On Lehmer’s question for integer-valued polynomials
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 527-536.

Nous répondons à une question de type Lehmer sur la mesure de Mahler des polynômes à valeurs entières.

We solve a Lehmer-type question about the Mahler measure of integer-valued polynomials.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1287
Classification : 11R06, 11R09
Mots clés : Mahler measure, polynomials, asymptotics
Berend Ringeling 1

1 Department of Mathematics, IMAPP Radboud University, PO Box 9010 6500 GL Nijmegen, Netherlands
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_527_0,
     author = {Berend Ringeling},
     title = {On {Lehmer{\textquoteright}s} question for integer-valued polynomials},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {527--536},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     year = {2024},
     doi = {10.5802/jtnb.1287},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1287/}
}
TY  - JOUR
AU  - Berend Ringeling
TI  - On Lehmer’s question for integer-valued polynomials
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 527
EP  - 536
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1287/
DO  - 10.5802/jtnb.1287
LA  - en
ID  - JTNB_2024__36_2_527_0
ER  - 
%0 Journal Article
%A Berend Ringeling
%T On Lehmer’s question for integer-valued polynomials
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 527-536
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1287/
%R 10.5802/jtnb.1287
%G en
%F JTNB_2024__36_2_527_0
Berend Ringeling. On Lehmer’s question for integer-valued polynomials. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 527-536. doi : 10.5802/jtnb.1287. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1287/

[1] François Brunault; Wadim Zudilin Many variations of Mahler measures: a lasting symphony, Australian Mathematical Society Lecture Series, 28, Cambridge University Press, 2020, xv+167 pages | DOI | Zbl

[2] Keith Conrad Irreducibility of x n -x-1 (unpublished note, available at https://kconrad.math.uconn.edu/blurbs/ringtheory/irredselmerpoly.pdf)

[3] Wilhelm Ljunggren On the irreducibility of certain trinomials and quadrinomials, Math. Scand., Volume 8 (1960), pp. 65-70 | DOI | Zbl

[4] George Pólya; Gabor Szegő Problems and theorems in analysis. II. Theory of functions, zeros, polynomials, determinants, number theory, geometry, Classics in Mathematics, Springer, 1998, xii+392 pages (translated from German by C. E. Billigheimer, reprint of the 1976 English translation) | Zbl

Cité par Sources :