Iwasawa a établi une dualité entre la limite directe et la limite inverse des groupes des classes dans une -extension. Récemment, ce résultat a été généralisé au cas de -extensions multiples par de nombreux auteurs. Dans cet article, nous établissons une dualité analogue entre la limite directe et la limite inverse des -groupes en degrés pairs dans une -extension. Nous donnons ensuite quelques exemples où la limite directe peut être nulle ou pas.
Iwasawa first established a duality relating the direct limit and the inverse limit of class groups in a -extension, and this result has recently been extended to multiple -extensions by many authors. In this paper, we establish an analogous duality for the direct limit and the inverse limit of higher even -groups in a -extension. We then give some examples where the direct limit may or may not vanish.
Accepté le :
Publié le :
Mots clés : Even $K$-groups, $\mathbb{Z}_p^d$-extension.
@article{JTNB_2024__36_2_537_0, author = {Meng Fai Lim}, title = {Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {537--555}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1288}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/} }
TY - JOUR AU - Meng Fai Lim TI - Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 537 EP - 555 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/ DO - 10.5802/jtnb.1288 LA - en ID - JTNB_2024__36_2_537_0 ER -
%0 Journal Article %A Meng Fai Lim %T Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions %J Journal de théorie des nombres de Bordeaux %D 2024 %P 537-555 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/ %R 10.5802/jtnb.1288 %G en %F JTNB_2024__36_2_537_0
Meng Fai Lim. Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 537-555. doi : 10.5802/jtnb.1288. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/
[1] Note on Nakayama’s lemma for compact -modules, Asian J. Math., Volume 1 (1997) no. 2, pp. 224-229 | DOI | Zbl
[2] Greenberg’s conjecture and capitulation in -extensions, J. Number Theory, Volume 122 (2007) no. 1, pp. 121-134 | DOI | Zbl
[3] Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 235-272 | DOI | Numdam | Zbl
[4] A finiteness theorem for of a number field, Ann. Math., Volume 94 (1971), pp. 534-548 | DOI | Zbl
[5] Iwasawa theory – past and present, Class field theory – its centenary and prospect (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 335-385 | DOI | Zbl
[6] On -extensions of algebraic number fields, Ann. Math., Volume 98 (1973), pp. 246-326 | DOI | Zbl
[7] Iwasawa modules up to isomorphism. Algebraic number theory, Algebraic number theory - in honor of K. Iwasawa (Advanced Studies in Pure Mathematics), Academic Press Inc.; Kinokuniya Company Ltd, 1989 no. 17, pp. 171-207 | DOI | Zbl
[8] -theory and arithmetic, Contemporary developments in algebraic -theory (ICTP Lecture Notes), Volume 15, Abdus Salam International Centre for Theoretical Physics, 2004, pp. 191-258 | Zbl
[9] A generalized Iwasawa’s theorem and its application, Res. Math. Sci., Volume 8 (2021) no. 2, 20, 18 pages | Zbl
[10] Conjectures de Greenberg et extensions pro--libres d’un corps de nombres, Manuscr. Math., Volume 102 (2000) no. 2, pp. 187-209 | DOI | Zbl
[11] Notes on the fine Selmer groups, Asian J. Math., Volume 21 (2017) no. 2, pp. 337-362 | Zbl
[12] On the growth of even -groups of rings of integers in -adic Lie extensions, Isr. J. Math., Volume 249 (2022) no. 2, pp. 735-767 | Zbl
[13] Nekovář duality over -adic Lie extensions of global fields, Doc. Math., Volume 18 (2013), pp. 621-678 | Zbl
[14] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, 336 pages
[15] Selmer complexes, Astérisque, 310, Société Mathématique de France, 2006, viii+559 pages | Numdam | Zbl
[16] Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008 | DOI | Zbl
[17] Annihilating wild kernels, Doc. Math., Volume 24 (2019), pp. 2381-2422 | DOI | Zbl
[18] Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. Fr., Nouv. Sér., Volume 17 (1984), 130 pages | Numdam | Zbl
[19] Higher algebraic -theory. I, Algebraic -theory, I: Higher -theories (Lecture Notes in Mathematics), Volume 341, Springer, 1972, pp. 85-147 | Zbl
[20] Finite generation of the groups of rings of algebraic integers, Algebraic -theory, I: Higher -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) (Lecture Notes in Mathematics), Volume 341, Springer, 1973, pp. 179-198 | Zbl
[21] Über gewisse Galoiscohomologiegruppen, Math. Z., Volume 168 (1979) no. 2, pp. 181-205 | DOI | Zbl
[22] Local Algebra, Springer Monographs in Mathematics, Springer, 2000, xiii+128 pages
[23] On Galois groups of unramified pro- extensions, Math. Ann., Volume 342 (2008) no. 2, pp. 297-308 | DOI | Zbl
[24] Reciprocity maps with restricted ramification, Trans. Am. Math. Soc., Volume 375 (2022) no. 8, pp. 5361-5392 | Zbl
[25] -théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math., Volume 55 (1979) no. 3, pp. 251-295 | DOI | Zbl
[26] Sur la dualité et la descente d’Iwasawa, Ann. Inst. Fourier, Volume 59 (2009) no. 2, pp. 691-767 | DOI | Numdam | Zbl
[27] On the structure theory of the Iwasawa algebra of a -adic Lie group, J. Eur. Math. Soc., Volume 4 (2002) no. 3, pp. 271-311 | DOI | Zbl
[28] On motivic cohomology with -coefficients, Ann. Math., Volume 174 (2011) no. 1, pp. 401-438 | DOI | Zbl
[29] The norm residue isomorphism theorem, J. Topol., Volume 2 (2009) no. 2, pp. 346-372 | DOI | Zbl
[30] The -book. An introduction to algebraic -theory, Graduate Studies in Mathematics, 145, American Mathematical Society, 2013, xii+618 pages | Zbl
Cité par Sources :