Nous répondons à une question de type Lehmer sur la mesure de Mahler des polynômes à valeurs entières.
We solve a Lehmer-type question about the Mahler measure of integer-valued polynomials.
Révisé le :
Accepté le :
Publié le :
Mots clés : Mahler measure, polynomials, asymptotics
@article{JTNB_2024__36_2_527_0, author = {Berend Ringeling}, title = {On {Lehmer{\textquoteright}s} question for integer-valued polynomials}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {527--536}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1287}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1287/} }
TY - JOUR AU - Berend Ringeling TI - On Lehmer’s question for integer-valued polynomials JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 527 EP - 536 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1287/ DO - 10.5802/jtnb.1287 LA - en ID - JTNB_2024__36_2_527_0 ER -
%0 Journal Article %A Berend Ringeling %T On Lehmer’s question for integer-valued polynomials %J Journal de théorie des nombres de Bordeaux %D 2024 %P 527-536 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1287/ %R 10.5802/jtnb.1287 %G en %F JTNB_2024__36_2_527_0
Berend Ringeling. On Lehmer’s question for integer-valued polynomials. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 527-536. doi : 10.5802/jtnb.1287. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1287/
[1] Many variations of Mahler measures: a lasting symphony, Australian Mathematical Society Lecture Series, 28, Cambridge University Press, 2020, xv+167 pages | DOI | Zbl
[2] Irreducibility of (unpublished note, available at https://kconrad.math.uconn.edu/blurbs/ringtheory/irredselmerpoly.pdf)
[3] On the irreducibility of certain trinomials and quadrinomials, Math. Scand., Volume 8 (1960), pp. 65-70 | DOI | Zbl
[4] Problems and theorems in analysis. II. Theory of functions, zeros, polynomials, determinants, number theory, geometry, Classics in Mathematics, Springer, 1998, xii+392 pages (translated from German by C. E. Billigheimer, reprint of the 1976 English translation) | Zbl
Cité par Sources :