Fixons un corps abélien dont le conducteur n’est pas divisible par et notons la -extension cyclotomique avec le -ième corps intermédiaire . Soit (resp. ) la limite projective des groupes des unités semi-locales (resp. des unités cyclotomiques) en 2 de . Pour un caractère pair non-trivial de , nous étudions la structure galoisienne de la -partie et du -quotient de y compris dans le cas .
Fix an abelian field whose conductor is not divisible by and denote by the cyclotomic -extension with -th layer . Let (resp. ) be the projective limit of the semi-local units at (resp. of the cyclotomic units) of . For a non-trivial even character of , we study the Galois module structure of the -part and -quotient of , taking into account the case .
Révisé le :
Accepté le :
Publié le :
Mots clés : Iwasawa theory, cyclotomic units, $p$-adic $L$-functions
@article{JTNB_2024__36_2_445_0, author = {Takae Tsuji}, title = {Semi-local units modulo cyclotomic units in the cyclotomic $\mathbb{Z}_2$-extensions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {445--479}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1284}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1284/} }
TY - JOUR AU - Takae Tsuji TI - Semi-local units modulo cyclotomic units in the cyclotomic $\mathbb{Z}_2$-extensions JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 445 EP - 479 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1284/ DO - 10.5802/jtnb.1284 LA - en ID - JTNB_2024__36_2_445_0 ER -
%0 Journal Article %A Takae Tsuji %T Semi-local units modulo cyclotomic units in the cyclotomic $\mathbb{Z}_2$-extensions %J Journal de théorie des nombres de Bordeaux %D 2024 %P 445-479 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1284/ %R 10.5802/jtnb.1284 %G en %F JTNB_2024__36_2_445_0
Takae Tsuji. Semi-local units modulo cyclotomic units in the cyclotomic $\mathbb{Z}_2$-extensions. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 445-479. doi : 10.5802/jtnb.1284. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1284/
[1] Division values in local fields, Invent. Math., Volume 53 (1979), p. 96-11 | Zbl
[2] Local units modulo circular units, Proc. Am. Math. Soc., Volume 89 (1983), pp. 1-7 | DOI | Zbl
[3] Iwasawa invariants of abelian number fields, Math. Ann., Volume 234 (1978), pp. 9-24 | DOI | Zbl
[4] The Iwasawa invariant vanishes for abelian number fields, Ann. Math., Volume 109 (1979), pp. 377-395 | DOI | Zbl
[5] Unités cyclotomiques, unités semi-locales et -extensions II, Ann. Inst. Fourier, Volume 29 (1979) no. 1, pp. 49-79 | DOI | Zbl
[6] On -adic -functions and cyclotomic fields. II, Nagoya Math. J., Volume 67 (1977), pp. 139-158 | DOI | Zbl
[7] On -adic -functions and cyclotomic invariants, Math. Z., Volume 159 (1978), pp. 37-45 | DOI | Zbl
[8] Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier, Volume 42 (1992) no. 3, pp. 449-499 | DOI | Numdam | Zbl
[9] On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, Volume 16 (1964), pp. 42-82 | Zbl
[10] On the Stickelberger ideal and the circular units of an abelian field, Invent. Math., Volume 62 (1980), pp. 181-234 | DOI | Zbl
[11] On the class groups of imaginary abelian fields, Ann. Inst. Fourier, Volume 40 (1990) no. 3, pp. 467-492 | DOI | Zbl
[12] Semi-local units modulo cyclotomic units, J. Number Theory, Volume 78 (1999) no. 1, pp. 1-26 | DOI | Zbl
[13] Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer, 1997, xiv+487 pages | DOI | Zbl
[14] The Iwasawa conjecture for totally real fields, Ann. Math., Volume 131 (1990) no. 3, pp. 493-540 | DOI | Zbl
Cité par Sources :