Comparing direct limit and inverse limit of even K-groups in multiple p -extensions
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 537-555.

Iwasawa a établi une dualité entre la limite directe et la limite inverse des groupes des classes dans une p -extension. Récemment, ce résultat a été généralisé au cas de p -extensions multiples par de nombreux auteurs. Dans cet article, nous établissons une dualité analogue entre la limite directe et la limite inverse des K-groupes en degrés pairs dans une p d -extension. Nous donnons ensuite quelques exemples où la limite directe peut être nulle ou pas.

Iwasawa first established a duality relating the direct limit and the inverse limit of class groups in a p -extension, and this result has recently been extended to multiple p -extensions by many authors. In this paper, we establish an analogous duality for the direct limit and the inverse limit of higher even K-groups in a p d -extension. We then give some examples where the direct limit may or may not vanish.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1288
Classification : 11R23, 11R70, 11S25
Mots clés : Even $K$-groups, $\mathbb{Z}_p^d$-extension.
Meng Fai Lim 1

1 School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences Central China Normal University Wuhan, 430079, P. R. China
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_537_0,
     author = {Meng Fai Lim},
     title = {Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {537--555},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     year = {2024},
     doi = {10.5802/jtnb.1288},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/}
}
TY  - JOUR
AU  - Meng Fai Lim
TI  - Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 537
EP  - 555
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/
DO  - 10.5802/jtnb.1288
LA  - en
ID  - JTNB_2024__36_2_537_0
ER  - 
%0 Journal Article
%A Meng Fai Lim
%T Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 537-555
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/
%R 10.5802/jtnb.1288
%G en
%F JTNB_2024__36_2_537_0
Meng Fai Lim. Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 537-555. doi : 10.5802/jtnb.1288. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/

[1] Paul N. Balister; Susan Howson Note on Nakayama’s lemma for compact Λ-modules, Asian J. Math., Volume 1 (1997) no. 2, pp. 224-229 | DOI | Zbl

[2] Andrea Bandini Greenberg’s conjecture and capitulation in p d -extensions, J. Number Theory, Volume 122 (2007) no. 1, pp. 121-134 | DOI | Zbl

[3] Armand Borel Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 235-272 | DOI | Numdam | Zbl

[4] Howard Garland A finiteness theorem for K 2 of a number field, Ann. Math., Volume 94 (1971), pp. 534-548 | DOI | Zbl

[5] Ralph Greenberg Iwasawa theory – past and present, Class field theory – its centenary and prospect (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 335-385 | DOI | Zbl

[6] Kenkichi Iwasawa On l -extensions of algebraic number fields, Ann. Math., Volume 98 (1973), pp. 246-326 | DOI | Zbl

[7] Uwe Jannsen Iwasawa modules up to isomorphism. Algebraic number theory, Algebraic number theory - in honor of K. Iwasawa (Advanced Studies in Pure Mathematics), Academic Press Inc.; Kinokuniya Company Ltd, 1989 no. 17, pp. 171-207 | DOI | Zbl

[8] Manfred Kolster K-theory and arithmetic, Contemporary developments in algebraic K-theory (ICTP Lecture Notes), Volume 15, Abdus Salam International Centre for Theoretical Physics, 2004, pp. 191-258 | Zbl

[9] King Fai Lai; Ki-Seng Tan A generalized Iwasawa’s theorem and its application, Res. Math. Sci., Volume 8 (2021) no. 2, 20, 18 pages | Zbl

[10] Arthur Lannuzel; Thong Nguyen Quang Do Conjectures de Greenberg et extensions pro-p-libres d’un corps de nombres, Manuscr. Math., Volume 102 (2000) no. 2, pp. 187-209 | DOI | Zbl

[11] Meng Fai Lim Notes on the fine Selmer groups, Asian J. Math., Volume 21 (2017) no. 2, pp. 337-362 | Zbl

[12] Meng Fai Lim On the growth of even K-groups of rings of integers in p-adic Lie extensions, Isr. J. Math., Volume 249 (2022) no. 2, pp. 735-767 | Zbl

[13] Meng Fai Lim; Romyar T. Sharifi Nekovář duality over p-adic Lie extensions of global fields, Doc. Math., Volume 18 (2013), pp. 621-678 | Zbl

[14] Hideyuki Matsumura Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, 336 pages

[15] Jan Nekovář Selmer complexes, Astérisque, 310, Société Mathématique de France, 2006, viii+559 pages | Numdam | Zbl

[16] Jürgen Neukirch; Alexander Schmidt; Kay Wingberg Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008 | DOI | Zbl

[17] Andreas Nickel Annihilating wild kernels, Doc. Math., Volume 24 (2019), pp. 2381-2422 | DOI | Zbl

[18] Bernadette Perrin-Riou Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. Fr., Nouv. Sér., Volume 17 (1984), 130 pages | Numdam | Zbl

[19] Daniel Quillen Higher algebraic K-theory. I, Algebraic K-theory, I: Higher K-theories (Lecture Notes in Mathematics), Volume 341, Springer, 1972, pp. 85-147 | Zbl

[20] Daniel Quillen Finite generation of the groups K i of rings of algebraic integers, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) (Lecture Notes in Mathematics), Volume 341, Springer, 1973, pp. 179-198 | Zbl

[21] Peter Schneider Über gewisse Galoiscohomologiegruppen, Math. Z., Volume 168 (1979) no. 2, pp. 181-205 | DOI | Zbl

[22] Jean-Pierre Serre Local Algebra, Springer Monographs in Mathematics, Springer, 2000, xiii+128 pages

[23] Romyar T. Sharifi On Galois groups of unramified pro-p extensions, Math. Ann., Volume 342 (2008) no. 2, pp. 297-308 | DOI | Zbl

[24] Romyar T. Sharifi Reciprocity maps with restricted ramification, Trans. Am. Math. Soc., Volume 375 (2022) no. 8, pp. 5361-5392 | Zbl

[25] Christophe Soule K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math., Volume 55 (1979) no. 3, pp. 251-295 | DOI | Zbl

[26] David Vauclair Sur la dualité et la descente d’Iwasawa, Ann. Inst. Fourier, Volume 59 (2009) no. 2, pp. 691-767 | DOI | Numdam | Zbl

[27] Otmar Venjakob On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc., Volume 4 (2002) no. 3, pp. 271-311 | DOI | Zbl

[28] Vladimir Voevodsky On motivic cohomology with /l-coefficients, Ann. Math., Volume 174 (2011) no. 1, pp. 401-438 | DOI | Zbl

[29] Charles Weibel The norm residue isomorphism theorem, J. Topol., Volume 2 (2009) no. 2, pp. 346-372 | DOI | Zbl

[30] Charles Weibel The K-book. An introduction to algebraic K-theory, Graduate Studies in Mathematics, 145, American Mathematical Society, 2013, xii+618 pages | Zbl

Cité par Sources :