
deg Agé log, deg R

Then, as X,deg R — oo with X < log,logdeg R,

*k 1 (] — =

Proof. We have, as X, deg R — oo with X <log, logdeg R,

3 A 1 3 16(4)]

1 1 1
AESm(X) Al (deg R)32 4c5.(x) |Al*
deg A>1 log, deg R

= (degR)™m J] (1+2P|75 +2/P72)
deg P<X

—(degR)_;Qexp(O( Z \P]_}l)>
deg P<X

= (deg R)*:le exp <O<q§(X)>

< (degR)*?l?». O

We now prove several results that will be used to obtain the main asymp-
totic term in Theorem 1.8. The following two results are generally known
in the field, but as far as the author is aware they are not given explicitly
anywhere in the literature. As they are non-trivial, we provide them here
for completeness.
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Lemma 6.3. Suppose A, Az, A3,B1,Bs, B3 € M satisfy AjAsAs =
B1ByB3. Then, there are G1,G2,G3,Vi2,Vi3,Va1,Va3, V31, V32 € M, sat-
isfying (Vi j, Vie1) = 1 when both i # k and j # 1 hold, such that

A =G1V12Via By =G1V2,1 V31

Ay =GV 1 Va3 By = G2V12V32

Az = G3V31V32 B3 = G3V13Va3.
Furthermore, this is a bijective correspondence. To clarify, G; is the highest

common divisor of A; and B;; and in V; ; the subscript i indicates that V; ;
divides A; and the subscript j indicates that V; ; divides B;.

Proof. Let us write A; = G;S; and B; = G;T;, where

G; = (A, B;)
(62 (8i,T;) = 1.
Since A1 A3 A3 = B1ByBs, we must have that
(6.3) 515953 = ThI5T53.

First we note that, due to (6.3) and the coprimality relations in (6.2), we
have that S; | T;T and T; | S;Sy for i, j, k distinct.

Second, again due to (6.3) and (6.2), we must have that (51, S2,S3),
(Ty, Ty, T3) = 1.

Third, for i # j, we define S; j := (5;,5;) and T; j := (T3,T}). Again due
to (6.3) and (6.2), we have (S;;)? | Ty and (T;;)* | Sk for i,j,k distinct.
Furthermore, (SZ-M-I,SZ-%h) = 1 and (z_%l:jl’j—:i27j2) = 1 for all {ilvjl} 7&
{i27j2}7 and (Silyjuﬂz,jz) = 1 for all 41, j1, 92, ja-

From these three points we can deduce that

Si = 81251 3(To,3)*S1 Ty = T12T13(52,3

)

)2T1/
Sy = S12S52,3(T1,3)*Ss’ Ty = T12T23(51 3)° T2’

)

S3 = S13523(T1.2)%S5 Ts = Ty 3T2.3(S12)° T/

for some S and T}’ satisfying (S;', T;') = 1 for all ¢ and (S,’, S;’), (I}, T}') =
1 for i # j. By (6.3) we have that S1'S5'Ss" = T1'T5'T5'. From these points
we can deduce that

Sy = Uy 92U 3 Ty =U1Us

Sy = Us1Us 3 Ty = Ui 2Us

S’ =Us 1Us 9 T3 = Uy 3Us 3
where the U;; are pairwise coprime. Also, for i,j, k distinct, because
Uij | T; and (5;,7;) = 1, we have that (U;;,S;) = 1, and hence
(Ui, Sjk), (Uij,Sji) = 1. Similarly, for 4,7k distinct, we have
(Ui Ti), Ui, T g) = 1.
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So, by defining
Vig = 513123012 Vo1 = 523113021 V31 = 52311 2U3,1
Vig = 512123013 Vo3 = 512113023 V32 = S13112U32
we complete the proof for the existence claim.

Uniqueness follows from the following observation: If we have G; and V; ;
satisfying the conditions in the Lemma, then we can deduce

Gi = (Au BZ) for all i, and
ViiiVieiViiVii ~ BB,
MDA AL ’“) = (Bj, = ) for , 7, k distinct,

ViV, j Ay,
where we define BZ,AZ by B; = G:B; = (Ai,Bi)Bi and 4; = G;A; =
(A;, B;)A; for all i. Since the far right side of each line above is expressed
entirely in terms of Ay, Ay, As, B, B, Bs, we must have uniqueness. O

Lemma 6.4. Suppose V1 3,V23,V31,V32 € M, and (V13,V31V32) =1 and
(Va;3,V31V32) = 1. Then,

{(Via, Vo) € M?: (Vip, VaaVan) = 1, (Vo ViVa) = 1, (Vip, Vou) = 1}

VipgVeri =V, (Vig, VasVai) =1,
(Vo,1,VigVaoe)=1,(Vig,Vo1)=1]"

Vij = (Vz;ij,j,

= U {(Vl,g,VZl) €M2 :
VeM
(V7(V1,3V3,1,V2,3V3,2))=1

and for each such V we have

VigVa1 =V, (Via, VasVai) =1, }

Via,Vai) € M?:
#{( L2 V2) (Va1, VigVaa) = 1, (Vig, Vaa) = 1

QW(V)*UJ ((V,V1,3V2,3V3,1V3,2)>

Proof. For the first claim we note that (Via,Va3V31) = 1 and
(Va,1,Vi3V32) = 1 imply that

(Vi (Vi Vo) - (Va1 Va2)) = 1,

and, due to the given coprimality relations of V1 3,V 3,V3 1, and V32 given
in Lemma 6.3, we have

(Viz, Vas) - (V31,Va2) = (ViaVa1, VasVso).

The first claim follows.

We now look at the second claim. For A, B € M, we define Ap to be the
maximal divisor of A that is coprime to B, and we define A” by A = AgAPB.
We then have that

Vi,3Va,3Va, 1 Ve Vist Vasy Va1, Ve
V= VV1,3V2,3V3,1V3,2V 1,3V2,3V3,1V3,2 _ VV1,3V2,3V3,1V3,2V L3y Vasy Vary Ve
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where the last equality follows from (V, (V1 3V31,Va3V32)) = 1 and the
fact that (V13,V31) =1 and (Va3,V32) = 1. Now, V = V] 2V ; and by the
coprimality relations we must have that VV13VV32 | V] 5 and V23V Va1 |
Va,1. So, we see that

#{(V V ) c M2 V1,2V2,1 = ‘/7 (‘/1’2’ ‘/273‘/371) — 1, }
1,2, V2,1 :

(‘/2’1"/1’3‘/?372) = 1’ (Vi,27 ‘/2,1) =1
= # (V V- )EM2 . VLQVZJ = VV1,3V2,3V371V3,2VV1’3VV2,3VV3,1 VV3’2,
1,2, V2,1 . VV1,3vV3,2 ’VLZ ’ VV2’3VV3’1 "/271 ’ (V1,2, V271) 9

= 2“’<VV1,3V2,3V3,1V3,2) = 2w(V)7w((V,V1,3V2,3V3,1V3,2)>. O

Lemma 6.5. Let R, M € M with degM < deg R, k be a non-negative

integer, and z be an integer-valued function of R such that z ~ deg R as
deg R — co. Then, as deg R — 0o, we have

2w(N)—w((N,M))

(z — deg N)*
L

deg N<z

(N,R)=1

(1-¢7") 11 <1—\P!1> H( 1 )
(k+2)(k+1) PIMR 14 |P|~1 Pint 1—|P|~1
PIR
X (zk+2 + O (2" log deg R))

and

gw(N)=w((N,M))

(deg N)*
W
deg N<z
(N.R)=1

_(1-q 1-|pP™! 1
 (k+2) PER<1+|P1>]DI_|]\[4<1—|P|1>
PiR

X (zk+2 + O (z* " log deg R)) .

Proof. The second result follows easily from the first by using the binomial
theorem. The first result is proved using the standard approach (see [7], for
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example). We take

2w(N)fw((N,M))

= 2 T

(N
_ ) p (L=IP 1
") ,JER(l ) Pﬂw(l )
PIR

Then, for a positive ¢ we have

1 c+100 S
/ F(1+s)-2ds
c

20 Je—iono gh+1
(log q)k QW(N)*W((NyM)) &
= z—degN)",
o g G
deg N<z
(N,R)=1

where we have used Perron’s formula and the summation representation
of F(1+ s). This gives the left-side of the first result in the lemma. The
right side is obtained by using the product representation of F(1 + s) and

shifting the line of integration to Re(s) = 1. O

Lemma 6.6. Suppose v is a multiplicative function on A and that there
exists a non-negative integer v such that v(P*) = O(k") for all primes P
(the implied constant is independent of P). Furthermore, suppose there is
an 1> 0 such that v(A) <, |A|" as deg A — oo.

Let R € M be a variable, a,b > 0 be constants, and X = X(R),y =
y(R) be non-negative, increasing, integer-valued functions such that X <
alog,logdeg R and y > blog,deg R for large enough deg R.

Let ¢ and € be such thatc>e>max{0,1—%} and ¢ >n, and let 6 > 0
be small. Finally, let S € M; S may depend on R. We then have that

>

AES M (X)
deg A<y
(A,8)=1

v(P) | v(P?) o
I1 <1+ Yo IJ(DPC . ) + Ogapereo((deg R)7HeI1=0)
deg P<X
(P.5)=1

v(4)

|Al°

as deg R — oo.
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Proof. The proof is similar to Lemma 6.5. We begin with

v(A) v(P) v(P?)
F(S)Z: Z stc H <1+ sc+ sc+"' :
AeSm(X) ‘A| * deg P<X |P| * |P‘2( +o)
(A,9)=1 (P,S)=1

By letting d > 2 and using Perron’s formula on

1 pd+ico v(A) qvta)s
%/d AP %

%0 AeSm(X

(A,5)=1
we get the left side of the lemma. Using the Fuler product representation
of F(s) and a contour shift to Re(s) = —c+ € gives the right side. The main
term comes from the singularity at 0. O

We now prove a result that is required to bound the lower order terms
in the proof of Theorem 1.8, but first we require three results from [2]. (See
Theorem 6.1, Lemma 7.7, and Lemma 7.8 in [2])

Theorem 6.7. Suppose a, B are fived and satisfy 0 < o < % and0 < 8 < %
Let X € M and y be a positive integer satisfying fdeg X < y < deg X.
Also, let A € A and G € M satisfy (A,G) = 1 and degG < (1 — a)y.
Then, we have that

Ydeg X
S d(N) <ap %.
Ne #(G)
deg(N—X)<y
N=A(mod G)

Lemma 6.8. Let F,K € M, x > 0, and a € Fy. Suppose also that %m <
deg KF < 3. Then,

d(H
Z d(N)d(KF +aN) < ¢*z* Z Q
Ney e N
deg]\(fﬁa}’—)ialg KF deg HSap—dngKF

Lemma 6.9. Let FF € M, K € A\{0}, and = > 0 satisfy deg KF < x.
Then,

d
> dN)AKF+N) < q¢"z® ) (H)
NeM H|K | |
deg N=x deg H<Z
(N,F)=1

Lemma 6.10. Let F' € M, A3, Bs € Spm(X) with (A3Bs, F) = 1, and
21, 29 be non-negative integers. Also, we define

S T Ndeg 4 ifdeg A > 1.
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Then, for all ¢ > 0 we have the following:

deg(A3Bs)

1< (qz1q22) 1+€| A3 B3|
‘ |F|

Ay,A2,B1,BoeM
deg A1 B1=21
deg Ay Ba=z2
(A1A3By By, F)=1
A1A2A35B1B2B3(m0d F)
A1A2A3#313233

if 21 + 22 + deg A3 B3 < % deg F'; and

1
Z 1< qz1+z2‘A3Bg|(Z1 + 29 + deg Ang)Si

A1,A2,B1,B2eM Qb(F)
deg A1 B1=21
deg Ag Bo=z9
(AlAQBlBQ,F)Z].
A1A2A3£BlBng(mOd F)
A1A2A3#B1B2Bs

if 21 + 20 + deg A3 B3 > % deg F'.
Proof. We can split the sum into the cases deg A1A3A3 > deg By B> Bs,
deg A1AsA3 < deg B1B2B3, and deg A1As A3 = deg B1 B2 B3 with
A1A2A3 7& B1B3Bs.

When deg A1 As A3 > deg B1B3B3, we have that A1AxAs3 = KF +
B1BsB3 where K € M and deg KF' > deg B1 B2 Bs. Furthermore,

2deg KF = 2deg A1 Ay A3 > deg A1 A3 A3 + deg B1 B2 Bg

= deg A1 By + deg As By + deg A3 B3 = 21 + 29 + deg A3 B3,
from which we deduce that
deg A3B
ag = At e +2 °8 353 < deg KF < z1 + 29+ deg A3 =: a;.

Also,

deg KF + deg B1 By = deg A1 As A3 + deg B1 By = 21 + 29 + deg As,

from which we deduce that

deg B1Bs = z1 + 20 + deg A3 — deg K'F.

Similarly, if deg A1 As A3 < deg B1 B2 Bs, we can show that
21 + 22 + deg A3 B3

by := 5

<degKF <z + 29 +deg B =: by

and

deg A1As = z1 + 29 + deg Bg — deg K'F.
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When deg A1 As A3 = deg B1 B> B3, we must have that

21 + 20 + deg By — deg As

degA1A2 = 9 )
deg A3 — deg B
deg By By — z1+ 29 + eg2 3 €g 3

Also, we can write AjAsAs = KF + B1BsBs, where deg KF <
deg B1ByBs = w and K # 0 need not be monic.

So, writing N = By By when deg A1 As A3 > deg B1B2B3, and N = A1 A,
when deg A1 A2 A3 < deg B1 B3B3, we have that

(6.4) > 1

Ai1,A2,B1,B2eM
deg A1 B1=21
deg Ag Ba=2z9
(A1AQBlBQ,F)=1
A1A2A3£BlBng(m0d F)

A1A2A3#B1B2B3
< ¥ 3 d(N)d((KF + NBs)Az™")
KeM NeM
ap<deg KF<a; deg N=zi+z2+deg As—deg KF
(N,F)=1
+ X 3 d(N)d((KF + NAg)B;™")
KeM NeM
bo<deg KF<by deg N=z1+z3+deg B3—deg KF
(N,F)=1
+ Y 3 d(N)d((KF + NBg)Ag_l).
KeA\{0} NeM
deg KF<a0 deg N:z1+z2+deg2A3fdeg B3
(N,F)=1

We must remark that if Az | (KF + NB3) then we define (KF +
NB3)As ' by (KF+NB3)A3~'- A3 = (KF+ NB3). If A3 { (KF + NB3),
then we ignore the term with (KF + NB’3)143_1 in the sum; that is,
we take the definition d((KF + NB3)A3™') := 0. We do the same for

(KF + NA3)3371.
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Step 1. Let us consider the case when 21 + z9 + deg A3B3 < % deg F'. By
using well known bounds on the divisor function, we have that

3 3 d(N)d((KF + NBs)A;™")
KeM NeM
ap<deg KF<a; deg N=z1+z2+deg Az—deg KF
(N,F)=1
< (a?)” X P> 1
KeM eM
ap<deg KF<a; deg N= zl+z2+degA3 deg KF
(N, F)=
145 1
g |A3| Z -
< (7) gem  EF
ap<deg KF<ai
145 21 + 22 4 deg A3 degA3
< (¢7q™ |As| < (qq2) 14
( ) || ( ) [P
Similarly,
3 3 d(N)d((KF + NAs)B; ")
KeM NeM
bo<deg KF<by deg N=z1+z2+deg B3—deg K F
(N,F)=1
degBs
z1 22 B
<e (q q ) | Bs| ]
As for the sum
3 3 d(N)d((KF + NBs)As™"),
KeA\{0} NeM
degKF<a0 degN: z1+z9+deg Ag—deg B3
(N,F)=1

we note that it does not apply to this case where z; + 29 + deg A3B3 <
% deg F' because this would imply deg KF' > deg F' > %ao, which does
not overlap with range deg K'F' < ag in the sum. Hence,

1+e d/e\g Ang
Z 1 <<€ (qz1q22) ‘A3B3|(|F’|)
A1,A2,B1,B2eM
deg A1 B1=21
deg A Ba=z2

(A1A231BQ,F)=1
A1A2A3EBlBgB3(mod F)
A1A2A37531B2B3

for z; + 2o + deg A3B3 < ¥ deg F.
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Step 2. We now consider the case when 21 + 2o + deg A3 B3 > degF

Step 2.1. We consider the subcase where ag < deg KF < 3 5a9. This allows
us to apply Lemma 6.8 for the second relation below

2 2

d(N)d((KF + NBs)A;™")
KeM NeM
a0<degKF< ag deg N=z1422+deg A3—deg KF
(N,F)=1
< > 3 d(N)d(KF+N)
KeM NeM
ap<deg KF<2qo deg N=2a9—deg KFF
(N,F)=1
< ¢*1q72| A3 Bs|(21 4 22 + deg A3B3)?
i 1 d(H)
W&, W X
KeM H|K
ao<degKF§%a0

deg H< 2a07dcg KF

>°

1
¢*'q|AsBs|(z1 + 22 + deg A3B3)*— Y

|F|

Kl |K| i |H|
deg KF<2ag
1 d(H) 1
z1 Z2 ’Ang‘ 21+ 29 + deg A3B3)27 —_— —_—
Mo, 2, K
deg H<2ag degé(‘fg(an
1 d(H
< quqZ2 |A333|(21 + 22 + deg A333)37 Z ( )
Fl 2, JHP
deg H<2ag
< qzl 2 |A3B3|(21 + z9 + deg A3Bg) ‘F‘ .
Similarly,
3 3 d(N)d((KF + NAs)B; ")
KeM NeM
bo<deg K F<3by deg N=z1+z2+deg By—deg K'F

(N,F)=1

< 22| A3Bs|(21 + 22 + deg A3B3)3
| F| '
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Step 2.2. Now we consider the subcase where %ao < deg KF < a;. We have
that

3 Z d(N)d((KF + NBg)A;™")
KeM NeM
2ap<deg KF<a; degN= Z1+Zz+deg A3 deg KF
(N, F)=
< > > d(N)d(KF + N)
KeM NeM
7a0<degKF<a1 deg N=2ap— degKF
(N,F)=
< ) > d(N)d(KF + N)
NeM KeM
deg N<“70 deg K F=2ap—deg N
(N,F)=1
< D dI) > d(M)
NeM MeM
deg N<‘17O deg(M—X(ny)<2ao—deg N
(N,F)=1 M=N(mod F)

where we define Xy := = T?e00—dee N (The monic polynomial of degree 2ag —
deg N with all non-leading coefficients equal to 0). We can now apply The-
orem 6.7. One may wish to note that

3 31
y = 2ag — deg N > 4(21 + z9 + deg A3B3) > 110 degF

and so deg F' < 57y = (1 - a)y, where 0 < a < %, as required. Hence, we
have that

3 3 d(N)d((KF + NB3)As~™")
KeM NeM
*ao<deg KF<a; degN= Zl+22+degA3 deg KF
(N F)=
1 d(N
z1 22|A3B3‘(21 + z9 + deg Ang) (F) Z (]\f|)
NeM
deg N<
(N,F)=1

<P ¢*?| AgBs| (21 + 22 + deg A3Bs)3¢
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Similarly, if %bo < deg KF < by then

3 3 d(N)d((KF + NA3)B;™")
KeM NeM
3b0<degKF<b1 deg N=z1+2z2+deg B3—deg K F'
(N,F)=1

1
Zl 22‘A333|(21 + Z9 + deg Ang) e

¢(F)
Step 2.3. We now look at the sum
3 3 d(N)d((KF + NBs)As™").
KeA\{0} NeM
deg KF<(10 degN— zl+z2+degA3 deg B3
(N, F)=
By Lemma 6.9 we have that

3 3 d(N)d((KF + NBs)A;™")
KeA\{0} NeM
deg KF<ao deg N= z1+22+deg2A3 des By

(N, F)=

< > > d(N)d(KF +N)

KeA\{0} NeM

deg KF<ag deg N=ao

(N,F)=1
2 H
< q |A333’ (21 + 29 + deg Ang) Z Z |7
KeA\{0} H|K
deg KF<ag
1 d(H
< ¢ 27N AgBs|(21 + 22 + deg A3B3)2| | > T4 > |(H|)
KeA\{0} HIK
deg KF<ag

1
< qz1+22|A3Bg|(Zl + z9 + deg Ang)SW,
where the second-to-last relation uses the fact that ag is an integer (since
deg A1 A3 A3 = deg B1 B2B3) and so deg K F' < ag implies deg KF < ag— 1,
and the last relation uses a similar calculation as that in Step 2.1.

Step 2.4. We apply Steps 2.1, 2.2, and 2.3 to (6.4) and we see that, for
z1 + 29 + deg A3 B3 > %degF,

1
> 1 < ¢**2|A3Bs|(21 + 22 + deg Ang)S—F. O
Ay,A2,B1,B2eM B(F)
deg A1 B1=2
deg Ag Ba=z22

(A1A2B1 Ba,F)=1
A1A2A3£Bl BQBg(InOd F)
A1A2A375BlBQBg

599
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7. The Fourth Hadamard Moment
We can now prove Theorem 1.8.

Proof of Theorem 1.8. In this proof, we assume all asymptotic relations are
as X,deg R — oo with X < log,logdeg R. Using Lemmas 6.1 and 6.2, we

have
1 * 1 1\
Qs(R)xmodR 2 2
1 * 1\ 1\
- £z0)] [P (2
¢*(R>Xm§m 2 A2
2 )t
= S X 0 X €
¢*(R)XmodR 2 X 2

By the Cauchy—Schwarz inequality, (1.3), and (3.6), it suffices to prove

% 1 — /1
> Je(z)] 177 (3)
x mod R
1 (L—1P’ 1y
~ —(degR)* ] ( II a-iph~
12 deg P>X 1+|P| ! deg P<X
P|R

4 2

1
¢*(R)

By Lemma 5.3, we have

s £ ()| [ (o)
= s (20004200 +(0) |7 (5:%) '

xmod R
where ¢(x) is as in Lemma 5.3 and

2R = deg R —log, 2w(F)

ey XA,

1
ABem  |AB|2

deg AB<zp
x(A)x(B
o Y MAXB)
A,BEM |AB|2
zr<deg AB<deg R

By symmetry in A, B, the terms a(x), b(x), and ¢(x) are equal to their
conjugates and so they are real. Hence, by the Cauchy—Schwarz inequality,
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it suffices to obtain the asymptotic main term of

4
¢*(R)

(7.1)

x mod R
and show that

2 1

S b(x)?

x mod R

= 1

are of lower order. The reason we express the sum in terms of a(x) and
b(x) is because the fact that a(y) is truncated allows us to bound the lower
order terms that it contributes. We cannot do this with b(x) but, because
b() is a relatively short sum, we can apply others methods to bound it.

¢*(R)

Step 1: the asymptotic main term of ﬁ Z;modRa(X)2|lgj‘?‘(%,x)|2.
Recall the following two orthogonality relations: Let R € M and A, B € A.
Then,

F|(A-B)
0 otherwise;

3 X(A)X(B) =

{Z pr=r W(E)o(F) if (AB,R) =1,
x mod R

> x(Ax(B) =
x mod R
X even

{qil Ser, X prn w(E)JOF) i (AB,R) =1

0 otherwise.

By taking the trivial character, the first orthogonality relation gives
¢*(R) = Y pr—p t(E)¢(F). Using these, we have

1 * — /1 2
(7.2) —= >, a()?PF(5x
¢ (R) x mod R ’ (2 )‘
1 )3 3 B(A3)B8(Bs3)x(A1A2A3)X(B1B2B3)
T x 1
O*(R) \fo4R Ay A By BaeM |A1A2 A3 B1 By Bs |2

A3, B3€Sm(X)
deg A1 B1,deg A2 Ba<zgr
deg Az,deg B3 g% log, deg R
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_ 3 B(A3)B(B3)
1
Ay Ay BrBrem | A1A2A3B1 By Bsl?
As,B3eSm(X)
deg A1 B1,deg A2B2<zR
deg As,deg B3§% log, deg R
1 B(A3)B(Bs3
Yo o MERE) S T
EF=R A1 Ay Br.Baem  |A1A2A3B1 By Bs|2
As,B3eSm(X)

deg A1 B1,deg A2 B2<zp
deg As,deg ngé log, deg R
(AlAQAgBlBQBg,,R):I
A1A2AgEBlBng(m0d F)
A1A2A3#B1B2 B3

Step 1.1. Consider the first term on the far right side of (7.2): the diagonal

terms. Lemma 6.3 gives

Z 5(143)/8(33)
1
A1,A2,B1,B2eM ‘A1A2A3BIBQB3|2
Asz,B3eSpm(X)
deg A1 B1,deg A2 B2<zp
deg As,deg ngé log, deg R
(A1A2A3BlBQBg,R)=1
A1 A2 A3=B1BsB3
_ 5 B(G3V31V32)B(G3Vi3Va3)
|G1G2G3 V1 2V 3Va 1Va3V3 1 V3 0

G1,G2,V1,2,Ve 1EM
G3,V1,3,V2,3,V3,1,V3,2€Sm(X)
deg(G1)2Vi1,2V1,3Ve,1V3,1<2R
deg(G2)?V2,1Va,3V1,2V3,2<zR

deg G3V3,1V3 2<% log, deg R
deg G3V1,3V2 3<% log, deg R
(leR)7(‘/J,k7R):1 v’LJ,k‘
(Vi,j, Ve )=1for (i £k Nj#I)
B(G3V3,1V32)8(G3Vi,3Va3)

- 2 G3Vi3VasVa1 Vi
G3,V1,3,V2,3,V3,1,V3 26S(X) ’ 3¥1,3V2,3V3,1¥3,2
deg G3V3,1V3,2< ¢ log, deg R
degGngyng,ggéloquegR

(G3V1,3V2,3V3,1 V3 2,R)=1
(V1,3V2,3,V3,1V3,2)=1
1 1
) 2 Vi2Van| 2 |G1Ga|

Vi,2,Vo1EM ) ’ G1,G2eM

deg V1,2V2,1<zr—deg V1 3V3 1 deg G1<ZR—degV1,2V2,1V1,3V3,1

degV1,2V21<zp—deg V2 3V3,2 T dea Vi 53 1 Ve V.
(V1,2V2,1,R):1 degGgng eg 1,22 2,1v2,3V3,2

(G1G2,R)=1

(V1,2,V2,3V3,1)=1
(V2,1,V3,2V1,3)=1
(V1,2,V2,1)=1
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By Lemma 6.4 we have

3 : )3 1
Vi,2,V2,1EM Vi2Va,l G1,GaeM GG
deg V1,2V21<zp—degV1,3V3,1 Zr—deg V1,2V2,1V1,3V3,1
deg Vi 2Va 1 <2p—deg Va Vs, deg G1.< 2
1,2V21<2Rr— 2,3V3,2 —deg V] o Vo 1 Vo 3V:
(V1,2V2,1,R)=1 deg Gy 212 20 2.8 0.2
(V1,2,V2,3V3,1)=1 (G1G2,R)=1
(V2,1,V3,2V1 3)=1
(V1,2,V2,1)=1
)3 DS )3 1
Vem ‘V‘ Vi,2,V2,1EM G1,G2eM ’GlGQ‘
deg Viszp—deg V15V, VigVo =V geoq,<ZR-48VVIS V51
deg V<zr—deg V2 3V3 2 (Vi,2,Va.1)=1 B 2
s s 1,2,V21 zR—degVV2’3V3’2
(V,R(V1,3V3,1,V2,3V3,2))=1 (Vi,2,Va,3V3,1)=1deg Go< i o222
(V2,1,V3,2V1,3)=1 (G1G2,R)=1

W(V)—w((V7V1,3V2,3V3,1V3,2))

> > 1
dog V<2 don Vi 3V v G1,G2eM 1l
eg VvV Szr—degVi,3Vs,1 zp—degVVy 3V3 1
deg V<zp—degVa3V3.2 des G1= zp—deg VVy 3V3 o
(VyR(V1,3V3,1,V2,3V3,2)):1 degG?(SGTI”
142, =

So, we have

(7.3) 5 B(A3)B(Bs)

1
A As,BrBrem  [A1A2A3B1 By Bs?
Asz,B3eSp(X)
deg A1 B1,deg A2 Bo<zp
deg As,deg B3§é log, deg R
(AlAQAgBlBQBg,R)Zl
A1A2A3:BlBQBg

_ Z B(G3V3,1V32)3(G3V13Va3)

G3,V1,3,V2,3,V3,1,V3,2€S0(X) |G3V173V273V§,,1V372|
deg G3V3,1V3 2<% log, deg R
deg G’3V1,3V273§% logq deg R
(G3V1,3V2,3V3,1V3,2,R)=1
(V1,3V2,3,V3,1V3,2)=1

W(V)—W((VV1,3V2,3V3,1V3,2))
2
x >
deg V< Vec{\/tv V-
egV szrp—deg Vi 3V3,1
deg V<zp—deg V2’3V3’2 deg G1= zp—degVVy 3V3 9
(V,R(V1,3V3,17V2,3V3,2))=1 deng(ﬁG G R)Ql’ ;
1G2,R)=

1
v o GG
zp—deg VV173V3,1
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Now, by Corollary 5.5, if
zr —degVVi3Vs,

> log, 3

2
that is,
degV < deg R —log, 182(R) deg V13V
then
(7.4) > .
. G1EM |G1|
deg G1<M
(G1.R)=1
P(R) P(R)
= — deg V'Vp 3V 0] 1 R
2R (2r —degVVi3Vs1) + 7] ogw(R)
_ (R)
- m(degR — degV + O(log deg R +w(R))).
If
deg V' > deg R — log, 18*%) — deg V; 3V3 1,
then
1 1 o(R)
(7.5) < — <« 2V (R).
2 @ X, @ SA
deg Gy < “R=EV VL3 Vo deg G1 <log, 3“()
(G1,R)=1 (Gr,R)=1

Similar results hold for the sum over Gs. So, let us define
. | deg R —log, 18°(F) _ deg V; 3V31 ,
mop = 1min w(R) )
deg R — log, 18 —deg V5 3V39

deg R —log, 18w(R) _ degVi3V31 , }

my ‘= max w(R)
deg R — logq 18 —deg V5 3V39

Then, by (7.4) and (7.5), we have

QUJ(V)—W((V,V1,3V2,3V3,1V3,2))

1
7.6
ook v oty GG
zRfdegVV173V371

deg V< VG({V( Vi 3V-
egV SzZr—degVy1,3V31
degVSzR—degVZng’g degG’lg

(V,R(V1,3V3,1,V2,3V3,2)):1 deg G2 <
(G1Ga,R)=1

zp—deg VV273V372
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B ¢(R)2 Z 2W(V)*w((V7V1,3V2,3V3,1V3,2))
4|RJ? VeM 14
deg V<myo

(V,R(V1,3V371,V2,3V3,2)) =1

2
X (degR —degV + O(logdeg R + w(R)))
+ ll (Rv ‘/1,37 Vv?),b ‘/2,37 ‘/?3,2)5

where
(7.7) L1(R,V13,V31,V23,V32)

W(V)*w((VV1,3V2,3V3,1V3,2))

#(R)*w(R) deg R 2
< >
2|RJ? Vem V]
mo<degV<mi

(V’,R(VL3V3,1,V2,3V3,2)):1

¢(R)2w(R)2 QW(V)—W((V7V1,3V2,3V3,1V3,2))
R 2 v
mi<degV<deg R
(V7R(V1,3V3,1,V2,3V3,2)):1

We now apply Corollary 6.5 to both terms on the right side of (7.6). For
the second term, which is (7.7), it is just two direct applications. For the

first term, we must expand (deg R—degV +O(logdeg R+w(R))) % and use
Corollary 6.5 on each of the resulting terms. We obtain

Qw(V)fw((‘/,V1,3V2,3V3,1V3,2))

1
7.8
"ok v oy GG
zR—degVV173V371

VeM
degV<zr—degV1,3V31

degV<zp—degV2,3V5,2 degGlSZ —deg V'Vy 3V
(V,R(V1,3V3,1,V2,3V3,2)):1 deg G2< R 2,3V3,2
(G1G2,R)=1
1 —1\3
—q 4 w(R) + logdegR)> (1—1|P™)
degR)*(1+0O —_
5 ldes )< + ( deg R g% 11 P!

1—|P|7t 1
% 11 <1+\Py—1> 11 (1—]P|—1>
P|V1,3V2,3V3,1 V3.2 P|V1,3V2,3V3,1V3 2

PY(V1,3,V2.3),(V3,1,V3,2)
=:lp(R,Vi3,Va3,V31,V32).

Before proceeding let us make the following definitions: For A € A\{0}
and P € P we define ep(A) to be the largest non-negative integer such that
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pPer(A) | A and

1—|P|—1>
7.9 A) = l1+ep(A)———].

Then, we can see that

1—|P|7t 1
mo > () I ()
V1,3,V2,3€SMm(X) P|V1,3Va 3 P|V1,3Va 3
Vi,3Va2,3=B3’ P{(V1,3,V2,3)

1— Pt 1
“(5e) X0 2 )
P|Bs3 W1iWao=Bs3 V1,3,V273€SM(X) P|Wo
(W1,W2)=1 Vi,3Va,3=B3’
rad(Vi,3,Va,3)=rad Wy

_ 1 - ‘P‘il 1 w(WQ) /
= I (ip), 2 T (g )2 T (ert) 1)
P|Bs3 W1 Wa=Bs' P|W» P|Wy
(W1,Wa)=1
B 1— Pt 2 ,
= JL(p) IL (g (o - 0)
P|Bs P|B3
1— P~
=11 (1 +€P(33/)_1)
=(B3)
Similarly,

1—|P|7t 1
(711) > 11 <1+|P|1> 11 (1_,p|1> =7(43).
V3,1,V3,2€Sm(X) P|V3,1V3,2 P|V3,1 V32
V3,1V3,0=A3’ PH(V3,1,V3,2)

We now substitute (7.8) to (7.3) and apply (7.10) and (7.11) to obtain

(7.12) > B(A3)B(B3)

1
A1,A2,B1,B2eM |141AZA33132B3|2
Asz,B3eSp(X)
deg A1 B1,deg A2 Bo<zp
deg As,deg ngé log, deg R
(A1 A3A3B; By B3,R)=1
A1A2A3=B1B2B;3
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_ )3 B(G3V31V32)3(G3V13Va3)
|GisV1,3V23V31 V39|

G3,V1,.3,V2.3,V3,1,V3 268 (X)
deg G3V3,1V3,2<§ log, deg R
deg G3Vi,3Va 3<§ log, deg R

(G3V1,3V2,3V3,1V3 2,R)=1
(V1,3V2,3,V3,1V3,2)=1

X ZQ(Rv ‘/1,3, ‘/2,37 ‘/23,1; ‘/23,2)

B > B(G3A3")B(G3By')
= T 7
Gs,A3',Bs' €S (X) Gsdq' By
deg G3A3’§é log, deg R
deg Gng’gé log, deg R
(G3A3/33/,R)=1
(As',B3")=1
X > > la(R, V13, V2,3, V31, V32)

V3,1,V3,2€S5Mm(X) Vi3,V 3€SMm(X)
Va3 1V3,0=A3’ Vi,3Va,3=B3’

1—gq ! (- 1P")’
T H( 1+ |P|1 >(degR)4

PIR

B(G3A3")B(G3Bs') ' ,
Z ‘G3A3/33/’ ’Y(A3 )7(33 )

X
G3,A3" B3’ €S (X)
deg G’3A3’§% log, deg R
deg G3B3'<{ log, deg R
(G3A3/Bg/,R)=1

(As',Bs")=1
+13(R),
where
(7.13) I3(R) < H( 11:_‘53" 11) )(degR)S(w(R)—i—logdegR)
P|R
» 3 ‘5<G3A3,)ﬁ(G3B3,)|’7(143')7(33’)-

/ !/
G3,A3",Bs'€eSm(X) (Gis As' B
deg G3A3/§% log, deg R
deg Gng'S% log, deg R

(G3As'Bs’ ,R)=1

(As',B3")=1

Consider the first term on the far right side of (7.12). We recall that
B(A) =0 if A is divisible by P? for any prime P. Hence, defining Ilp x :=
[laeg p<x P, we may assume that Gz = I1J? where I, J |1lp x, (IJ,R) =1,
and (I,J) = 1. By similar reasoning, we may assume that A3’ = KAj3"
where K | I, (A3s”,RIJ) = 1; and Bs' = LBs"” where L | I, (L, K) =1 and
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(B3", RIJA3") = 1. Then, by the multiplicativity of 8 and ~, we have

G3A3")B(G3 B3’
(7.14) > ACS e m)
G3,A3',B3'€eSpm(X) 388
deg G3A3’§§ log, deg R
deg GSB3’§% log, deg R
(G3A3/B3/,R)=1
(As',B3")=1
B B(I)? 5 K)
a 2 || 2 |J !2 Z )|K |
Ip, x Jp x K|I
deg[ﬁ%loquegR deg]é%loqueng¥
(I,R)=1 (J,RI)=1
> B(L*)~(L) 3 B(As")v(43")
"
L‘I B(L) | ABH‘(H”P,X)2 ’A3 |
(L,K)= deg Ag”gé log, deg R—deg 12K
(As".RIJ)=1
B(Bs")v(Bs")
X > By .

B3"|(Ilp,x)?
deg B3" <1 log, deg R—deg I.J?L
(B3 ,RIJA3")=1

Consider the case where degl > 6%1 log, deg R or deg J > 6%1 log, deg R.
Without loss of generality, suppose the former. Then, all the sums above, ex-
cept that over I, can be bounded by O((log, log deg R)¢) for some constant

¢ > 0, while the sum over I can be bounded by O((deg R)fé) (this is ob-
tained in the same way we have done several times before, such as in (3.8)).

So, with these restrictions, we have that the above is O((deg R)_é).
Now consider the case where degl < 6%1 log,deg R and degJ <
a1 log, deg R. Then,

1 1
3 log, deg R — deg IJ’°K > 16 log, deg R
and

1 1
3 log, deg R — deg IJ*L > 6 log, deg R.

In particular, we can apply Lemma 6.6 to the last two summations of (7.14):

3 B(A3")y(A3") 3 B(B3")y(B3")
|45 |B5"|
A" |(Tp x)? Bs"|(Ilp, x)?
deg A3 <% log, deg R—deg IJ2K deg B3"'< % log, deg R—deg I.J2L

(As" RIJ)=1 (Bs" \RIJA3")=1
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B B(P)y(P)  B(P*)~y(P?)
N degII:[<X <1 i ‘P‘ " ’P2‘ )
(P,R)=1
B(P)Y(P)  B(P)y(P*)\ ™ B(As")y(As")
<11 (H R ) 2 AT

Ag"|(Tp,x)?
deg Ag”gé log, deg R—deg IJ2K
(As" \RIJ)=1

BPWP) | BEA(PD)
<L (5 )

Hence,

3 B(A3")y(As") > B(B3")y(B3")

A " B "
A3N‘(HP,X)2 | 3 ’ B3//|(HP,X)2 ’ 3 ’
deg A3" <1 log, deg R—deg IJ?K deg Bg”gé log, deg R—deg IJ?L
(A3” ,RIJ)=1 (Bs" ,RIJA3")=1
-1 (1 BP)(P) 5<P2>7<P2>>

_|_
1P| | P2

deg P<X
(P,R)=1

BPIP) | AP
(S )

P|IJ

B(P)y(P) . B(P*)~(P?)
1
< I (R R
(P,R)=1

X (1 + B(P)v(P) ﬁ(PQ)fy(p2)>—1>

+
1P| | P?|

B(P)Y(P)  B(P*)y(P?)
XH(”( 7] )

P|IJ

2 21y —1\ ! )
(1K) PN oyt
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and so
B(A3")v(A5") B(B3")v(B3")
1 _ _ =
(7 5) Z |A3//| Z ) |B3//|
Az |(Ilp x)? B3"|(Tlp, x)
deg A3 <% log, deg R—deg IJ2K deg B3"'< 1 log, deg R—deg I.J2L
(A3” ,RIJ)=1 (B3",RIJA3")=1
- 26(P)y(P) | 2B(P*)y(P?)
= JI (1+ o+ 73
deg P<X 1P| P2
(P,R)=1

< 1 (1+ 2200, 28 e

-1
1
+ > +O((deg R)™17 ).
PILy 1P| | P2 ( )

Consider now the two middle summations on the right side of (7.14). We
have

gy YA & i)

2SR 2 S
(L,K)=1
(14 BB 5 BN ) gy BP(P) B
(G |P|> 2 HEIK] }&( i )
_ Do, 2E0E) )
PU( o)1l ( e 0+ Cam)
)

113_[< 26(132))\13 )

Applying (7.15) and (7.16) to (7.14), we obtain

G35 A3 B(G3 By’
> B(G3A3")B(G3B3")

/ /

T 7 v(As")v(Bs')
i |G3As' B3’
G3,A3",B3 GSM(X)
deg G3Az'<1 logq deg R
deg G3B3'< 5 logq degR

(G3A3'Bs’,R)=
(A3',B3')=1

) 2W(PY(P) | 28(P)y(P?) B2
- I (7m0 oy

deg P<X

Ip,x
(P,R)=1

deg Igé log, deg R
(I,R)=1
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A (1 AP
X 1+ ——<—=
B O Il
deg J§6*14 log, deg R
(J,RI)=1

28(P)y(P)  2B(P%)~y(P?)\ ! .
X H(1+ ﬂ(u);r( )—i- 2t |P);]( )> —I—O((degR)_ﬁ)

) 28(P)(P) | 2B(PIA(P?) | B(P?)?
= T (1 e )

B(I)? 28(P?)y(P)
’ n%x 1] E,((“ B(P) P )

deg I< logq deg R
(1.B)=1

28(P)v(P) 25(132)7(132) 5(}32)2 -1
<1+ P * | P2| |P|2 > )

+0(degR )
1 (1+ BPY(P) | 2B(P*)y(P?) | B(P2)?

deg P<X ’P’ ’PZ‘ ‘P‘Q
(P,R)=1

BP) (|, 2B(P*)(P)

+5rr 0+ 5 ))

+ O((deg R)_é).

Now, recalling the definitions of 3,7 (equations (6.1) and (7.9), respec-
tively) we see that the product above is equal to

JU(SERE) I (voun)
gPTE 5<d1;gRP§X

(L-1P %) (- [PV’ (- |PY?
) Ig%<1+|P|1> deg];[>X <1+|P|1> degl;ISX <1+P|1>

P|R
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() T (YRR T oae ey

P|R deg P>X deg P<X
P|R
_9y—1
< JI @=1P™?)
deg P<X
_133y\ 1 _1\3 4
a1 1—|P|~! 1— P! 1
~(1-a) H<(1+|p|1) I (e ) (ox)
PR deg P>X €
P|R

where we have used (3.6) for the last equality. Recall that the above is to
be applied to the first term on the far right side of (7.12). We now consider
l3(R): the second term on the far right side of (7.12). By means similar to
those described in the paragraph after (7.14), we can show that there is
some constant ¢ > 0 such that

> |B(G3A3")B(G3B3")]

! / c
|G3A3/B3/| 7("43 )7(33 ) <X

G3,A3" B3’ €eSp(X)
deg G3A3’§% log, deg R
deg G3B3’§é log, deg R

(GsAs'Bs’,R)=1
(As’,B3")=1

< (log, log deg R) ‘.

We apply this to (7.13) to obtain a bound for I3(R).
Hence, considering all of the above, (7.12) becomes

(7.17) > B(A3)B(Bs)

1
A1,A2,B1,BoeM |141142143BlBQB3|2
Asz,B3eSam(X)
deg A1 B1,deg Ao Bo<zpR
deg As,deg ngé log, deg R
(AlAgAgBlBQBg,R):l
A1A2A3=DB1B2B3

1 (deg R>4 1
A48\ e1X deg P>X
P|R

((1 — |P|—1>3>
1+ |P|~t



Euler—-Hadamard Product for Dirichlet L-functions in Fq[T] 613

Step 1.2. We consider the second term on the far right side of (7.2): the
off-diagonal terms. We have

> n(B)o(F) 3 B(A3)B(Bs)

1
EF=R A1,A2,B1,BaeM |A1 A2 A3 By Bo B3| 2
A3z,B3€Sa(X)
deg A1 B1,deg As Ba<zp
deg Az,deg B3§% log, deg R
(A1A2A3B1B2Bs,R)=1
A1A2A3EBlBQB3(mOd F)

A1A2A3#B1BQB?,
|B(As3)B(Bs3)|
< > s Y (B[ (F)
A3, B3€Sam(X) |A3Bs|?  pr=g
deg Az,deg B3<1 log, deg R
(A3Bs3,R)=1
ZR
z1+2
X Z q- = 1
21,22=0 A1,A2,B1,B2eM
deg A1 B1=21
deg Ay Bo=22

(A1A2B1Ba,R)=1
A1A2A3EB1BQB3(mOd F)
A1A2A3#B1B2Bs

1

By Lemma 6.10 we have, for € = g,

2R

z1+z29
> a e > 1
21,22=0 A1,A2,B1,BoeM
deg A1 B1=21
deg Ay Ba=2z2
(A1 A2 By Ba,R)=1
A1A2A3=B1 B2 Bs(mod F)
A1A2A3#BlBng

1+£ z
< ‘A3B};;|2 zR: q(z1+z2)(%+§)
’ ’ 21,22=0

z1+2z2+deg AJBJS% deg F'

|A333’ ZZR Z1+22

+ o(F) g2 (21 + 22 +deg Ang)S

21,22=0
z1+2z2+deg A3 B3> % deg F'

|AsBs|'™¢  |A3Bs]

S Fme )

q°"(deg R).
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We also have

1+e€ .
> I <|A333 |A333|q23(deg3)3>
EF=R ’F|20 ¢(F)
F
— AsBs e S (B -2EL 4 4Byl (dea B S |u(E
EF=R |F|20 EF=R

< |A3B3|"™¢|R| + | A3 B3 R|(deg R)?,

where the last relation uses

< > |E)

> u(E)

EF=R ’F| EF=R
1
R
)E;::RLu |1££( >]l_£(|P|—1>
P2|R P%R
1 |R|
R (R 1+ = ¢(R)——
)E;Rm |1¥(\P’ ) ( )Jg%( |P|1> ( )¢>(R)
= |R|.

Finally, using the fact that

3 8(A3)B(B3)|| A3 Bs| 3+

As,B3€Sm(X)
deg As,deg B3§% log, deg R

(AsB3,R)=1
2 2
é( > rﬁ<A>|rA\%+f) s( > 2W<A>1A\%+f>
AeM AeM
deg Ag% log, deg R deg AS% log, deg R
2 4
é( > d(A)Aﬁ*E) s( > |Ar%+€)
AeM AeM
deg AS% log, deg R deg Ag% log, deg R

< (deg R)¥,
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we see that

1 S u(E)o(F B(A3)B(Bs)
EF=R A1, Ao, B1.B2eM |A1A2A3 By Ba Bs|?

A3z,B3eSpm(X)

deg A1 B1,deg A2 Ba<zpg

deg As,deg ngé log, deg R

(AlAgAgBleB3,R)=1

A1A2A3EBleBg(modF)
A1A2A37£BlBQB3

|B]
¢*(R)

< (deg R)>*5.

This is indeed of lower order than (7.17); Section 4 of [2] provides the
necessary results to confirm this.

Step 2: the asymptotic main term of ﬁ >y mod R b(x)Qlﬁ)*?‘(%, X)IZ.

We have that
— /1
P** _

2
=(2)
1 5 3 B(As3)B(B3)x(A1A2A3)X(B1B2Bs)

* 1
P(B) oodR Ay AsBrBaeM |A1A2 A3 By Bo B3|
As,B3€Sm(X)
zr<deg A1 Bi,deg As Ba<deg R
deg As,deg ngé log, deg R

_ 9(R) T B(A3)B(Bs)

* 1
¢ (R) Aq,Ao,B1,BaeM |A1A2AgBlBng|2
A3,B3eSm(X)
zr<deg A1 Bj1,deg As Ba<deg R
deg As,deg ngé log, deg R
(A1A2AgBlBng,R):1
A1A2A3=B1B2B3

P(R) 3 B(A3)B(Bs)

* 1
¢ (R) A1,A2,B1,B2eM |AIA2A3BlBQB3|2
Asz,B3eSpm(X)
zr<deg A1 B1,deg A3 Bo<deg R
deg As,deg BgS% log, deg R
(A1A2A3B1B2B3,R)=1
AlAQAgEBlBQBg(mOd R)
A1A2A3#B1B2B3

2

1 «
(7.18) ) > b(x)?

x mod R
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Step 2.1. For the diagonal term, by similar means as in (7.3), we obtain

' 1
Ar, Ay, By BaeM |A1 A2 A3 By By Bs|2
As,B3eSp(X)
zp<deg A1 B1,deg A3 Ba<deg R
deg As,deg ngé log, deg R
(A1A2A3313233,R)=1
A1A2A3=B1 B3B3

= >
G3,V1,3,V2.3,V3,1,V3,2€S51(X)
deg G3V371V3,2§é log, deg R
deg G3V173V2,3§é log, deg R
(G3V1,3V2,3V3,1V3 2,R)=1
(V1,3V2,3,V3,1V3,2)=1

B(G3V31V32)B(GsVi3Va3)
|G3V1,3Va.3V31 V39|

QW(V)—W((V7V1,3V2,3V3,1V3,2))
x >
V]

Vem
deg V<deg R—deg V1 3V31
deg V<deg R—deg V2,3V3 2

(V,R(V173V3,1,V2,3V3,2)):1

1

x 3 .
G1,G2eM |G1G|
—degV'Vq 3V- deg R—deg VVy 3V~
maX{O, zR—deg . 1,3V3,1 }<degG1< eg eg 1,3V3,1

zp—deg V'Vy gV deg R—deg V'V, gV
max{0,ZR0EV2.3V5.2 1 o0 g, BT Ao V Vo5 V30

(G1G2,R)=1

Now, if Za=desV VsV ‘2/‘/1’3‘/3'1 < log, 3@(R) then

deg R —d 1
cg R e2gVV1,3V3,1 < log, 3°( + _ log, 2V < log, 6+,

and so, by Corollary 5.5, we have

1 1
2 G s 2 @l

GieM Gi1emM
maX{O, zR—deg\;Vly3V3yl }<deg G1<deg R—deg2VV113V3Y1 deg G <10gq 6w (R)
(G1,R)=1 (G1,R)=1

¢(R)
< WW(R)
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If zR—deg‘Q/V1,3V3,1 > logq 3w(R) then

1
2 |G|

Gi1eM

maX{O, zRfdeg\;Vl,3V3’1 }<degG1<dengdegQVV1,3V3’1
(G1,R)=1
1 1
- 2 Gl 2 G < Jape
deg}a%\gg VVy 3V ' Glfedev A '
deg Gy < S8 f=d8 VV1,3V5,1 deg Gy < 2RV V1.3V51
(G1,R)=1 (G1,R)=1

where we have used Corollary 5.5 twice for the last relation. Similar re-
sults hold for the sum over G3. Hence, proceeding similarly as we did for

the diagonal terms of ¢*%R) Z* a(x)ﬂ]gj“}(%, X) ]2, we see that there is a

x mod R
constant ¢ such that
P(R) T B(A3)B(B3)
" 1
¢ (R) A1,A2,B1,BoeM ‘A1A2A3BlBQB3|2

Az, B3eSm(X)
z<deg A1 B1,deg A2 Bo<deg R
deg As,deg B3 S% log, deg R
(A1A2AgBleBg,R):1
A1A2A3=B1 B3B3

o(R)? 2 o (1= P73 .
WW(R) (deg R) %(W)(logq log deg R)“.

<

Step 2.2. We now look at the second term on the far right side of (7.18):
the off-diagonal terms. Using Lemma 6.10, we have

P(R) 5 B(A3)B8(Bs)

* 1
¢"(R) A1,A2, B, BseM |A1A2 A3 B1 By Bs |2
Asz,B3eSm(X)
zr<deg A1 B1,deg A2 Ba<deg R
deg A3z,deg ngé log, deg R
(A1A2A3B1B2B3,R)=1
A1 Az A3=B1 B3 B3(mod R)
A1A2A3#B1B2Bs



618 Michael YIASEMIDES

_ 9(R) ) B(A3)B(Bs)
= 1
(ZS*(R) A3,B3€$M(X) ‘A3B3’2
deg A3z,deg ngé log, deg R
(A3Bs,R)=1
x Y o ) 1

zr<z1,22<deg R A1,A2,B1,BoeM
deg A1 B1=21

deg Ag Bo=2z9

(A1A2AgBlBQBg,R)=1
A1A2A3£BlBng(mOd R)

A1A2A3#B1B2B3
deg R)3 1 z1+2
<Gl pags@anl Y
Ag,BgGSM(X) zpr<z1,22<deg R
deg Az,deg ngé log, deg R
(AsBs,R)=1
R|(deg R)? 1 |R|(deg R)**3
TS sl < D
A3z, B3€Sm(X)
deg As,deg ngé log, deg R
(AsBs,R)=1

Step 3. By similar means as in Steps 1 and 2, we can show

1 o vlsm(l N[ |Rl(deg R
7@ 2, 7 (5) FR)

Thus, considering this, and the other bounds we have established in Steps 1
and 2, we can see the main term comes from (7.17), and this completes the
proof. O
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