Iwasawa a établi une dualité entre la limite directe et la limite inverse des groupes des classes dans une
Iwasawa first established a duality relating the direct limit and the inverse limit of class groups in a
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1288
Mots-clés : Even
Meng Fai Lim 1

@article{JTNB_2024__36_2_537_0, author = {Meng Fai Lim}, title = {Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {537--555}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1288}, mrnumber = {4830942}, zbl = {07948977}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/} }
TY - JOUR AU - Meng Fai Lim TI - Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 537 EP - 555 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/ DO - 10.5802/jtnb.1288 LA - en ID - JTNB_2024__36_2_537_0 ER -
%0 Journal Article %A Meng Fai Lim %T Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions %J Journal de théorie des nombres de Bordeaux %D 2024 %P 537-555 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/ %R 10.5802/jtnb.1288 %G en %F JTNB_2024__36_2_537_0
Meng Fai Lim. Comparing direct limit and inverse limit of even $K$-groups in multiple $\mathbb{Z}_p$-extensions. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 537-555. doi : 10.5802/jtnb.1288. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1288/
[1] Note on Nakayama’s lemma for compact
[2] Greenberg’s conjecture and capitulation in
[3] Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 235-272 | DOI | Numdam | MR | Zbl
[4] A finiteness theorem for
[5] Iwasawa theory – past and present, Class field theory – its centenary and prospect (Advanced Studies in Pure Mathematics), Volume 30, Mathematical Society of Japan, 2001, pp. 335-385 | DOI | Zbl
[6] On
[7] Iwasawa modules up to isomorphism. Algebraic number theory, Algebraic number theory - in honor of K. Iwasawa (Advanced Studies in Pure Mathematics), Academic Press Inc.; Kinokuniya Company Ltd, 1989 no. 17, pp. 171-207 | DOI | Zbl
[8]
[9] A generalized Iwasawa’s theorem and its application, Res. Math. Sci., Volume 8 (2021) no. 2, 20, 18 pages | MR | Zbl
[10] Conjectures de Greenberg et extensions pro-
[11] Notes on the fine Selmer groups, Asian J. Math., Volume 21 (2017) no. 2, pp. 337-362 | MR | Zbl
[12] On the growth of even
[13] Nekovář duality over
[14] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, 336 pages | MR
[15] Selmer complexes, Astérisque, 310, Société Mathématique de France, 2006, viii+559 pages | Numdam | Zbl
[16] Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008 | DOI | MR | Zbl
[17] Annihilating wild kernels, Doc. Math., Volume 24 (2019), pp. 2381-2422 | DOI | MR | Zbl
[18] Arithmétique des courbes elliptiques et théorie d’Iwasawa, Mém. Soc. Math. Fr., Nouv. Sér., Volume 17 (1984), 130 pages | Numdam | MR | Zbl
[19] Higher algebraic
[20] Finite generation of the groups
[21] Über gewisse Galoiscohomologiegruppen, Math. Z., Volume 168 (1979) no. 2, pp. 181-205 | DOI | MR | Zbl
[22] Local Algebra, Springer Monographs in Mathematics, Springer, 2000, xiii+128 pages | MR
[23] On Galois groups of unramified pro-
[24] Reciprocity maps with restricted ramification, Trans. Am. Math. Soc., Volume 375 (2022) no. 8, pp. 5361-5392 | DOI | MR | Zbl
[25]
[26] Sur la dualité et la descente d’Iwasawa, Ann. Inst. Fourier, Volume 59 (2009) no. 2, pp. 691-767 | DOI | Numdam | MR | Zbl
[27] On the structure theory of the Iwasawa algebra of a
[28] On motivic cohomology with
[29] The norm residue isomorphism theorem, J. Topol., Volume 2 (2009) no. 2, pp. 346-372 | DOI | MR | Zbl
[30] The
Cité par Sources :