Semi-local units modulo cyclotomic units in the cyclotomic 2 -extensions
Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 445-479.

Fixons un corps abélien k dont le conducteur n’est pas divisible par 8 et notons k /k la 2 -extension cyclotomique avec le n-ième corps intermédiaire k n . Soit 𝒰 (resp. 𝒞) la limite projective des groupes des unités semi-locales (resp. des unités cyclotomiques) en 2 de k n . Pour un caractère pair non-trivial ψ de Gal(k/), nous étudions la structure galoisienne de la ψ-partie 𝒰 ψ /𝒞 ψ et du ψ-quotient (𝒰/𝒞) ψ de 𝒰/𝒞 y compris dans le cas 2[k:].

Fix an abelian field k whose conductor is not divisible by 8 and denote by k /k the cyclotomic 2 -extension with n-th layer k n . Let 𝒰 (resp. 𝒞) be the projective limit of the semi-local units at 2 (resp. of the cyclotomic units) of k n . For a non-trivial even character ψ of Gal(k/), we study the Galois module structure of the ψ-part 𝒰 ψ /𝒞 ψ and ψ-quotient (𝒰/𝒞) ψ of 𝒰/𝒞, taking into account the case 2[k:].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1284
Classification : 11R23
Mots clés : Iwasawa theory, cyclotomic units, $p$-adic $L$-functions
Takae Tsuji 1

1 STEM Education Center Tokai University 4-1-1 Kitakaname, Hiratsuka, Kanagawa, Japan
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2024__36_2_445_0,
     author = {Takae Tsuji},
     title = {Semi-local units modulo cyclotomic units in the cyclotomic $\mathbb{Z}_2$-extensions},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {445--479},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {36},
     number = {2},
     year = {2024},
     doi = {10.5802/jtnb.1284},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1284/}
}
TY  - JOUR
AU  - Takae Tsuji
TI  - Semi-local units modulo cyclotomic units in the cyclotomic $\mathbb{Z}_2$-extensions
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2024
SP  - 445
EP  - 479
VL  - 36
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1284/
DO  - 10.5802/jtnb.1284
LA  - en
ID  - JTNB_2024__36_2_445_0
ER  - 
%0 Journal Article
%A Takae Tsuji
%T Semi-local units modulo cyclotomic units in the cyclotomic $\mathbb{Z}_2$-extensions
%J Journal de théorie des nombres de Bordeaux
%D 2024
%P 445-479
%V 36
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1284/
%R 10.5802/jtnb.1284
%G en
%F JTNB_2024__36_2_445_0
Takae Tsuji. Semi-local units modulo cyclotomic units in the cyclotomic $\mathbb{Z}_2$-extensions. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 445-479. doi : 10.5802/jtnb.1284. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1284/

[1] Robert Coleman Division values in local fields, Invent. Math., Volume 53 (1979), p. 96-11 | Zbl

[2] Robert Coleman Local units modulo circular units, Proc. Am. Math. Soc., Volume 89 (1983), pp. 1-7 | DOI | Zbl

[3] Bruce Ferrero Iwasawa invariants of abelian number fields, Math. Ann., Volume 234 (1978), pp. 9-24 | DOI | Zbl

[4] Bruce Ferrero; Lawrence C. Washington The Iwasawa invariant μ p vanishes for abelian number fields, Ann. Math., Volume 109 (1979), pp. 377-395 | DOI | Zbl

[5] Roland Gillard Unités cyclotomiques, unités semi-locales et l -extensions II, Ann. Inst. Fourier, Volume 29 (1979) no. 1, pp. 49-79 | DOI | Zbl

[6] Ralph Greenberg On p-adic L-functions and cyclotomic fields. II, Nagoya Math. J., Volume 67 (1977), pp. 139-158 | DOI | Zbl

[7] Ralph Greenberg On 2-adic L-functions and cyclotomic invariants, Math. Z., Volume 159 (1978), pp. 37-45 | DOI | Zbl

[8] Cornelius Greither Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier, Volume 42 (1992) no. 3, pp. 449-499 | DOI | Numdam | Zbl

[9] Kenichi Iwasawa On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, Volume 16 (1964), pp. 42-82 | Zbl

[10] Warren Sinnott On the Stickelberger ideal and the circular units of an abelian field, Invent. Math., Volume 62 (1980), pp. 181-234 | DOI | Zbl

[11] David Solomon On the class groups of imaginary abelian fields, Ann. Inst. Fourier, Volume 40 (1990) no. 3, pp. 467-492 | DOI | Zbl

[12] Takae Tsuji Semi-local units modulo cyclotomic units, J. Number Theory, Volume 78 (1999) no. 1, pp. 1-26 | DOI | Zbl

[13] Lawrence C. Washington Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, 83, Springer, 1997, xiv+487 pages | DOI | Zbl

[14] Andrew Wiles The Iwasawa conjecture for totally real fields, Ann. Math., Volume 131 (1990) no. 3, pp. 493-540 | DOI | Zbl

Cité par Sources :