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Moduli for rational genus 2 curves with real
multiplication for discriminant 5

par Alex COWAN et Kimball MARTIN

Résumé. Les surfaces abéliennes principalement polarisées à multiplications
réelles (RM) par un anneau donné sont parametrisées par les points d’une
surface modulaire de Hilbert. Si une courbe de genre 2 à RM est définie
sur Q, alors elle correspond, via sa jacobienne, à un point rationnel sur la
surface modulaire de Hilbert appropriée. Cependant, l’implication réciproque
est fausse en générale. Dans le cas de RM par l’anneau des entiers de Q(

√
5),

nous donnons une description générique simple des points rationnels de la
variété des modules correspondant à des courbes rationnelles, ainsi que des
équations de Weierstrass associées. Pour ce faire, nous fournissons quelques
techniques pour réduire des formes quadratiques définies sur des anneaux de
polynômes.

Abstract. Principally polarized abelian surfaces with prescribed real mul-
tiplication (RM) are parametrized by certain Hilbert modular surfaces. Thus
rational genus 2 curves with RM correspond to rational points on Hilbert
modular surfaces via their Jacobians, but the converse is not true. We give a
simple generic description of which rational moduli points correspond to ra-
tional curves, as well as give associated Weierstrass models, in the case of RM
by the ring of integers of Q(

√
5). To prove this, we provide some techniques

for reducing quadratic forms over polynomial rings.

1. Introduction

We are interested in describing the space of rational genus 2 curves which
have certain endomorphism structure on their Jacobians, and will corre-
spond to modular forms.

Let k be a field. Let D > 0 be a discriminant, and OD the quadratic order
of discriminant D. For an abelian surface A/k, if OD embeds in Endk(A),
we say A has real multiplication (RM) by OD, and abbreviate this as RM-
D. By extension, if C is a genus 2 curve and A = Jac(C) has RM-D, we
say C has RM-D.
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Typically, Jacobians of genus 2 curves, and more generally abelian sur-
faces, will have endomorphism ring Z. One interest in abelian surfaces A
with RM (i.e., RM-D for some D) is that they are of GL(2) type, which
by work of Ribet [14] and the proof of Serre’s conjecture [10], means that
abelian surfaces A with RM over k = Q correspond to elliptic modular
forms of weight 2.

Parametrizing genus 2 curves, with or without an RM condition, is essen-
tially understood over k = C, but much less clear over k = Q. Over C, genus
2 curves with RM-5 are parametrized by C-points on the Hilbert modular
surface Y (5), which is a rational surface over Q. Thus we may generically
parametrize rational points on Y (5) by (m, n) ∈ Q2 as in [6]. However
rational points of Y (5) do not typically correspond to genus 2 curves de-
fined over C. We give a simple generic description of which moduli points
correspond to genus 2 curves C with RM-5 over Q.

Theorem 1.1. The C-isomorphism classes of genus 2 curves C/Q with
RM-5 are generically parametrized by (m, n) ∈ Q2 such that m2 − 5n2 − 5
is a norm from Q(

√
5).

We will also describe models for these curves (Proposition 6.1), and be
more precise about the meaning of “generically parametrized” here (see
Theorem 5.1 and Section 5.1). These results extend to arbitrary subfields
k of C, and the models are rather simple when k ⊇ Q(

√
5).

In order to explain our results more completely, we will first describe
moduli for genus 2 curves over C in more detail. Below, when the field of
definition of a curve or variety is not specified, it is assumed to be C.

Let M2 be the (coarse) moduli space of genus 2 curves and A2 be the
moduli space of principally polarized abelian surfaces. The Torelli map
M2 → A2, corresponding to mapping a genus 2 curve C to its Jacobian
A = Jac(C), is almost surjective: the complement of its image consists of
(moduli for) products of 2 elliptic curves. We may identify a point in M2
corresponding to a genus 2 curve C with Igusa–Clebsch invariants (I2 : I4 :
I6 : I10) in weighted projective space P3

1,2,3,5(C). Each (I2 : I4 : I6 : I10)
with I10 ̸= 0 comes from a genus 2 curve.

The Igusa–Clebsch invariants I2j can be defined as degree 2j polyno-
mial functions I2j(f) of the coefficients of a sextic Weierstrass equation
y2 = f(x) for C, and up to projective equivalence do not depend on the
model. Consequently, if C has a model over a subfield k ⊆ C, then the
Igusa–Clebsch invariants are defined over k (i.e., can all be taken in k after
scaling).

However, the converse is not true. (Contrast this to the genus 1 situa-
tion: an elliptic curve has a rational model if and only if its j-invariant is
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rational.) If C is a genus 2 curve without extra automorphisms over C and
its Igusa–Clebsch invariants are defined over k, then Mestre [12] showed that
C is defined over k if and only if a certain conic L/k has a k-rational point.
(If C has extra automorphisms, it has a model over k by [3].) The coeffi-
cients of the Mestre conic L are polynomials in I2, I4, I6 and I10. Nonethe-
less, there is no simple characterization of when the Mestre obstruction
vanishes, i.e., when L has a k-rational point.

Now we review moduli for genus 2 curves with RM-D. For simplicity,
assume D is a fundamental discriminant, so OD is the ring of integers
of Q(

√
D). The Hilbert modular surface Y−(D) is a smooth compactifica-

tion of the quotient SL2(OD)\(H+ ×H−), or alternatively SL2(OD ⊕ O∗
D)\

(H+ × H+), where O∗
D is the inverse different of OD (e.g., see [7]). Then

Y−(D) is a coarse moduli space for principally polarized complex abelian
surfaces with real multiplication RM-D, where one fixes an action of OD

compatible with the polarization.
Suppose k ⊆ C. The moduli interpretation of Y−(D) allows one to con-

sider Y−(D) as a surface defined over Q, one can consider its k-points.
Then a genus 2 curve C/k with RM-D corresponds to a k-rational point
on Y−(D). However, the converse is not true, even generically. If p is a k-
rational point on Y−(D) which does not correspond to the product of two
elliptic curves, then it will correspond to a curve C with RM-D defined
over k such that C is isomorphic to Cσ for any σ ∈ Gal(k/k).

For p to correspond to a curve over k with RM-D we need both that
the Mestre obstruction vanishes, and that some rational model for C has
RM-D defined over k. (It can happen that some k-rational models for C
have RM defined over k and some do not.) We will see that generically
if the Mestre obstruction vanishes, then the RM is defined over k. More
precisely, if End(Jac(C)) is commutative, then a field of definition for C is
a field of definition for the RM (Proposition 2.1).

1.1. Strategy of proof. In the special case of RM-5, the Hilbert mod-
ular surface Y (5) = Y−(5) is a rational surface over Q, i.e., birational to
P2

m,n(Q). Hence to prove Theorem 1.1, it suffices to show that the vanishing
of the Mestre obstruction at a rational point (m, n) in Y (5) is generically
equivalent to the condition that m2 − 5n2 − 5 = u2 − 5v2 for some u, v ∈ Q.
This is not at all obvious from the Mestre conic, which is a conic over
Q[m, n] whose coefficients are degree ≤ 14 polynomials in m and n, and
whose discriminant is of degree 30. In fact, it was rather surprising to us
that there was such a simple characterization of the Mestre obstruction. It
was only through computational observations that we were led to believe
in Theorem 1.1, and then were able to find a proof after much trial.
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The starting point for the proof relies on two birational models for Y−(5)
due to Elkies and Kumar [6], which were obtained by studying lattice po-
larizations of K3 surfaces. The first model is a double cover of P2

g,h(Q) of
the form z2 = f(g, h), where f is a degree 5 polynomial in g and h. In this
model, the norm condition in Theorem 1.1 can be restated as 30g +4 being
a norm from Q(

√
5). In particular, the Mestre obstruction only depends on

g and not h. (This was our initial computational observation that led to the
theorem.) The Igusa–Clebsch invariants now are low-degree expressions in
g and h. In terms of g and h, the Mestre conic has coefficients in Q[g, h]
which are of degree ≤ 7 in g and degree ≤ 2 in h, and its discriminant is
an integer multiple of h2(8h − 9g2)2z2.

To our knowledge, there are no general methods to reduce quadratic
forms over polynomial rings. The standard technique taught to “simplify”
quadratic forms over fields is diagonalization, but unless one is very lucky
this is not useful in simplifying quadratic forms over rings. E.g., diagonal-
izing the conic over Q(m, n) and clearing denominators gives coefficients
which are polynomials of degrees 24, 28 and 32 in m and n.

We will describe a few simple techniques to reduce degrees of polynomial
coefficients and remove factors from the discriminant, which we hope may
be of use in other situations. In our case, we are able to use these methods to
reduce the Mestre conic in g and h to have polynomial coefficients of degree
≤ 3 and remove the factors of h2 and (8h − 9g2) from the discriminant.
Then we switch to the (m, n) model and apply our techniques to reduce
the Mestre conic over Q(m, n) to x2

1 − 5x2
2 + (m2 − 5n2 − 5)x2

3 = 0, which
proves Theorem 1.1.

We remark that we needed to use both of these models for Y−(5) to carry
out this reduction of the Mestre conic. While the Mestre conic is simpler
in g and h, our final reduced form, which is the same as x2

1 − 5x2
3 + (30g +

4)x2
3 = 0, is not equivalent to the original Mestre conic over Q(g, h). That

is, these conics are not equivalent over Q for a generic choice of g, h ∈ Q:
the equivalence requires rational g, h such that f(g, h) is a rational square,
i.e., g and h come from a rational point on Y−(5), and it is not clear how
to use the relation z2 = f(g, h) to carry out this reduction solely in terms
of g and h. On the other hand, we were unable to carry out the reduction
entirely in terms of m and n because finding suitable changes of variables
is more difficult with higher degree polynomial coefficients.

1.2. Moduli of rational curves. Here we briefly describe to what extent
we can make the “generic” aspect of Theorem 1.1 precise. First, our reduc-
tion of the Mestre conic L over Q(m, n) does not give a Q-equivalent conic
when specializing to points (m, n) ∈ Q2 such that disc L = 0. This hap-
pens on a finite number of curves in the moduli space, which we examine
separately.
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Second, as (m, n) are only affine coordinates for a birational model for
Y−(5), the set of rational (m, n) does not exhaust the rational points on
Y−(5). Fortunately, thanks to work of Wilson [17], we can describe Igusa–
Clebsch invariants for the remaining points on Y−(5) and say explicitly
when such points correspond to a genus 2 curve defined over Q.

Consequently, in Theorem 5.1 we give an explicit description of a set Y
of rational moduli in M2 such that any genus 2 curve C/Q with RM-5
corresponds to a point on Y. Moreover, any point in Y corresponds to a
genus 2 curve C/Q that has potential RM-5, i.e., RM-5 defined over Q but
not necessarily Q. We do not know if each such C will always have a twist
with RM-5 defined over Q, but we were not able to find any examples to
the contrary. At least the collection of such curves generically has RM-5,
and we explain two ways in which one can check that the RM-5 is defined
over Q.

1.3. Models of curves. Several families of rational genus 2 curves C/Q
with RM-5 have been constructed in the literature. For instance, Mestre
constructed a 2-parameter family in [13] and Brumer constructed a 3-
parameter family (see [2] for an announcement, and [8] for a proof different
from Brumer’s). For a rational choice of parameters these families gener-
ically give rational genus 2 curves C with RM-5 over Q. Moreover, over
C these families are known to exhaust all C-isomorphism classes of genus
2 curves C/Q with RM-5 (see [9] for Brumer’s family and [16] or [17] for
Mestre’s family). However, it is not known how to describe all such ratio-
nal curves with these families, or how to describe what parameters give
C-isomorphic curves.

Theorem 1.1 generically parametrizes such C/Q. If (m, n) ∈ Q2 such
that m2 − 5n2 − 5 = u2 − 5v2 with u, v ∈ Q, we give a generic Weierstrass
model y2 = f(x) for an associated curve in terms of (m, n, u, v). See Propo-
sition 6.1. These results apply arbitrary base fields k ⊆ C. If k ⊇ Q(

√
5),

then the analogous norm condition in Theorem 1.1 is automatically satis-
fied, and one can write down a model solely in terms of (m, n) ∈ k2. See
Proposition 6.3.

1.4. Additional remarks. Our original motivation for this project was
to help understand weight 2 elliptic modular forms with rationality field
Q(

√
5). We hope to return to this in the future.

In Section 8, we briefly describe some computational evidence that there
are similarly simple descriptions for when the Mestre obstruction vanishes
for some other small values of D. However, in these cases, the Mestre conics
that arise are more complicated and we have only been partially successful
in applying our reduction methods to these cases.

Calculations for this project were carried out in Sage [15] and Magma [1].
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2. Moduli spaces

Henceforth, k denotes a subfield of C.
Let C be a genus 2 curve defined over k. Then it has a rational Weierstrass

model of the form y2 = f(x), where f(x) ∈ k[x] is a sextic with no repeated
irreducible factors. The Igusa–Clebsch invariants I2, I4, I6, I10 are polyno-
mial invariants of f of respective degrees 2, 4, 6, 10 with I10 = disc(f). We
view the Igusa–Clebsch invariants as a point (I2 : I4 : I6 : I10) in weighted
projective space P3

1,2,3,5. (While using weighted projective space P3
2,4,6,10

may be more natural, we use P3
1,2,3,5 because then Q×-equivalence of ratio-

nal points is the same as C×-equivalence of rational points, and the latter
is what is used in our main result.) In this way, the Igusa–Clebsch invari-
ants in P3

1,2,3,5 depend only on C and not on the choice of the Weierstrass
equation. Moreover, the set of (I2 : I4 : I6 : I10) with I10 ̸= 0 forms a coarse
moduli space M2 for genus 2 curves.

2.1. Hilbert modular surfaces. Here we review some facts about cer-
tain Hilbert modular surfaces. See [7] and [6] for more details.

Let D > 0 be a fundamental discriminant. The Hilbert modular surface
Y−(D) is a smooth compactification of the quotient SL2(OD⊕O∗

D)\H+×H+.
When the class number of K = Q(

√
D) equals its narrow class number, this

agrees with the Hilbert modular surface often denoted Y (D).
Fix an embedding K ⊆ C and denote by τ the nontrivial Galois auto-

morphism of K. One can associate to (z1, z2) ∈ H+ × H+ a lattice
L(z1,z2) = {(az1 + b, aτ z2 + bτ ) : a ∈ OD, b ∈ O∗

D} ⊆ V = C2.

Then
E((w1, w2), (w′

1, w′
2)) = Im w1w1

Im z1
+ Im w2w′

2
Im z2

(with bar denoting complex conjugation) defines a Riemann form on A =
V/L(z1,z2) such that L(z1,z2) is unimodular with respect to this form. This
makes A a principally polarized abelian surface (PPAS) with an action of
OD via j(α)(w1, w2) = (αw1, ατ w2). In fact, one may check that j : OD ↪→
End(A)†, where † denotes the Rosati involution. This construction leads to
the fact that Y−(D) is a moduli space for such pairs (A, j) of PPASs with
RM-D.

The Humbert modular surface HD is the image of Y−(D) in A2, and
the map Y−(D) → HD is generically 2-to-1, corresponding to forgetting
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the action of OD. Note that in the above construction, switching z1 and
z2 corresponds to replacing j with j ◦ τ , and for the points (z1, z1), the
conjugate actions j and j ◦ τ are isomorphic.

If A is a geometrically simple PPAS, then End(A) is isomorphic to Z,
an order in a real quadratic field, an order in a quartic CM field, or an
order in an indefinite quaternion algebra. If A is not geometrically simple,
but OD embeds in End(A), then End(A) is an order in either the split
quaternion algebra M2(Q) or in M2(F ) where F is an imaginary quadratic
field, according to whether A is isogenous over Q to a product of isogenous
elliptic curves without or with CM.

2.2. Fields of definition. We are interested in fields of definition of
curves and endomorphisms. In general, suppose X is a coarse moduli space
for a class of varieties V satisfying some property P . If x corresponds to
the pair (V, P ), then the field of moduli for (V, P ) is the field of definition
of the point x. If both V and P are defined over k, then the field of moduli
contains k, but the converse is not true in general.

In particular, if C is a genus 2 curve over C, then the field of moduli of
C is the field of definition of (I2 : I4 : I6 : I10), i.e. the minimal field k0 such
that I2, I4, I6, I10 can be taken in k0 after scaling. If C is defined over k,
then k ⊇ k0. However, C need not be defined over k0, i.e., there need not
be a curve C ′/k0 such that C ′ and C are isomorphic over C.

Generically, Aut(C) is generated by the hyperelliptic involution on C.
If |Aut(C)| > 2, then by [3], C is defined over k0. When Aut(C) ≃ C2,
Mestre [12] constructed a nonsingular conic L/k0 such that C is defined over
k ⊇ k0 if and only if L has a k-point. The coefficients of L are polynomials
in I2, I4, I6 and I10 (see Section 4.1 for details). We remark that since L
always has a point over a quadratic extension k′/k0, C is always definable
over a (in fact, infinitely many) quadratic extension(s) of k0.

Now consider a genus 2 curve (C, j) with RM-D, where j is an embedding
of OD into End(A), A = Jac(C), that respects the polarization as above.
Then the field of moduli for (C, j) is the minimal field k0 such that (A, j)
corresponds to a k0-rational point on Y−(D). This means that the pair
(C, j) is defined over k0 and is isomorphic to any Gal(k0/k0)-conjugate of
itself. In particular, forgetting the RM, the genus 2 curve C ≃ Cσ for any
σ ∈ Gal(k0/k0). Thus the Igusa–Clebsch invariants for C are defined over
k0, i.e., the field of moduli of C (i.e., the field of definition of the associated
point in A2) contains k0.

If (C, j) is defined over k, i.e., there is a model for C defined over k
such that j(OD) ⊆ Endk(A), then k ⊇ k0. Conversely, given k ⊇ k0, we
would like a way to determine whether (C, j) is defined over k. Necessarily,
C must be defined over k, i.e., the Mestre conic L must have a k-rational
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point. The following says that, generically, when the Mestre conic has a
point the RM is also defined over k.

Proposition 2.1. Suppose p is a k-rational point on Y−(D) corresponding
to a PPAS A defined over k with an embedding j : OD ↪→ EndC(A). If
EndC(A) is commutative, then j(OD) ⊆ Endk(A).

Proof. Let σ ∈ Gk, and η = D+
√

D
2 . Then p being k-rational means there is

an isomorphism φ : (A, j) → (Aσ, jσ). In particular, φ maps j(η) to jσ(η) ∈
EndC(Aσ), which we may identify with j(η)σ ∈ EndC(A). Consequently,
there is an inner automorphism of EndC(A) taking j(η) to j(η)σ. Hence
if EndC(A) is commutative, this means j(η)σ = j(η) for all σ, and thus
j(η) ∈ Endk(A). □

Now we briefly address how to check the field of definition of RM for
specific curves C. Suppose C is defined over k, and let A = Jac(C).

Algorithms for numerically computing Endk(A) and EndC(A) have been
implemented in Magma, which one can use to provably exhibit RM-D using
correspondences (e.g., see [4] or [11]).

In the case we consider in this paper, D = 5, another criterion which is
simpler to provably verify was provided by Wilson:

Proposition 2.2 ([17]). Let y2 = f(x) be a sextic Weierstrass model over
k for a genus 2 curve C with potential RM-5, i.e., C has RM-5 defined over
C. Then C has RM-5 (defined over k) if and only if Gal(f) = Gal(f/k) is
contained in a transitive copy of A5 inside S6.

It is easy to verify whether C has potential RM-5, because one can check
whether it comes from a point on Y−(5) via its Igusa–Clebsch invariants.
In particular, if C : y2 = f(x) is a genus 2 curve over k with deg f = 6,
then C has RM-5 (over k) if and only if its Igusa–Clebsch invariants are of
one of the types listed below in Proposition 2.3 and Gal(f) lies in one of
the transitive copies of A5 inside S6.

2.3. Moduli for RM-5. Elkies and Kumar [6] give the following bira-
tional model for Y−(5):

(2.1) Y : z2 = 2
(
−972g5 − 324g4 − 27g3 − 4500g2h

− 1350gh + 6250h2 − 108h
)
.

For (z, g, h) on the surface Y corresponding to a point on M2 ⊆ A2, the
Igusa–Clebsch invariants are

(I2 : I4 : I6 : I10) =
(
24g + 6 : 9g2 : 81g3 + 18g2 + 36h : 4h2

)
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The surface Y−(5) is rational, and Elkies and Kumar give a birational
map between Y and P2, with affine coordinates (m, n), via

30g + 9 = m2 − 5n2

h = m
(30g + 9)(15g + 2)

6250 + 9(250g2 + 75g + 6)
6250(2.2)

z = n
(30g + 9)(15g + 2)

25 .

These equations give invertible transformations between the affine coor-
dinates (z, g, h) on Y and (m, n) on P2 outside of the locus where g =
m2−5n2−9

30 is − 3
10 or − 2

15 .
In an alternative approach, Wilson [17] constructed a coarse moduli space

for genus 2 curves C with RM-5 with coordinates (z6 : s2 : σ5) ∈ P2
1,2,5 with

σ5 ̸= 0 such that

(I2 : I4 : I6 : I10)

=
(

−2s2 + 2z2
6 : (s2 + 2z2

6)2

16 : 9z6σ5 − 4I4(3s2 − 2z2
6)

16 : σ2
5

1024

)
.

Moreover if C is defined over k, then so is (z6 : s2 : σ5) and the quantity

∆′ = 64z6
6s2

2 + 96z4
6s3

2 + 48z2
6s4

2 − 256z5
6σ5

+ 8s5
2 − 400z3

6s2σ5 − 1000z6s2
2σ5 + 3125σ2

5

must be a square in k.
One can translate Wilson’s coordinates to the Elkies–Kumar coordinates

via

(g, h) =
(

−2z2
6 + s2
12z2

6
,

σ5
64z5

6

)
.

We remark that under this change of coordinates, ∆′ = 210z2, so the con-
dition that ∆′ is a square in k is automatically satisfied when (z, g, h) is a
k-rational point on Y .

If z6 ̸= 0, we can assume z6 = 1 and this relation gives a one-to-one
correspondence between (g, h) ∈ C2 and (s2, σ5) ∈ C2. If z6 = 0, then
the Igusa–Clebsch invariants of the point (z6 : s2 : σ5) must either be
(0 : 0 : 0 : 1) if s2 = 0 or

(I2 : I4 : I6 : I10) =
(

−8 : 1 : −3 : σ2
5

s5
2

)
otherwise. Hence any genus 2 curve with RM-5 either corresponds to a
point (g, h) ∈ C2 or has Igusa–Clebsch invariants of the form (0 : 0 : 0 : 1)
or (8 : 1 : 3 : s) for s ̸= 0. When z6 = 0, ∆′ = 8s5

2 + 3125σ2
5. Thus ∆′ being

a square in k means either
√

5 ∈ k if s2 = 0 or 3125s2 − 8s is a square,
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where s = −σ2
5

s5
2
, if s2 ̸= 0. It is easy to see that any two of these possibilities

are mutually exclusive.
Let us now consider the possibility that (g, h) and (g′, h′) give the same

Igusa–Clebsch invariants, i.e., there exists λ ∈ C× such that

(
24g′ + 6 : 9g′2 : 81g′3 + 18g′2 + 36h′ : 4h′2)

= λ ·
(
24g + 6 : 9g2 : 81g3 + 18g2 + 36h : 4h2)

Since we are interested in genus 2 curves, assume h and h′ are both nonzero.
First note if g = 0, then g′ = 0 and we have h′ = λ3h and h′2 = λ5h2.

Comparing these shows λ = 1. So assume g, g′ are both nonzero. Then
comparing I4’s yields λ = εg′

g , where ε = ±1. Now comparing I2’s shows
4g′ + 1 = ε(4g′ + g′

g ). If ε = 1, then g = g′, i.e., λ = 1 which implies h = h′.
Thus assume ε = −1. Then g′ = − g

8g+1 and λ = 1
8g+1 . Examining the I6’s

and I10’s then gives h′ = g3+2h
2(8g+1)3 and

(h′)2 = (g3 + 2h)2

(8g + 1)6 = 4h2

(8g + 1)5 .

Using the assumption that g ̸= 0, the latter equality holds if and only if
32h2 − 4g2h − g5 = 0, i.e., h = g2

16(1 + u) where u2 = 1 + 8g ̸= 0. Note that
if g′ = g then g = −1

4 , λ = −1 so h′2 = −h2.
Hence for any (g, h) =

(
g, g2

16(1 ±
√

8g + 1)
)

with g ̸= 0, −1
8 , the pair

(g′, h′) =
(
− g

8g+1 , g3+2h
(8g+1)3

)
are distinct coordinates with the same Igusa–

Clebsch invariants, and these are the only pairs of distinct (g, h)-coordinates
with this property.

Now suppose (g, h) and (g′, h′) are distinct k-rational pairs giving the
same Igusa–Clebsch invariants as above, with u2 = 8g + 1. Expressing
g, g′, h, h′ in terms of u, we see that, for both (g, h) and (g′, h′), the right
hand side of (2.1) is in the k×-square class of −(43u2 + 22u + 43).

The above discussion yields the following.

Proposition 2.3. Let C be a genus 2 curve with RM-5 defined over k.
Then the Igusa–Clebsch invariants of C must be of one of the following
types:

(1) (I2 : I4 : I6 : I10) = (0 : 0 : 0 : 1) when
√

5 ∈ k;
(2) (I2 : I4 : I6 : I10) = (8 : 1 : 3 : s) for some nonzero s ∈ k such that

3125s2 − 8s is a square; or
(3) (I2 : I4 : I6 : I10) =

(
24g + 6 : 9g2 : 81g3 + 18g2 + 36h : 4h2) for a

k-rational solution (z, g, h) to (2.1) with h ̸= 0.
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The above three cases are mutually exclusive. In case (2), s is unique. In
case (3), the pair (g, h) is unique except in the case that

(g, h) =
(1

8(u2 − 1), 1
1024(u − 1)2(u + 1)3

)
for some u ∈ k× \ {±1} such that −(43u2 + 22u + 43) is a square, in which
case (g, h) and (g′, h′) =

(
− g

8g+1 , g3+2h
2(8g+1)3

)
are distinct elements of k2 that

both correspond to invariants(
48u2 + 16 : 36(1 − u)2(1 + u)2 :

72(1 − u)2(1 + u)2
(

9u2 + 2
u

+ 9
)

: 4(1 − u)4(1 + u)6
)

.

We remark that −(43u2 + 22u + 43) can be a square in a number field k
if and only if every infinite place of k is complex and the completion kv at
every place v above 3 is an extension of Q3 of even degree. In particular,
when k/Q is quadratic this happens if and only if k is imaginary quadratic
and non-split at 3.

Remark 2.4. If we consider the map

φ(u) =
(1

8(u2 − 1), 1
1024(u − 1)2(u + 1)3

)
,

then the pairs (g, h) and (g′, h′) yielding the same Igusa–Clebsch invariants
at the end of the proposition are just the points φ(u) and φ( 1

u), which both
lie on the curve X6 : 32h2−4g2h−g5 = 0 on Y . Noam Elkies explained to us
how his work in [5] implies that X6 is the image of the Shimura curve quo-
tient X(6)/⟨w6⟩ parametrizing principally polarized abelian surfaces with
quaternionic multiplication by the maximal order in the rational quater-
nion algebra of discriminant 6. Moreover, the involution on X6 induced
from u 7→ 1

u corresponds to the involution w2 = w3 of X(6)/⟨w6⟩.

3. Reduction of quadratic forms over polynomial rings

Here we will explain our approach to reducing quadratic forms over
polynomial rings, which we will then apply to Mestre conics. Say R =
k[t1, . . . , tm] is a polynomial ring over a field k of characteristic not 2. Let
Q(x1, . . . , xn) be a quadratic form over R. Thus we can write Q as

Q(x1, . . . , xn) =
∑
i,j

fi,j(t1, . . . , tm)xixj ,

where each Ai,j =fi,j(t1, ..., tm)∈R and Aj,i =Ai,j . Then A=(Ai,j)∈Mn(R)
is the Gram matrix for Q with respect to the standard basis {e1, . . . , en}.
Define the polynomial degree degk Q of Q to be max(i,j) deg Ai,j .
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Consider the following two reduction problems:

(i) reduce Q to an equivalent quadratic form Q′ over R with minimal
polynomial degree; or

(ii) reduce Q to a quadratic form Q′ over R which is equivalent over
the field of fractions F of R with minimal polynomial degree.

(By equivalence of quadratic forms, we mean isomorphism up to invertible
scaling.) In case (i), specializations of Q and Q′ to any t1, . . . , tm ∈ k will
be k-equivalent. In case (ii), specializations of Q and Q′ will merely be
k-equivalent for generic choices of t1, . . . , tm ∈ k.

It is really reduction problem (ii) that we are interested in, as it allows
for much greater possibilities for reducing our quadratic forms. Note that
merely diagonalizing Q over F and clearing denominators to obtain a form
over R is not typically helpful in reducing the polynomial degree. (Con-
versely, one cannot always diagonalize and maintain minimal polynomial
degree (see Example 3.1), but fortunately for our Mestre conic of interest,
our reduction process will also diagonalize the form.) We first describe the
types of reduction steps we will use.

(1) Simple degree reduction. By a k-linear change of basis, we may
assume the maximal degree of the fi,j ’s is attained for some of the
diagonal terms with j = i. Say fj0,j0 attains the maximal degree of
the fi,j ’s. Write v =

∑
hi(t1, . . . , tm)ei where each hi ∈ R. Search

for a choice of polynomials hi such that deg Q(v) < deg fj0,j0 and
hj0 has nonzero constant term. Now make the change of variable
corresponding to changing basis for the Gram matrix by replacing
ej0 in the standard basis with v. The resulting quadratic form will
have Q(v) as the coefficient of x2

j0 and so we have reduced the degree
of this diagonal term.

In our Mestre conic case, the degrees of the diagonal terms turn
out to control the polynomial degree of Q, so reducing degrees of
diagonal terms is sufficient for us. In general, to reduce the degree
of the xixj term, one could similarly search for vectors v, v′ with
polynomial coefficients such that deg B(v, v′) < degk Q, and then
change bases by replacing ei with v and ej with v′.

(2) Discriminant reduction. Let ∆ = ∆(t1, . . . , tm) ∈ R be the discrimi-
nant of Q. By changing variables over F , one may be able to remove
polynomial factors from ∆. For instance, Q1 : x2

1 + t1x1x2 + t2
1x2

2
has ∆ = −3t2

1, and the change of variables x2 7→ 1
t1

x2 gives the qua-
dratic form Q2 : x2

1 + x1x2 + x2
2 with discriminant −3. In general,

since an invertible change of variables preserves the square class of
the discriminant, we might hope to remove square factors appearing
in ∆.
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First divide out any polynomial factors of the gcd of the coeffi-
cients of Q. Now suppose g(t1, . . . , tm) ∈ R is irreducible over k of
positive degree such that g2 | ∆. Then we can attempt the following:
(a) Search for a polynomial vector v such that g2 | Q(v), with

at least one of the coefficients of v having a nonzero constant
term (e.g., one can take g(t1) = t1 and v = e2 with the above
example of Q1). Then we can try a change of variables corre-
sponding to replacing some basis vector ei with v

g where the
i-th coefficient of v has nonzero constant term. This change of
variables could introduce g in the denominator of some xixj

coefficients for j ̸= i. However, if we are fortunate, as always
happens in our Mestre conic reduction, then the resulting qua-
dratic form Q′ will still have coefficients in R, and we will have
removed a factor of g2 from the discriminant.

(b) Assume n ≥ 3, and if n > 3 that we have the higher divisi-
bility condition gr | ∆ for some r > n

2 . Then one can look for
F -linearly independent vectors v1, . . . , vr ∈ Rn such that for
each 1 ≤ i ≤ r, g | Q(vi) but g ∤ vi (i.e., g does not divide ev-
ery polynomial coefficient of vi). Let j1, . . . , jn−r be such that
ej1 , . . . , ejn−r , v1, . . . , vr is a basis of F n. Then the change of
basis {e1, . . . , en} to {gej1 , . . . , gejn−r , v1, . . . , vr} transforms Q

to a quadratic form Q′ with an extra factor of g2(n−r) in its
discriminant, but now each coefficient of Q′ is divisible by g.
Thus the F -equivalent form g−1Q′ has coefficients in R, and
we will have removed a factor of g2r−n from ∆.

Simple degree reduction preserves R-equivalence, whereas discriminant
reduction only preserves F -equivalence. Our strategy is to try simple degree
reduction, then discriminant reduction, and repeat until the discriminant
is squarefree, and then finish with simple degree reduction.

First we give a baby example of simple degree reduction (1). Below and
in the next section, e1, . . . , en will denote the standard basis of the relevant
vector space, and Ai will denote the Gram matrix for Qi with respect to
{e1, . . . , en}.

Example 3.1. Let R = Q[t], and let {e1, e2} be the standard basis for
M = R2. Let Q1 = Q be the quadratic form on M given by

Q1(x, y) =
(
t4 + 1

)
x2 +

(
2t3 + 2t

)
xy +

(
t2 − 1

)
y2.

We can perform simple degree reduction as follows. We want to lower the
degree of the x2-coefficient, so let v = a1e1 + (a2 + b2t)e2. Then

Q1(v) = (a1 + b2)2t4 + 2a2(a1 + b2)t3

+
(
a2

2 + 2a1b2 − b2
2
)
t2 + 2(a1 − b2)a2t +

(
a2

1 − a2
2
)
.
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Hence setting b2 = −a1 makes Q1(v) a degree 2 polynomial in t with t2-
coefficient (a2

2 − 3a2
1), which we cannot make 0 for nontrivial choices of

a1, a2 ∈ Q. However, we can choose to make either the t1- or t0-coefficient 0
by taking a2 = 0 or a2 = a1. Let us take v1 = e1 − te2 so Q1(v1) = 1 − 3t2,
and let A2 be the Gram matrix for Q1 with respect to {v1, e2}. Let Q2
be the associated quadratic form, i.e., the quadratic form which has Gram
matrix A2 with respect to {e1, e2}. In other words, Q2 is obtained from Q1
by the change of variables x 7→ x, y 7→ −tx + y. Then

Q2(x, y) =
(
1 − 3t2

)
x2 + (4t) xy +

(
t2 − 1

)
y2.

Note that Q2 has discriminant 12t4 + 4, so we cannot hope to reduce the
degree any further over R.

We remark that straightforward diagonalization of Q1 gives
(
t4 + 1

)
x2 +

(1−3t4)
(t4+1) y2 and for Q2 gives

(
1 − 3t2)x2 + 3t4+1

3t2−1y2. Since the discriminant is
irreducible over Q, one cannot diagonalize over R and have polynomial
coefficients of degree < 4.

A slightly more interesting example of (1) is given in the reduction of
the Mestre conic from Q1 to Q2 in Section 4.2. Examples of (2a) are also
given by the reductions from Q2 to Q3 and Q3 to Q4 in the same section.
Then the reduction from Q5 to Q6 gives an example of (2b).

All of these types of reduction involve finding polynomials hi(t1, . . . , tm)ei

so that the coefficients of Q(v) satisfy certain conditions (e.g., no coefficients
above a certain degree, or whatever relations are imposed upon the coeffi-
cients by a divisibility condition). In general, this may be computationally
challenging, as it involves finding simultaneous solutions of many quadratic
equations in many variables to find suitable hi’s.

As we do not have a general algorithm that will provably minimize the
polynomial degree, rather than trying to formulate a precise reduction al-
gorithm, we will just describe a few techniques which can be used to lessen
the computational difficulties of these reduction steps in practice. The first
two techniques apply to both (1) and (2). The subsequent techniques are
just for discriminant reduction.

• Inductively try more complicated polynomial combinations of basis
vectors. We begin by guessing certain forms for the polynomial co-
efficients hi of v. Each term of some hi with an unknown coefficient
adds another variable to solve for in finding a Q(v) satisfying our
desired criteria. E.g., in Example 3.1 we need to make certain ex-
pressions in the unknown coefficients a1, a2, b2 zero to reduce the
degree. To minimize the number of unknowns, we begin by guess-
ing as simple forms for the hi’s as we can hope for, and then try
adding more terms as needed.
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In Example 3.1, since we wanted to remove t4 from the coefficient
of x2, and the coefficient of y2 is degree 2 in t, it makes sense to con-
sider constant multiples h1(t) of e1 plus linear multiples h2(t) of e2
for v. In fact, we might have first tried h1(t) = a1 and h2(t) = b2t,
and then if this were not sufficient to remove the t4 term, then we
would try including a constant term in h2(t). If this were still un-
successful, we could try letting h1(t) be a linear polynomial, which
would necessitate h2(t) having degree 3. While this is of course not
needed in such simple examples as Example 3.1, it may be nec-
essary in the presence of additional variables (both more xi’s and
more tj ’s).

• Look for coefficient conditions that factor. Say for instance that
m = 2, and we guess linear forms hi(t1, t2) = ai + bit1 + cit2 for
each hi. Then our desired conditions on Q(v) may be something like
deg Q(v) < 4 or (t1t2 + 1)2 | Q(v). In the former case, say, we want
to make each tj

1t4−j
2 term of Q(v) vanish. That gives 5 quadratic

equations in 3n unknowns. How can we solve this?
If our quadratic form is meant to reduce, we might hope it does

for algebraically simple reasons. If we are fortunate, then some of
these quadratic equations we need to solve may factor, as in the case
of the t4-coefficient of Q1(v) in Example 3.1. If we are even more
fortunate, this forces one of our unknowns to be a certain linear
combination of other unknowns, and we can reduce the number of
unknowns and repeat. We are fortunate in this way in the case of
the Mestre conic we reduce in Section 4.2.

• Order of discriminant factor removal. In removing discriminant fac-
tors gr, it may be easier to remove certain factors before others. On
one hand, it may help to try to start with factors g2 where g is
of small degree, or g only involves a small number of the variables
t1, . . . , tm, to more easily find hi such that g2|Q(v) or g|Q(v). For
instance, if m = 2, g(t1, t2) = t1 and we want g2|Q(v), then any
ti
1tj

2 term in Q(v) with i ≤ 1 must vanish. However, the main is-
sue we encountered in reducing our Mestre conic was that, at a
given stage, attempting to remove one factor may lead to quadratic
coefficient equations which factor, but attempting to remove other
factors does not.

Thus for (2) we propose a process roughly of the following form.
Try the simplest possible choices for hi’s for removing different fac-
tors gr of the discriminant. Then pursue the ones that lead to linear
relations among the unknowns, inductively adding more terms, and
repeat until a factor is removed or a bound for the complexity of
the hi’s is reached. This approach is what led us the (otherwise



508 Alex Cowan, Kimball Martin

unexplained) order of removing discriminant factors we use in Sec-
tion 4.2.

• Change variables to remove constant terms. If we want to remove
a factor of say (t1 − 3)2 from the discriminant, writing down the
divisibility conditions is a bit easier in practice if we first change the
polynomial variables t1 7→ t1 + 3, so one is asking about removing
a factor of t2

1 from a transformed form Q′. For an example, see the
reduction of Q6 in Section 4.2.

• Examine minors. If some factor gr divides the discriminant of Q, de-
pending on n and r, it may not be clear whether we should try (2a)
or (2b). In this case, one can examine the (determinant) minors
of the Gram matrix. If some power of g divides sufficiently many
minors, this suggest that (2b) may be possible.

Furthermore, if many of the diagonal minors are divisible by g
then we can try looking for vectors vi as in (2b) whose projection
to ej is 0, for each j in a set corresponding to the minors. E.g., if
r = n−1 and each diagonal minor is divisible is g, then we can look
for vectors v1, . . . , vn−1 such that the projection of vi to ei is 0 for
each i. This helps reduce the number of unknowns we need to use,
and is used in the reduction of Q′

6 in Section 4.2.

4. Reducing the Mestre conic

4.1. Mestre’s construction of genus 2 curves. Suppose k ⊆ C, and
(I2, I4, I6, I10) ∈ k4 are Igusa–Clebsch invariants for a genus 2 curve C/C
without extra automorphisms, i.e., AutC(C) ≃ C2. (In this section only, we
use C rather than C to denote a genus 2 curve to avoid conflict with the
notation for Clebsch invariants.) In [12], Mestre gave a method to determine
whether C is defined over k, and if so, find a model. Mestre worked in terms
of Clebsch invariants (A, B, C, D) rather than Igusa–Clebsch invariants.
One can translate between these two sets of invariants via

I2 = −120A, I4 = 90(−8A2 + 75B), I6 = 540(16A3 − 200AB + 375C)
I10 = −162(384A5 − 6000A3B + 18750AB2 − 10000A2C

+ 37500BC + 28125D).

Mestre defines two elements L and M of Q(A, B, C, D)[x1, x2, x3] as

L =
∑

1≤i,j≤3
Lijxixj and M =

∑
1≤i,j,k≤3

Mijkxixjxk,



Genus 2 curves with RM-5 509

with

L11 = 2C + 1
3AB L22 = D

L12 = 2
3(B2 + AC) L23 = 1

3B(B2 + AC) + 1
3C

(
2C + 1

3AB

)
L13 = D L33 = 1

2BD + 2
9C(B2 + AC),

M111 = 2
9
(
A2C − 6BC + 9D

)
M112 = 1

9
(
2B3 + 4ABC + 12C2 + 3AD

)
M113 = 1

9

(
AB3 + 4

3A2BC + 4B2C + 6AC2 + 3BD

)
M122 = 1

9

(
AB3 + 4

3A2BC + 4B2C + 6AC2 + 3BD

)
M123 = 1

18

(
2B4 + 4AB2C + 4

3A2C2 + 4BC2 + 3ABD + 12CD

)
M133 = 1

18

(
AB4 + 4

3A2B2C + 16
3 B3C + 26

3 ABC2

+ 8C3 + 3B2D + 2ACD

)
M222 = 1

9

(
3B4 + 6AB2C + 8

3A2C2 + 2BC2 − 3CD

)
M223 = 1

18

(
−2

3B3C − 4
3ABC2 − 4C3 + 9B2D + 8ACD

)
M233 = 1

18

(
B5 + 2AB3C + 8

9A2BC2 + 2
3B2C2 − BCD + 9D2

)
M333 = 1

36

(
−2B4C − 4AB2C2 − 16

9 A2C3 − 4
3BC3

+ 9B3D + 12ABCD + 20C2D

)
,

and

Lij = Lji, Mijk = Mjik = Mikj .

The Mestre conic and the Mestre cubic associated to C (or equivalently,
the Clebsch or Igusa–Clebsch invarants) are defined to be the projective
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varieties L = 0 and M = 0 over Q(A, B, C, D). In a slight abuse of ter-
minology, we will occasionally say that L itself is the Mestre conic, and
similarly for M .

Theorem 4.1 ([12]). Suppose (A, B, C, D) ∈ k4 are the Clebsch invariants
of a genus 2 curve C/C without extra automorphisms. Then C is defined
over k if and only if the associated the Mestre conic L = 0 in P2(k) has a
k-rational point.

If the Mestre conic associated to C/C has k-rational points then those
rational points are parameterized by a single projective parameter which
we will call x. We will write xi = xi(x) with i = 1, 2, 3 to denote this
parametrization.

Theorem 4.2 ([12]). Suppose (A, B, C, D) ∈ k4 are the Clebsch invariants
of a genus 2 curve C/C without extra automorphisms and the associated
Mestre conic L = 0 has a k-rational point. Then a model for C over k is
given by

y2 = M(x1(x), x2(x), x3(x)),
where M = 0 is the associated Mestre cubic.

Finally, we elaborate on the condition that C/C has no extra automor-
phisms. The possibilities for extra automorphisms of genus 2 curves were
determined by Bolza. The reduced automorphism group of Autred

C (C) is
AutC(C) modulo the hyperelliptic involution. If C has extra automorphisms,
then Autred

C (C) either contains an involution or has order 5. The latter case
happens exactly when the (Clebsch or Igusa–Clebsch invariants) of C are
(0 : 0 : 0 : 1) ∈ P3

1,2,3,5.
As explained in [12], the Mestre conic attached to a genus 2 curve C/C

is singular if and only if the reduced automorphism group of C contains an
involution. Thus the condition that C/C has no extra automorphism can
be restated as: the Mestre conic L = 0 is nonsingular and I2, I4 and I6 are
not all 0.

4.2. The general case. Here we study the Mestre conic L associated
to a point (z, g, h) of Y , i.e., to Igusa–Clebsch invariants (24g + 6 : 9g2 :
81g3 + 18g2 + 36h : 4h2). After scaling by 24 · 37 · 514, the Mestre conic
L :

∑3
i,j=1 Lijxixj = 0 defined above has coefficients

L11 = 189843750(−96g3 − 337g2 − 108g + 400h − 9)
L12 = −2531250(−144g4 − 1299g3 − 754g2 + 2000gh − 144g + 500h − 9)
L13 = L22 = −3750(1944g5 + 40905g4 + 36990g3 − 68400g2h + 11835g2

− 43200gh + 50000h2 + 1620g − 5400h + 81)
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L23 = 450(324g6 + 14931g5 + 19395g4 − 25800g3h + 9105g3 − 30100g2h

+ 2020g2 − 8400gh + 10000h2 + 216g − 700h + 9)
L33 = −(2916g7 + 283338g6 + 499041g5 − 496800g4h + 319140g4

− 915300g3h + 525000g2h2 + 101160g3 − 426300g2h + 500000gh2

+ 17214g2 − 76800gh + 100000h2 + 1512g − 4800h + 54)
The discriminant of L, by which we mean the determinant of the Gram
matrix, is then

disc(L) = 27 · 33 · 522 · h2(8h − 9g2)2z2.

Set Q1 = L and let A1 be the Gram matrix of Q1 with respect to the
standard basis {e1, e2, e3}. We will now perform a series of reductions on
the Mestre conic using the techniques described in the previous section.

Note that the x2
1, x2

2 and x2
3 coefficients of L = Q1 are respectively

degree 3, 5 and 7 polynomials in g (and degrees 1, 2 and 2 in h). First we
want to try to reduce the degree in g of the x3

3 coefficient. Consider v1 =
a1g2e1 + a2ge2 + e3, where a1, a2 denote rational variables. The Q1(v1) is
degree 7 in g, and the g7-coefficient is −2916(2500a1−50a2+1)2. So set a2 =
50a1 + 1

50 . This makes the g6-coefficient of Q1(v1) equal −3554

2 (1250a1 −1)2.
Taking a1 = 1

1250 gives

Q1(v1) = −2916g5 − 24354g4 + 10800g3h − 1500000g2h2

− 21483g3 + 78000g2h + 40000gh2 − 14259
2 g2

+ 39000gh − 100000h2 − 1026g + 4800h − 54,

where v1 = 1
1250g2e1 + 3

50ge2 + e3. Thus we now consider the Gram matrix
A2 for Q1 with respect to the basis {e1, e2, v1}. Let Q2 be the resulting qua-
dratic form from this change of variables, i.e., Q2(v) = tvA2v. In particular,
the x2

3-coefficient of Q2 is Q1(v1).
The x2

1, x2
2 and x2

3 coefficients of Q2 are degrees 3, 5 and 5 in g (and no
other coefficient has higher degree). We may try to reduce the coefficient
degrees for x2

2 and x2
3 by replacing e2 and e3 with vectors of the form

a1ge1 +e2 and b1ge1 +e3. In this way, one to reduce Q2 to a quadratic form
whose coefficients are elements of Q[g, h] of degree ≤ 4, but there are no
obvious ways to further reduce the degree from there, and this reduction
does not make the next step any easier, so we will not do this.

Instead, we will next remove a polynomial factor from the discriminant
of Q2, which is a rational multiple of h2(8h − 9g2)2z2. The h2 factor has
the lowest degree, so we will begin with that. We will find a vector v2 =
(a1 + b1g)e1 + a2e2 + a3e3 such that Q2(v2) is divisible by h2. This is
essentially the simplest polynomial combination of standard basis vectors
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where we can hope to kill off all of the gj terms in Q2(v2), and it turns out
to be sufficient.

The constant term of Q2(v2) is −54 (5625 a1 − 75 a2 + a3)2, so we set
a3 = 75a2 − 5625a1. Now we kill off the highest degree gj terms. Then the
g5-coefficient of Q2(v2) is −1822500(225a1 − a2 − 100b1)2. Set a2 = 225a1−
100b1. Then the g4-coefficient is −118652343750(3a1 − b1)2. Setting b1 =
3a1 yields Q2(v2) is a multiple of h2. Specifically, take a1 = 2−2 · 3−2 · 5−6,
and then Q2(v2) = −2(300g2 + 2g + 3)h2, where v2 = 1

562500((1 + 3g)e1 −
75e2 −11250e3). Let A3 be the Gram matrix of Q2 with respect to the basis
{e1, e2, 1

hv2}, and Q3 the associated quadratic form. So Q3 is not Q[g, h]-
equivalent to Q2, but after specializing to any g, h ∈ Q with h ̸= 0, the
forms Q2 and Q3 are Q-equivalent.

Now we will remove the (8h − 9g2)2 factor from the determinant. The
degrees in g of the x2

1, x2
2 and x2

3 coefficients of Q3 are 3, 5 and 3. Let
v3 = (a1 + b1g)e1 + a2e2 + (a3 + b3g)e3. We want Q3(v3) to be a multiple
of (8h − 9g2)2. To kill the constant term of Q3(v3), we need to set a3 =
225a2 − 16875a1. Then to kill the h-coefficient, we need a2 = 75a1. Then
to kill the g2-coefficient, b3 = 67500a1 − 16875b1. At this point there are
only nonzero g5, g4 and g2h and h2 terms, so for Q3(v3) to be a multiple
of (8h − 9g2)2 it needs to be a rational multiple and the g5 term must
vanish. This is accomplished with b1 = 3

2a1. In summary v3 = a1((1 +
3
2g)e1 + 75e2 + 84375

2 ge3). Taking a1 = 2 · 3−1 · 5−6 then gives Q3(v3) =
−30(8h − 9g2)2. Now let A4 be the Gram matrix of −Q3 with respect to
the basis { e1

1875 , v3
8h−9g2 , e3}, and Q4 the associated quadratic form,

Q4 :
(
5184g3 + 18198g2 + 5832g − 21600h + 486

)
x2

1

+ (612g + 108) x1x2 + 30x2
2 +

(
288g2 + 684g − 4000h + 108

)
x1x3

+ (−240g + 12) x2x3 +
(
600g2 + 4g + 6

)
x2

3.

Specializing g, h to any rationals such that h ̸= 0 and 8h ̸= 9g2, Q4 is
Q-equivalent to the original Mestre conic L. The discriminant of Q4 is
−9600z2.

Now there is no obvious way to further reduce the degree, and indeed, it
seems that there is not much further simplification that can be done over
Q(g, h). The reduction we perform next will not preserve Q-equivalence of
quadratic forms (even assuming z ̸= 0) if g, h are rational but z is not.

Let Q5 be the quadratic form over Q[m, n] obtained by converting Q4
from (g, h) to (m, n) via (2.2). Let A5 be the Gram matrix of Q5 with
respect to the standard basis. The coefficients of Q5 are elements of Q[m, n]
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of degree ≤ 6, and the discriminant is

−96
25n2

(
m2 − 5n2

)2 (
m2 − 5n2 − 5

)2
.

Let v5 = a1e1 +a2e2 +a3e3 be a rational linear combination of the standard
basis vectors. Then Q5(v5) has constant term 3

250(63a1 − 50a2 − 70a3)2.
Setting a3 = 1

70(63a1 − 50a2), then gives that Q5(v5) = p1(m, n)(m2 − 5n2)
for some polynomial p1(m, n) with constant term 5(441a1 − 50a2)2. Hence
we set a1 = 50 and a2 = 441 (which makes a3 = −270) to get

Q5(v5) = 30
(
16m2 − 80n2 + 2729

)(
m2 − 5n2

)2
.

Let A6 be the Gram matrix of Q5 with respect to the basis { v5
m2−5n2 , e2, e3},

and Q6 the associated quadratic form, which has polynomial degree 4 and
discriminant −9600n2(m2 − 5n2 − 5)2.

Next one might try to remove the n2 factor from the discriminant, but
evaluating Q6 on simple combinations such as v = (a1+b1m)e1+a2e2+a3e3
leads to polynomials without linear factors in a1, a2, a3, b1 for the coeffi-
cients of powers of m. So it is not immediately clear how to find some v
such that Q6(v) is divisible by n2. On the other hand, the diagonal minors
of A6 are divisible by (m2 −5n2 −5) which suggests we can remove a factor
of (m2 − 5n2 − 5) from the discriminant by working with combinations of
just 2 of the standard basis vectors at a time.

To make it easier to look for multiples of (m2 − 5n2 − 5), we first make
the change of variables m = m + 5, n = n + 2. This changes (m2 − 5n2 − 5)
to (m2 − 5n2 + 10m − 20n), which has no constant term. Let Q′

6 be the
resulting quadratic form. Now one can look for rational linear combinations
v of pairs of the basis vectors e1, e2 and e3 such that Q′

6(v) has no constant
term. In particular, u1 = e1 − 53e2 and u2 = 11e2 − 15e3 work and both
Q′

6(u1) and Q′
6(u2) are divisible by (m2 − 5n2 + 10m − 20n). Let A′

7 be
the Gram matrix for 1

6(m2 − 5n2 + 10m − 20n)−1Q′
6 with respect to the

basis {u1
4 , u2

5 , (m2 − 5n2 + 10m − 20n)e2}, and Q′
7 the resulting quadratic

form. Let Q7 and A7 denote the result of reverting Q′
7 and A′

7 back to our
original variables m = m − 5, n = n − 2. Then Q7 is:

Q7 : 5x2
1 + 2mx1x2 +

(
m2 − 5n2 − 4

)
x2

2

+
(
4m2 − 20n2 − 20

)
x2x3 +

(
5m2 − 25n2 − 25

)
x2

3.

The discriminant of Q7 is −25n2(m2 − 5n2 − 5).
Now we can use a vector of the form v = (a1 + b1m)e1 + a2e2 + a3e3 to

removed the n2 factor from the determinant. Explicitly, by zeroing out of
coefficients of powers of m in Q7(v), we find that Q7(v7) = −25n2 where
v7 = me1 − 5e2 + 2e3. Let A8 be the Gram matrix for 1

5Q7 with respect to
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the basis {e1, v7
n , e3}. Then the associated quadratic form is

Q8 : x2
1 − 5x2

2 + (m2 − 5n2 − 5)x2
3.

For any m, n ∈ Q such that disc L ̸= 0 the form Q8 ∈ Q[x1, x2, x3] is similar
to Q1. Thus for such m, n, the Mestre conic L has a rational point if and
only if ±(m2 − 5n2 − 5) is a norm from Q(

√
5). (Note that −1 is a norm

from Q(
√

5).) Consequently, the analogue holds for any extension k ⊇ Q.

4.3. Points at infinity. Here we consider k-rational points on Y−(5) not
coming from affine coordinates (z, g, h) ∈ Y . By Proposition 2.3, if such a
point corresponds to a genus 2 curve C, there are two possibilities for the
Igusa–Clebsch invariants:

(1) (0 : 0 : 0 : 1) when
√

5 ∈ k, and
(2) (8 : 1 : 3 : s) where s ∈ k× and 3125s2 − 8s is a square in k.

We wish to determine when C can be defined over k in these cases. In
case (1), C is already defined over Q with a model y2 = x5 − 1. So we only
need to analyze case (2).

Let us consider the Mestre conic for Igusa–Clebsch invariants as in (2).
After replacing x1 with 2−1 · 32 · 53x1, x2 with 2 · 33 · 55x2 and x3 with
22 · 34 · 57x3, the Gram matrix A1 for the Mestre conic Q1 = L is

A1 =

 −1 2 −3125s + 2
2 −6250s + 4 4

−3125s + 2 4 −43750s + 4


Then

det A = 2 · 510(3125s − 8)s2.

Then Q1(a1e1+a2e2+a3e3) has constant term −(a1−2a2+2a3)2. Now let-
ting A2 be the Gram matrix with respect to the basis {e1,
1
25(2e1 + e2), 1

125(2e1 − e3)}, we see

A2 =

 1 0 25s
0 −10s 2s

25s 2s −2s

 .

Scale A2 by s and replace x2 and x3 with x2/s and x3/s, respectively, to
get the equivalent Gram matrix

A3 =

 −s 0 25s
0 −10 2

25s 2 −2


with quadratic form

Q3 : −sx2
1 − 10x2

2 + 50x1x3 + 4x2x3 − 2x2
3



Genus 2 curves with RM-5 515

This has determinant 2s(3125s − 8), and the associated quadratic form is
Q-equivalent to the diagonal form

2x2
1 + 5sx2

2 − (3125s − 8)x2
3.

Assuming that s(3125s − 8) is a square in k×, this form is k-equivalent to
the forms

2x2
1 + 5sx2

2 − sx2
3 ∼ 2sx2

1 − (x2
3 − 5x2

2).

Clearly, this has a rational point if and only if 2s is a norm from k(
√

5)
(which is automatic if

√
5 ∈ k).

5. Moduli for rational curves

Here we state our main result and complete the proof.

Theorem 5.1. Let C be a genus 2 curve with RM-5 defined over k. Then
the Igusa–Clebsch invariants (I2 : I4 : I6 : I10) ∈ P3

1,2,3,5 are of one of the
following forms:

(1)
(
24g + 6 : 9g2 : 81g3 + 18g2 + 36h : 4h2) for a k-rational solution

(z, g, h) to (2.1) such that such that 30g + 4 is a norm from k(
√

5)
and hz(8h − 9g2) ̸= 0;

(2) (8 : 1 : 3 : s) where s ∈ k× such that s(3125s − 8) is a square in k×

and 2s is a norm from k(
√

5);
(3) (12(4g + 1) : 36g2 : 36(18g + 13)g2 : 162g4) where g ∈ k× such that

−3(128g + 9) is a square in k;
(4)

(
20(2m2 − 3) : 25(m − 3)2(m + 3)2 : 5(m + 3)2(75m4 − 378m3 +

428m2+474m−711) : 8(m−2)4(m+3)6)
)

where m ∈ k or m =
√

5;
(5) (8 : 1 : 3 : 8

3125);
(6) (0 : 0 : 0 : 1) if

√
5 ∈ k.

Cases (1) and (2) correspond to Autred
C (C) = {1}. Cases (3)–(5) corre-

spond to Autred
C (C) containing an involution, and case (6) corresponds to

# Autred
C (C) = 5.

Conversely, if C is a genus 2 curve over C with Igusa–Clebsch invariants
in one of the forms (1)–(6), then C can be defined over k and C has poten-
tial RM-5. Moreover, in case (1), if EndC(Jac(C)) is commutative, then C
has RM-5 defined over k.

In this theorem, by “a norm from k(
√

5)” we mean in the image of
the relative norm map from k(

√
5) to k. Thus such a norm condition is

automatically satisfied if
√

5 ∈ k.
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In Section 5.1, we reformulate condition (1) in terms of (m, n), which
removes the need to check (2.1) to determine the existence of a k-rational
point (z, g, h) ∈ Y given g, h ∈ k.

Remark 5.2. Suppose k = Q now, and that C is a genus 2 curve over Q
with Igusa–Clebsch invariants of one of the forms (1)–(5) in the theorem.
We would like to be able to say when C (or a twist) actually has RM-
5 defined over k. Write A = Jac(C). Generically, EndC(A) ≃ Z[1+

√
5

2 ] in
case (1) so the RM-5 will be defined over Q, but there seems to be no
simple way to describe the moduli points where A has (split or non-split)
quaternionic multiplication over C. We do not know whether the RM-5
must be defined over Q if EndC(A) is not commutative.

In case (2), we also expect that generically EndC(A) ≃ Z[1+
√

5
2 ], and the

RM will be defined over Q. However we have not checked that the points
satisfying (2) always correspond rational points on Y−(5) so cannot apply
Proposition 2.1. Still, one can check in examples for case (2), e.g., s = 2

25 ,
that one gets a genus 2 curve with RM-5 defined over Q.

In cases (3)–(5), EndC(A) is an order in a 2×2 matrix algebra, hence not
commutative, and Proposition 2.1 does not apply. Here C has more than
just quadratic twists, and one twist may have RM-5 defined over Q, and
another may not. For instance if C : y2 = x6−x4+4x2−1, which has Igusa–
Clebsch invariants (88 : 169 : 28561 : 57122) corresponding to g = −13

96 in
case (3), then C has RM-5 defined over Q, but the twist corresponding
to x 7→

√
−1x does not. This may be checked, for instance, by computing

Galois groups and using Proposition 2.2. We do not know whether there
will always be some twist with RM-5 defined over Q in these cases.

Proof. Suppose C is a genus 2 curve over C with RM-5 and Igusa–Clebsch
invariants (I2 : I4 : I6 : I10) defined over k. If C as well as the RM-5 is
defined over k, then by Proposition 2.3, we know that the Igusa–Clebsch
invariants must be of the form (0 : 0 : 0 : 1) (only if

√
5 ∈ k), (8 : 1 : 3 : s)

for s ∈ k× such that 3125s2 − 8s is a square in k, or they correspond to
a k-rational point (z, g, h) ∈ Y with h ̸= 0, so we may assume our Igusa–
Clebsch invariants take one of these forms.

As explained earlier, C has a model over k if and only if the Mestre conic
has a k-rational point or C has extra automorphisms. Thus, to prove both
directions of the theorem, it will suffice to show that:

(i) when C has no extra automorphisms, the Mestre conic has a k-
rational point exactly in cases (1) and (2); and

(ii) the Igusa–Clebsch invariants from Proposition 2.3 corresponding
to curves with extra automorphisms are described exactly by
cases (3)–(6).
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If the Igusa–Clebsch invariants are (0 : 0 : 0 : 1), then C has a model
over Q given by y2 = x5 − 1, and the RM-5 is defined over Q(

√
5). This

verifies the theorem (in both directions) for these Igusa–Clebsch invariants,
i.e., case (6).

Assume now that the Igusa–Clebsch invariants come from a k-rational
point (z, g, h) ∈ Y with h ̸= 0.

First suppose z(8h−9g2) ̸= 0, so that the Mestre conic is nonsingular and
C has no extra automorphisms. Then the reduction we performed over Q in
Section 4.2 implies that the Mestre conic has a k-rational point if and only if
30g+4 = m2 −5n2 −5 is a norm from k(

√
5), except in the two special cases

g ∈ {− 3
10 , − 2

15}, where there is not a one-to-one correspondence between
the (z, g, h) and (m, n) coordinates. In Section 5.1 below, we check that one
has a k-rational (z, g, h) ∈ Y for g ∈ {− 3

10 , − 2
15} if and only if

√
5 ∈ k, and

in this case the Mestre conic always has a k-rational point. This, together
with Proposition 2.1, proves (both directions of) the theorem in case (1).

For the cases where the Mestre conic is singular, the k-rational (z, g, h) ∈
Y with z(8h−9g2) = 0 correspond to Igusa–Clebsch invariants of the forms
in cases (3) and (4). The details are given in Section 5.2.

Finally, suppose the Igusa–Clebsch invariants are of the form (8 : 1 :
3 : s), where s ∈ k× and 3125s2 − 8s is a square in k. Both directions of
the theorem in case (2) follows from the reduction of the Mestre conic in
Section 4.3. Case (5) follows from Section 5.2. □

5.1. Translation to (m, n)-coordinates. Here we explain how to trans-
late Theorem 5.1 into the rational model P2

m,n for Y−(5), and treat the
exceptional cases g ∈ {− 3

10 , − 2
15} in the proof of Theorem 5.1.

Recall that there is a one-to-one correspondence between k-rational co-
ordinates (z, g, h) ∈ Y and k-rational coordinates (m, n) ∈ A2 such that
g = m2−5n2−9

30 ̸∈ {− 3
10 , − 2

15}.
If g = − 3

10 , the equation for Y becomes z2 = 4
3125(3125h − 27)2. Hence

there are no k-rational points (z, − 3
10 , h) on Y if

√
5 ̸∈ k. If

√
5 ∈ k, then for

all h ∈ k, there is a k-rational (z, − 3
10 , h) ∈ Y . Here the associated Mestre

conic is nonsingular if h ̸∈ {0, 81
800 , 27

3125}, and always has a k-rational point.
For instance, in Sage we find the k-rational point (64000

81 h2 − 2368
75 h + 284

3125 :
128
15 h − 51

1250 : h + 9
1000).

If g = − 2
15 , the equation for Y becomes z2 = 4

3125(3125h−2)2. Similarly,
there are no k-rational points (z, − 2

15 , h) on Y if
√

5 ̸∈ k, but if
√

5 ∈ k,
then there is a k-rational (z, − 2

15 , h) ∈ Y for all h ∈ k. The associated
Mestre conic is nonsingular if h ̸∈ {0, 1

50 , 2
3125} Again, one may check in

Sage that the Mestre conic always has a rational point.
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These calculations complete the proof of Theorem 5.1 in case (1). Con-
sequently, we may alternatively formulate case (1) of the theorem as saying
that (I2 : I4 : I6 : I10) is of one of the following forms:

(1a) (
−20(−2m2 + 10n2 + 3) : 25(−m2 + 5n2 + 9)2 :(5.1)
−5(−75m6 + 1125m4n2 − 5625m2n4 + 9375n6 − 72m5

+ 720m3n2 − 1800mn4 + 1165m4 − 11650m2n2 + 29125n4

+ 360m3 − 1800mn2 − 5985m2 + 29925n2 + 6399) :
8(m5 − 10m3n2 + 25mn4 + 5m4 − 50m2n2

+ 125n4 − 5m3 + 25mn2 − 45m2 + 225n2 + 108)2)
where (m, n) ∈ k2 such that m2 − 5n2 − 5 is a norm from k(

√
5),

n(m2−5n2)(m2−5n2−5) ̸= 0 and 8m5−80m3n2+200mn4−85m4+
850m2n2 −2125n4 −40m3 +200mn2 +1890m2 −9450n2 −9261 ̸= 0;

(1b) (−12 : 81 : 36000h − 567 : 400000h2) if
√

5 ∈ k and h ∈ k \
{0, 81

800 , 27
3125}; or

(1c) (14 : 4 : 4500h + 16 : 12500h2) if
√

5 ∈ k and h ∈ k \ {0, 1
50 , 2

3125}.
In particular, when k = Q, we can deduce the following precise inter-

pretation of Theorem 1.1 from Theorem 5.1: The set of all genus 2 curves
C with RM-5 over Q up to C-isomorphism such that Autred

C (C) = {1}
excluding the 1-parameter family in case (2) correspond to points (m, n)
with Igusa–Clebsch invariants as in (1a). Moreover, each tuple of Igusa–
Clebsch invariants as in (1a) comes from such a curve, except possibly
when these Igusa–Clebsch invariants lead to a non-commutative endomor-
phism algebra, in which case we only know that such (m, n) corresponds to
a curve defined over Q with potential RM-5. Further, distinct points (m, n)
as in (1a) correspond to distinct C-isomorphism classes of genus 2 curves
by Proposition 2.3.

5.2. Singularities of the Mestre conic. Here we describe the k-rational
Igusa–Clebsch invariants of types (2) and (3) in Proposition 2.3 for which
the Mestre conic is singular. By [3], these invariants always yield a genus 2
curve defined over k. This will complete the proof of Theorem 5.1.

First, as in Section 4.2, let L be the Mestre conic associated to a (z, g, h) ∈
Y . Then the Mestre conic is singular if and only if h = 0, h = 9g2

8 or z = 0.
We remark that the curve h = 0 on Y is given by z2 = −54(6g + 1)2g3,

and the k-rational points are parametrized by (g, 0) where −6g is a square
in k. However, h = 0 means that I10 = 0, so these points do not correspond
to genus 2 curves.
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The curve h = 9g2

8 on Y is given by z2 = −27
16(128g + 9)g2(3g − 4)2, and

the k-rational points are parametrized by (g, 9g2

8 ) where −3(128g + 9) is a
square in k. This completes case (3) of the theorem.

Now suppose z = 0, which means that either g ∈ {− 3
10 , − 2

15} or n = 0. If
g = − 3

10 or g = − 2
15 , then h = 27

3125 or h = 2
3125 , respectively, and these are

clearly k-rational points on Y . The corresponding Igusa–Clebsch invariants
are (20 : 225 : 1185 : −384) and (70 : 100 : 2360 : 16), respectively. As
noted in [6], the k-rational points on Y with n = 0 are given by

(z, g, h) =
(

0,
m2 − 9

30 ,
(m − 2)2(m + 3)3

12500

)
, m ∈ k.

Viewing this as a map from points (m, 0) to (0, g, h), note that m = 0 and
m = ±

√
5 respectively map to (g, h) = (− 3

10 , 27
3125) and (− 2

15 , 2
3125). This

gives case (4) of the theorem.
Now we consider the “points at infinity” discussed in Section 4.3. The

Mestre conic associated to Igusa–Clebsch invariants (8 : 1 : 3 : s) for s ∈ k×

is singular if and only if s = 8
3125 . In terms of Wilson’s moduli, this point

corresponds to (z6, s2, σ5) = (0, −5
2 , 1

2). Here Wilson’s discriminant ∆′ is 0.
Using Magma, we can construct a rational genus 2 curve with invariants
(8 : 1 : 3 : 8

3125), namely

(5.2) y2 = f(x) = (2x3 − 2x2 − x − 1)(x3 − x2 + 2x + 2).
This yields case (5) of the theorem.

Remark 5.3. Calculations in Magma indicate that the curve in (5.2) has
conductor 8002, and corresponds to the weight 2 modular form f(z) =
q −

√
5q3 − 2

√
5q7 + 2q9 −

√
5q11 + · · · with Fourier coefficient ring Z[

√
5]

and LMFDB label 800.2.a.l.

6. Generic models

In this section we give explicit rational Weierstrass models for (m, n) in
the birational model P2

m,n for Y−(5).

Proposition 6.1. Let k ⊆ C be a field which does not contain
√

5. For
any m, n ∈ k such that −(m2 − 5n2 − 5) is the norm of some nonzero
element η ∈ k(

√
5)/k, let µ := m + n

√
5 and define C/k be the curve with

Weierstrass model

y2 = Tr
(

µ2η3
(

1 − x
√

5
1 + x

√
5

)3

− 2N(µ)µη2
(

1 − x
√

5
1 + x

√
5

)2

− 5N(µ)(N(µ) − 5)
)

(1 − 5x2)3,
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where N and Tr denote the norm and trace from k(
√

5) to k respectively.
When C is a genus 2 curve, the Igusa–Clebsch invariants of C are as
in (5.1), i.e. C corresponds to the point (m, n) in the P2

m,n birational model
for Y−(5).

Note that the right hand side of the Weierstrass equation given in Propo-
sition 6.1 is indeed a sextic in x; the factor of (1−5x2)3 clears denominators.

Remark 6.2. Since m2 − 5n2 − 5 + u2 − 5v2 = 0 is a quadric in P4 it
is birational to P3, so one may generically express the family of curves in
Proposition 6.1 in terms of a 3-parameter (a, b, c). For instance, one may
generically write

v = (4a+2c)/(5a2 − b2 +5c2 −1), m = 5av −2, n = −bv, u = 5cv −1

to get a 3-parameter family of genus 2 curves with RM-5. However, the
resulting models are rather complicated and we omit them.

Proposition 6.3. Let k ⊆ C be a field containing
√

5. For any m, n ∈ k,
define C/k to be the curve with Weierstrass model

y2 = (m − n
√

5)2x6 − 2(m2 − 5n2)(m − n
√

5)x5

− 10(m2 − 5n2)(m2 − 5n2 − 5)x3

− 2(m2 − 5n2)(m2 − 5n2 − 5)2(m + n
√

5)x

− (m2 − 5n2 − 5)3(m + n
√

5)2.

When C is a genus 2 curve, the Igusa–Clebsch invariants of C are as
in (5.1), i.e. C corresponds to the point (m, n) in the P2

m,n birational model
for Y−(5).

Note that both the x4- and x2-coefficients are zero in this model.
Kumar and Mukamel also gave a different simple model for RM-5 curves

over Q(
√

5) in terms of (m, n) in Section 6 of [11], but their method does
not lead to generic models over Q.

Proof of Propositions 6.1 and 6.3. In Section 4.2, we found a linear trans-
formation T defined over Q(m, n) and a scaling factor c ∈ Q(m, n) such
that

cL0(T (x1, x2, x3)) = x2
1 − 5x2

2 + (m2 − 5n2 − 5)x2
3,

whenever disc L0 ̸= 0, where L0 is the Mestre conic associated to the Igusa–
Clebsch invariants in (5.1). Applying the same transformation T to the
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Mestre cubic M0 and rescaling by some c′ ∈ Q(m, n) yields

c′M0(T (x1, x2, x3))
= (m2 + 5n2)x3

1 + 30mnx2
1x2 + 15(m2 + 5n2)x1x2

2

+ 50mnx3
2 − (2m − 3)(m2 − 5n2)x2

1x3 − 20n(m2 − 5n2)x1x2x3

− 5(2m + 3)(m2 − 5n2)x2
2x3 − 2(m2 − 5n2 − 5)(m2 − 5n2)x3

3.

Define L and M to be these reduced forms of L0 and M0 respectively.
We first consider the case where

√
5 ̸∈ k. By inspection, L(k) has no

points with x3 = 0. Suppose that (u0 : v0 : 1) ∈ L(k). Parametrizing L(k)
in the usual way using this point gives

{(x1 : x2 : 1) ∈ L(k)}

=
{(

(1 + 5x2)u0 − 10xv0 : (1 + 5x2)v0 − 2xu0 : 1 − 5x2
)

: x ∈ P(k)
}

.

It will be convenient for us to write this parametrization in terms of ele-
ments of k(

√
5). Define η = u0 + v0

√
5 ∈ k(

√
5)/k. The parametrization

above can then be expressed as

{(x1 : x2 : 1) ∈ L(k)} =
{

(u : v : 1) : u +
√

5v = η
1 − x

√
5

1 + x
√

5
, x ∈ P(k)

}
.

Let µ = m + n
√

5 ∈ k(
√

5)/k. Then one verifies that, when x3 = 1, the
reduced Mestre cubic M can be written as

1
2 Tr

(
µ2(x1 + x2

√
5)3)+ 3N(µ)N

(
x1 + x2

√
5
)

− N(µ) Tr
(
µ(x1 + x2

√
5)2)− 2N(µ)(N(µ) − 5),

where N and Tr denote the norm and trace from k(
√

5) to k. We can now
substitute the parametrization of the k-rational points of L into M to ob-
tain a k-rational Weierstrass model for the associated genus 2 curve C, as
described in Theorem 4.2. This gives the k-rational model from Proposi-
tion 6.1.

Now suppose that
√

5 ∈ k. It is possible to mimic the calculations from
the case where

√
5 ̸∈ k by taking

(u0 : v0 : 1) :=
((

m2 − 5n2 − 5 − 1
20

)√
5 : m2 − 5n2 − 5 + 1

20 : 1
)

and working in the ring k[t]/(t2 − 5). However, we get a tidier Weierstrass
model by instead using the point (

√
5 : 1 : 0) to parameterize L(k). A

straightforward calculation yields the k-rational model given in Proposi-
tion 6.3. □
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Remark 6.4. Note that if we take k = Q(
√

5) in Proposition 6.3, and
m ∈ Q, n ∈

√
5Q \ {0}, we get a 2-parameter family of genus 2 curves

defined over Q which have potential RM-5, but not RM-5 defined over Q.
To see the RM-5 is not actually defined over Q, one can check that for
m ∈ Q, n ∈

√
5Q \ {0}, Wilson’s discriminant ∆′ is in the square class of

n2, which is a non-square. Hence the Igusa–Clebsch invariants are rational,
but the moduli points on Y−(5) are not rational, and so the RM-5 cannot
be defined rationally. (The irrationality of these moduli points on Y−(5) is
suggested by the fact that (m, n) ̸∈ Q2 but is not a priori implied by this
as (m, n) are only coordinates for a birational model of Y−(5), and we have
not determined an explicit birational map from P2

m,n to Y−(5)).

7. Comparisons with known families

7.1. Mestre’s family. Let f be the polynomial

f(a, b, x) = x5 + (a − 3)x4 + (−a + b + 3)x3 + (a2 − a − 2b − 1)x2 + bx + a,

and let X(a, b) be the genus 2 curve

X(a, b) : y2 = xf(a, b, x).

In [12], Mestre proves that X(a, b) has RM-5 for every a, b in C such that
xf(a, b, x) has six distinct zeroes, and that the RM is defined over k =
Q(a, b). Using Humbert’s criterion for RM-5, Wilson [17] showed that this
family of curves over k gives all genus 2 curves with RM-5 over k which have
a Weierstrass point in k, up to k-isomorphism. In particular, for any genus
2 curve C with RM-5, there exist a, b ∈ C such that C is C-isomorphic to
X(a, b). See also [16] for an alternative proof of this last result.

Define ga,b and ha,b as

ga,b = 2(3a3 − 8a2 − 5ab − b2 − 3a)
3(a2 − 5a − 2b + 1)2

and

ha,b = −a2(4a5 − 4a4 − 24a3b − a2b2 − 40a3

2(a2 − 5a − 2b + 1)5

+ 34a2b + 30ab2 + 4b3 + 91a2 + 14ab − b2 − 4a)
2(a2 − 5a − 2b + 1)5 .

Then, by comparing Igusa–Clebsch invariants, one can verify that X(a, b)
is C-isomorphic to a genus 2 curve associated to (g, h) = (ga,b, ha,b) in the
Elkies–Kumar model (2.1), assuming a2 − 5a − 2b + 1 ̸= 0 and ha,b ̸= 0.

Since choices of a, b ∈ k can only yield genus 2 curves with RM-5 over
k which have a k-rational Weierstrass point, one cannot easily describe all
genus 2 curves with RM-5 over k using Mestre’s family. For example, there
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are no rational values of a and b for which X(a, b) is C-isomorphic to the
genus 2 curve associated to (g, h) = (− 4

15 , 16
3125).

7.2. Brumer’s family. Brumer constructed a family of curves Cb,c,d de-
fined by

Cb,c,d : y2 + (x3 + x + 1 + c(x2 + x))y
= b + (1 + 3b)x + (1 − bd + 3b)x2 + (b − 2bd − d)x3 − bdx4,

and showed that if Cb,c,d is nonsingular, then it is a genus 2 curve with RM-
5 over Q(b, c, d). Moreover, every genus 2 curve with RM-5 is C-isomorphic
to Cb,c,d for some b, c, d ∈ C. Brumer did not publish the details of his proof
(see [2] for an announcement), but the above statements were reproved by
different methods in [8] and [9].

Define gb,c,d and hb,c,d as

gb,c,d = −c4 + 8bc2d − 16b2d2 + 6c3 − 24bcd + 24bc

6(c2 − 4bd − 2b − 3c − 2d − 5)2

+ c2 − 68bd − 24cd − 108b − 30c − 36d − 61
6(c2 − 4bd − 2b − 3c − 2d − 5)2

and

hb,c,d = (c2 − 4bd − 2b − 3c − 2d − 5)−5
(
bc6d − 12b2c4d2 + 48b3c2d3

− 64b4d4 − b2c4d − 9bc5d + 8b3c2d2 + 72b2c3d2 − bc4d2 − 16b4d3

− 144b3cd3 + 8b2c2d3 − 16b3d4 + bc5 − 40b2c3d + 12bc4d

− c5d + 144b3cd2 − 152b2c2d2 + 52bc3d2 + 416b3d3 − 192b2cd3

− b2c3 − 9bc4 + 36b3cd + 334b2c2d + 63bc3d + 6c4d + 24b3d2

+ 132b2cd2 − 80bc2d2 + c3d2 + 528b2d3 − 36bcd3 − 27b2c2

+ 13bc3 − c4 + 108b3d − 720b2cd + 74bc2d + 5c3d − 456b2d2

− 96bcd2 − 36c2d2 + 216bd3 + 27b3 + 252b2c + 56bc2 + 6c3

− 66b2d − 627bcd − 43c2d − 381bd2 − 63cd2 + 27d3 − 567b2

+ 27bc + 4c2 − 121bd − 147cd − 81d2 − 484b − 39c − 34d − 103
)
.

Then, by comparing Igusa–Clebsch invariants, one can verify that Cb,c,d is
C-isomorphic to the genus 2 curve associated to (g, h) = (gb,c,d, hb,c,d) in
the Elkies–Kumar model (2.1) when c2 − 4bd − 2b − 3c − 2d − 5 ̸= 0 and
hb,c,d ̸= 0.

One can ask if Brumer’s family provides a way to describe all genus 2
curves C with RM-5 defined over k. However, it is not clear whether these
will all come from a k-rational choice of parameters b, c, d. E.g., if (z, g, h)
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is a generic rational point on Y such that 30g + 4 is a norm from Q(
√

5),
it is not clear if we can write (g, h) = (gb,c,d, hb,c,d) for some b, c, d ∈ Q.

While Brumer’s models are simpler than what we give in Section 6,
over Q they might not comprise all rational curves C with RM-5, even
generically. Moreover there is no simple description of which choices of
b, c, d will give C-isomorphic curves.

8. Beyond RM-5

The Hilbert modular surface Y−(D) is rational if and only if D is one of
5, 8, 12, 13, or 17. One might wonder if there are analogues of Theorem 1.1
for each of these discriminants. Numerical experimentation suggests that
the answer is yes.

Define

p5(m, n) = −m2 + 5n2 + 5,

p8(m, n) = m + 1,

p12(m, n) = −27m2 + n2 + 27,

p13(m, n) = 1803m2 − 72mn + n2 + 3168m − 1440n − 768, and
p17(m, n) = 1.

In [6], Elkies and Kumar give rational models of Y−(D) for all fundamental
discriminants between 1 and 100. The polynomials pD(m, n) above are all
factors of the discriminant of the Mestre conic one obtains when using
Igusa–Clebsch invariants from [6] in the construction given in Section 4.1.
We chose several thousand values of (m, n) ∈ Q2 at random, and for each of
these the associated Mestre conic was equivalent to x2

1−Dx2
2−pD(m, n)x2

3 =
0 over Q whenever it was nonsingular. In particular, the Mestre obstruction
appears to vanish generically for D = 17, which is quite surprising.

We have attempted using the methods from in Section 3 to reduce the
Mestre conics for these other values of D, but thus far have only been
partially successful in removing the other polynomial factors from the dis-
criminant.
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