Principally polarized abelian surfaces with prescribed real multiplication (RM) are parametrized by certain Hilbert modular surfaces. Thus rational genus 2 curves with RM correspond to rational points on Hilbert modular surfaces via their Jacobians, but the converse is not true. We give a simple generic description of which rational moduli points correspond to rational curves, as well as give associated Weierstrass models, in the case of RM by the ring of integers of
Les surfaces abéliennes principalement polarisées à multiplications réelles (RM) par un anneau donné sont parametrisées par les points d’une surface modulaire de Hilbert. Si une courbe de genre 2 à RM est définie sur
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1286
Mots-clés : Courbes de genre 2, multiplications réelles, surfaces modulaires de Hilbert, coniques de Mestre
Alex Cowan 1 ; Kimball Martin 2

@article{JTNB_2024__36_2_493_0, author = {Alex Cowan and Kimball Martin}, title = {Moduli for rational genus 2 curves with real multiplication for discriminant 5}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {493--525}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1286}, mrnumber = {4830940}, zbl = {07948975}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1286/} }
TY - JOUR AU - Alex Cowan AU - Kimball Martin TI - Moduli for rational genus 2 curves with real multiplication for discriminant 5 JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 493 EP - 525 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1286/ DO - 10.5802/jtnb.1286 LA - en ID - JTNB_2024__36_2_493_0 ER -
%0 Journal Article %A Alex Cowan %A Kimball Martin %T Moduli for rational genus 2 curves with real multiplication for discriminant 5 %J Journal de théorie des nombres de Bordeaux %D 2024 %P 493-525 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1286/ %R 10.5802/jtnb.1286 %G en %F JTNB_2024__36_2_493_0
Alex Cowan; Kimball Martin. Moduli for rational genus 2 curves with real multiplication for discriminant 5. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 493-525. doi : 10.5802/jtnb.1286. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1286/
[1] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl
[2] The rank of
[3] Field of moduli and field of definition for curves of genus 2, Computational aspects of algebraic curves (Lecture Notes Series on Computing), Volume 13, World Scientific, 2005, pp. 71-83 | DOI | MR | Zbl
[4] Rigorous computation of the endomorphism ring of a Jacobian, Math. Comput., Volume 88 (2019) no. 317, pp. 1303-1339 | DOI | MR | Zbl
[5] Shimura curve computations via
[6]
[7] Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 16, Springer, 1988, x+291 pages | MR
[8] On Brumer’s family of RM-curves of genus two, Tôhoku Math. J., Volume 52 (2000) no. 4, pp. 475-488 | MR | Zbl
[9] General form of Humbert’s modular equation for curves with real multiplication of
[10] Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009) no. 3, pp. 485-504 | DOI | MR | Zbl
[11] Real multiplication through explicit correspondences, LMS J. Comput. Math., Volume 19A (2016), pp. 29-42 | DOI | MR | Zbl
[12] Construction de courbes de genre
[13] Familles de courbes hyperelliptiques à multiplications réelles, Arithmetic algebraic geometry (Texel, 1989) (Progress in Mathematics), Volume 89, Birkhäuser, 1991, pp. 193-208 | DOI | MR
[14] Abelian varieties over
[15] Sagemath, the Sage Mathematics Software System (Version 9.4) (2021) (https://www.sagemath.org)
[16] Poncelet’s theorem and curves of genus two with real multiplication of
[17] Explicit moduli for curves of genus 2 with real multiplication by
Cité par Sources :