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Semi-local units modulo cyclotomic units in the

cyclotomic Z,-extensions

par TAKAE TSUJI

RESUME. Fixons un corps abélien k& dont le conducteur n’est pas divisible
par 8 et notons ku,/k la Zs-extension cyclotomique avec le n-iéme corps in-
termédiaire k,. Soit U (resp. C) la limite projective des groupes des unités
semi-locales (resp. des unités cyclotomiques) en 2 de k,. Pour un caractére
pair non-trivial ¢» de Gal(k/Q), nous étudions la structure galoisienne de
la t-partie U¥ /C¥ et du ¢-quotient (U/C), de U/C y compris dans le cas
2| [k Q).

ABSTRACT. Fix an abelian field k& whose conductor is not divisible by 8 and
denote by ko /k the cyclotomic Zs-extension with n-th layer k,,. Let U (resp.
C) be the projective limit of the semi-local units at 2 (resp. of the cyclotomic
units) of k,. For a non-trivial even character 1 of Gal(k/Q), we study the
Galois module structure of the ¢-part U¥ /C¥ and 1-quotient (U/C),, of U/C,
taking into account the case 2 | [k : Q).

1. Introduction

Let p be any prime number and k an abelian field. We denote by ko /k
the cyclotomic Zy-extension with n-th layer k, for n = 0. Let Uy, be the
semi-local units of k,, at p and Cy,, a group of cyclotomic units of k,, defined
in Section 5. Put U = Uy, = lim Uy, and C=Cr, = @ckn where the
projective limits are taken with respect to the relative norm maps. In this
paper, we study the Galois module structure of ¢ /C for p = 2.

We still assume that p is an arbitrary prime number. We may assume
that k is of the first kind, that is, the conductor of k is not divisible by
8 or p? if p = 2 or not respectively. Then kN Qs = Q where Qu is the
cyclotomic Zy-extension of Q and Gal(ks/Q) = G xI' with G = Gal(k/Q)
and I' = Gal(koo/k). We regard U /C as a module over the completed group
ring Zy[G][I']. We decompose U/C by the action of G. Let ) be a non-

trivial even character of G with values in @X and e, the idempotent of
Qp|G] corresponding to . If [k : Q] = |G| is not divisible by p, then ey, is in
Zp|G] and ey, (U/C) becomes a modules over Zy[1)|[I'] where Zy[¢)] denotes
the ring generated by the values of 1 over Z,. As usual, we regard any
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Zp[][T']-module as a module over A = Z,[¢][T], by fixing a topological
generator of I'. When p | [k : Q], one cannot define a ¥-component as a
direct summand. However we can define two A-modules, the v-part U? /C¥
and the ¥-quotient (U/C)y. If p1 [k : Q], both U¥ /C¥ and (U/C), coincide
with ey (U/C) and, generally, after tensoring with @, these coincide with
ey ((U/C) © Qp).

We recall the former results on the structure of the A-modules U /CY
and (U/C)y. For any prime p and any k with p { [k : Q], the structure of
the A-module e, (U/C) =UY /CY = (U/C),, was determined by Iwasawa [9]
and Gillard [5], which is described in terms of the power series g, (7T") of
A associated to the Kubota—Leopoldt p-adic L-function. For odd prime p
and any k without assumption p { [k : Q], the author [12] determined the
structure of the A-modules U¥ /C¥ and (U/C),. She showed that Coleman’s
homomorphism induces two A-homomorphisms

WUV [CY — M (gy(T)/2), Wy U/C)y — A (94(T)/2)

and determined the kernels and the cokernels of ¥¥ and ¥, respectively.
(In [12], ¥¥ and ¥, was denoted by Col? and Coly respectively.) In par-
ticular, she showed that

chary (UY/CY) = (94(T)/2),  chara((U/C)y) = (94(T)/2)
where charp (M) denotes the characteristic ideal of a A-module M. We
note that (g4(7")/2) = (gy(T)) holds as an ideal of A since p is odd. For
the p-invariants of U¥ /C¥ and (U/C)y, we can deduce

pUr/C) =0, p(U/C)y) =0

from our results and the Ferrero-Washington theorem [3, 4]. Under the
assumption p 1 [k : Q], the main results of [12] coincide with the results of
Iwasawa and Gillard for odd prime p. For any prime p and any k without
the assumption p 1 [k : Q], Greither [8] determined the structure of the
A ® Qy-module ey, ((U/C) @ Qp) = (UY/CY) ® Q, = (U/C)y ® Qp. Only in
the case where p = 2 and 2 | [k : Q], the structure of the A-modules U¥ /C?
and (U/C)y have not been determined yet. In this paper, we determine
those structure in the remaining case, that is, p =2 and 2| [k : Q).

Let p = 2 and k be any abelian field of the first kind including the case
where 2 | [k : Q]. We study both cases where k is real and imaginary and
let 1 be a non-trivial even character of Gal(k/Q).

In the main results of this paper, Theorems 3.1, 3.2 and 3.4, we define
two A-homomorphisms

VU ICY s M(go(T)/2), Wy (U/C)y — A(gu(T)/2)

and determine the kernels and the cokernels of ¥¥ and VU, respectively
for p = 2. We show that the kernel of ¥,, has the p-invariant 1 when k is
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imaginary. In particular, we can deduce the following
chara(UY /C?) = (94(T)/2)

and
(gp(T)/2) if k is real,

chary (U/C)y) = {(%(T)) if k is imaginary.

Therefore, by using the Ferrero-Washington theorem [3, 4], we obtain the
following
puv/Cc?)y =0
and
0 if k is real,

1 if k£ is imaginary.

p(U/C)y) = {

Our results in the cases where 2 1 [k : Q] (and p = 2) coincide with the
results of Iwasawa and Gillard. If k£ is imaginary, that is, the infinite places
ramified in k, then [k : Q] is divisible by p = 2. Therefore Iwasawa and
Gillard did not treat the cases where k is imaginary. We show that the
structure of (U//C),, depends on whether 2 is ramified in & or not. Actually,
if p = 2 is ramified in k, the kernel of ¥, has a finite A-submodule T}
defined in Section 3. When p is odd, whether p is ramified in k£ does not
affect the structure of (U/C),, and the A-module T}, ,, does not appear in the
kernel of ¥,,. We remark that the ramification index of p in £ is a divisor
of por p—1if p=2 or not since k is of the first kind. We further remark
that Iwasawa and Gillard did not treat the cases where 2 is ramified in k.

In this paper, we study a relation between the Iwasawa main conjecture
and our main theorems. Let M be the maximal abelian pro 2-extension of
koo unramified outside all primes over 2 and put

X = Gal(M /ks).

Then A-modules XY and Xy are defined. By our main theorems, we can
show that

p(XV) = pU¥/CY),  p(Xy) = p(U/C)y)
in both cases where k is real and imaginary. Therefore, by the Iwasawa
main conjecture proved by Wiles [14] and our results, we obtain

char (X¥) = chary (U¥/CY), chary (Xy) = chary ((U/C)y)

including the p-invariants.

The content of this paper is as follows: In Section 2, we recall the defi-
nition of the ¥-part and the ¥-quotient and their basic properties. In Sec-
tion 3, we state the main results. In Section 4, we define A-homomorphisms
Y Y¥ — A and Uy : Uy — A and determine their kernels and cokernels.
In Section 5, we determine generators of the ¢-part and the -quotient of
the cyclotomic units group C. In Section 6, we calculate the images of the
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generators of the 1-part and the 1-quotient of C via U¥ and W, respec-
tively. This completes the proof of the main results. Finally, in Section 7
we mention a relation between the Iwasawa main conjecture and the main
theorems.

Acknowledgments. I would like to thank Yositaka Hachimori and Kazuo
Matsuno for helpful comments and for encouragements.

2. x-parts and x-quotients

In this section, let p be any prime number, A any finite abelian group and
X:A— @px any character. We define y-parts and y-quotients of Z,[A]-
modules and recall some basic facts. For further properties, see [8, 11, 12].

We denote by Z,[x] the ring generated by the values of x over Z, and
by Z,[x] a free Zy[x]-module of rank one on which A acts via x. For a
Zp|Al-module M, we define the following Z,[x]-modules:

MX = HomZp[A] (ZP[X]7 M)7 MX =M ®ZP[A} ZP[X]7

which we call the y-part and the y-quotient of M respectively.
Let I,, denote the ideal of Zy[x][A] generated by all elements of the form
d —x(0),0 € A. We have isomorphisms of Zp[x]-modules

MX={m e M ®z, Zy[x] | dm = x(0)m,V 0 € A}

and

M, = (M Xz, Zp[X])/Ix(M Xz, Zp[X])~
Then MX (resp. M, ) is isomorphic to the largest submodule (resp. quotient
module) of M ®z, Z,[x] on which A acts via x.

Let ay = Ysen X(0)071 € Zy[x][A]. Multiplication of &a , defines an
endomorphism of M ®z, Z,[x], which induces a Zj,[x]-homomorphism

Eay t My — MX.
We define a quotient module MX of MX and a submodule Mx of M, by
MX = MX/Im(éa ) = coker(f*A?X)

and

Mx = ker(fA,x)/Ix(M Xz, Zp[X]) = ker(fZ,X)-
The following lemmas can be proved easily.

Lemma 2.1. Assume that A is a cyclic group and
0— My — My — M3 —0
is an exact sequence of Zp[A]-modules. We have an exact sequence

0 — MY — My — M3 — My, — My, — M3, — 0.
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Furthermore

0 — MY — MY —s MY — My, — My, — Ms,,
and - N N

MY} — MY — MY — My, — My, — M3, — 0
are also exact.
Lemma 2.2 ([11, Lemma I1.2]). Assume x to be a faithful character of a
cyclic group A of p-power order. We denote by C the subgroup of the order
p in A, and N¢ its norm in Z,[A]. For any Zy[A]-module M, there are
Zp|Al-isomorphisms:

MX =ker(N¢ : M — M) and M, = coker(N¢: M — M).
Furthermore, we have Z,|A]-isomorphisms:
MX=HY(C,M) and M, = H°(C,M).
Corollary 2.3. Under the same assumption as in Lemma 2.2, if
00— My — My — M3z —0

is an exact sequence of Zp[A]-modules, then
0 — MY¥ — MY — MY — H(C, M) — H°(C, My) — H°(C, M3)
and
H=Y(C, M) — HY(C, My) — H™Y(C, M3) — My — Moy, — Mz, — 0

are exact.

3. The main results

For natural number ¢, let (; be a primitive ¢t-th root of unity with the
property that (5, = ¢; for all s > 1, and we denote by u, the group of ¢-th
roots of unity. Put ptgee = |J pron. We shall often denote Q({;) by Q(¢).

Put Q, = Q({an+2 + CQ_an) for n > 0 and Qs = U,, @,. Then Qu is the
cyclotomic Zs-extension of Q. Let k be a finite abelian extension of Q of
the first kind, that is, the conductor of k is not divisible by 8. We study
both cases where k is real and imaginary. Put k,, = kQ,, for 0 < n < oo,
hence ky is the cyclotomic Zs-extension of k& with n-th layer k,. We can
see that for any finite abelian extension &’ of Q, there exists an abelian field
k of the first kind such that k., = ¥'Qs = koo-

Let p be a prime ideal of k lying above 2, and ¢,, the unique prime ideal
of ky, lying above p. We denote Uy, ,, the principal units in the completion
kn,o of ky at o,. Put

Up = Uy, =[] Uknp
p[2
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where p runs over all prime ideals of k lying above 2, which is called the
group of semi-local units of k, at 2. Then Uy, is a Z[Gal(k,/Q)]-module.
Let Cy, be a group of cyclotomic units of k, defined in Section 5. We
identify Cf, with its image under the diagonal embedding k; — [[k, , =
(kn, ® Q2)*. Let C, be the closure of the intersection Uy, N C, in Uy, .
Then Cy,, is a closed Za[Gal(ky,/Q)]-submodule of Uy, . Put

U =U, =limlh,, C=Cr, =lmC,,

where the projective limits are taken with respect to the relative norms.
Put G = Gal(k/Q) and I' = Gal(ks/k). Since we assume that k is of
the first kind, we have isomorphisms G = Gal(k,/Q,) (0 < n < o0),
I' = Gal(Qx/Q) and Gal(koo/Q) = G x I'. Therefore U and C are modules
over the completed group ring Zq[G][I'].

Let 9 be a non-trivial, even character of G whose values are in @X.
We define Zs[1][I']-modules U¥/C¥ and (U/C)y as in Section 2. Fixing a
topological generator «y of I', we identify, as usual, the completed group ring
Zo[¥][T'] with the formal power series ring A = Zs[|[T] by v = 14+T. We
will investigate the structures of the A-modules U¥ /C¥ and (U/C),.

We regard 1 as a primitive Dirichlet character. Let La(1), s) denote the
Kubota—Leopoldt 2-adic L-function associated to . We write the cyclo-
tomic character by x : Gal(Q(pg)/Q) — Z5 and the Teichmiiller charac-
ter by w. We often regard w as a character of Gal(Q(pgn+2)/Qy). By the
isomorphism I" & Gal(Q(p9 ) /Q({4)), we can regard & as a character of T
It is known that there exists a unique power series gy (7") in 2A such that

gu(k(7)° = 1) = La(¢, 1 =)

for all s € Zy. Let m be a uniformizing parameter for Q2(¢). For a power
series f(T') # 0 in A, we can uniquely write

F(T) = U PT)U(T)
where p/(f(T')) is a non-negative integer, P(T) is a distinguished polyno-
mial and U(T) is a unit in A. We put p(f(T)) = /(f(T))/1/(2), which we

call the p-invariant of f(7'). By the Ferrero-Washington Theorem [3, 4], we
know that

w(g9y(T)) =1 or eauivalently u(gy(T)/2) = 0.

For every A-module M, we write chary (M) for the characteristic ideal
of M and put (M) = p(chara(M)), the p-invariant of M. Put T =
k(Y)(1+T)"'-1€A.

In Section 4, we will define A-homomorphisms \Iffoo : Z/{;foo — A and
Vi Uk — A In our main theorem, we describe the structure of

A-module UY/CY (resp. (U/C),) by using \I’}foo (resp. Wy ) in terms of
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2-adic L-function gy (7). Our main theorem about the structure of the A-
module UY¥ /CY¥ as follows:
Theorem 3.1.

(i) If yw=1(2) # 1, the A-homomorphism \I'}foo gives an isomorphism:

uvjc = A(gy(T)/2).

(ii) If pw=1(2) = 1, we have an exact sequence of A-modules

. oy .
0 — A/(T) — U /CY —=5 A/ (gy(T)/2T) — 0.
In particular, we have
chara(UY /C?) = (94(T)/2), pU¥/C¥) = 0.

As in the case where p is odd prime, we prepare some notation which we
need to state our results about the structure of (U /C),. Let m (resp. f)
be the odd part of the conductor of k (resp. ¥). Clearly f | m and, by the
assumption that k& is of the first kind, the conductor of k (resp. ¢) is m or
4m (resp. f or 4f). Furthermore, since ¢ is non-trivial and even, we see
that f # 1 and also m # 1. We define a finite set £ of prime numbers as
follows:

L = Ly = {l: prime number | [ | m,l1 f}.
For a subset I of £, we put m; = f]];c;! and

dr = [Q(Camz) NE(Ca) : Q(Camy) N E(C)]-

If k is the cyclic extension of Q associated to ¢, then £ = &. For x € ZJ,
we denote by ¢, the unique element in Zs such that x = w(z)r(y)t. We
define an ideal of finite index in A as follows:

I c> .

A= Ap y = <d1 [[a-v»m@a+1)")
lel

The quotient A/ is finite since the generator for I = & is a constant, but

for I = L is not divisible by 2. We note that 2 = A if £ = &. We put

Ty = M (T, ex2,9(2) + ™ 1(2) = 1)
where ey, 5 is the ramification index of 2 in k. Since k is of the first kind,
ero is 1 or 2 and either ¥(2) = 0 or Yw™(2) = 0 holds. In particular
if 2 is unramified in k, then T} , is trivial. The structure of A-module
(U/C)y depends on k being real or imaginary. Our main theorems about
the structure of the A-module (//C),, are as follows:

Theorem 3.2. Assume that k is a real abelian field. Then there is an
ideal A of A satisfying that A > A' > (T,2)A and the natural surjection
A — Ty induces a surjection s : AU (gy(T)/2) = Thp. Furthermore, the
following hold:
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(i) If Yyw™1(2) # 1, we have an exact sequence of A-modules

0 — Thy — U/C)y 2% AJA (go(T)/2) > Tip — 0.

(ii) If vw™1(2) = 1, we have an exact sequence of A-modules

0 —> A/(T) & Thy — (U/C)y 2225 AJA (g4 (T)/217) — 0.
In particular, we have
chara(U/C)y) = (9(T)/2),  m(U/C)y) =O.

Remark 3.3. We will give a sufficient condition for 2’ = 2( in Lemma 5.5
and Remark 6.1. In particular, if 2 is unramified in k£, we can show that
A" = 2. See also Lemma 5.1.

Theorem 3.4. Assume that k is an imaginary abelian field with maximal
subfield k™. Then there is an ideal A" of A such that

Wy O A" 5 App + (T, Q)QlkJrﬂ/,

and the natural surjection A — T,y induces a surjection s : AU gy (T) —
Tk, and the following hold:

(i) If pw™1(2) # 1, we have an exact sequence of A-modules

00— Tk’w — (U/C)d, M A/Ql”gw(T) i) Tkﬂ/, — 0.

(ii) If pw=1(2) = 1, we have an exact sequence of A-modules

0 — A/(T) @ Thy — (U/C)y 2225 AJA" (g (T)/T) —> 0.
In particular, we have

chary (U/C)y) = (gu(T)),  plU/C)) = 1.

For both cases where k is real or imaginary, we have

chary (U/C)y) = ([k - k" ]g4(T)/2)

where kT is the maximal real subfield of k. Composing ¥y_ . in Theo-
rem 3.2 (resp. Theorem 3.4) with the canonical surjection

A/ (gy(T)/2) — A/ (gy(T)/2) (resp.A/A gy (T) — A/(gy(T)/2)),

we get a A-homomorphism

(U/Cy — N/ (94(T)/2),

which we mentioned in the introduction. Theorem 3.2 and Theorem 3.4
determine the kernels and the cokernels of those homomorphisms. In par-
ticular, the p-invariant of the kernel is 0 or 1 according to k is real or
imaginary.
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Let be C' = Cl/coo the projective limit of cyclotomic unit groups of k,
in the sense of Sinnott defined in Section 5. We will also determine the
structure of (U /C")y as follows:

Theorem 3.5. Let k be an abelian field of the first kind. Then the natural
surjection A — Ty, induces a surjection s : A/Agy(T) — Tjy and the
following hold:

(i) If yw=1(2) # 1, we have an exact sequence of A-modules

0 — Ty — (U/C )y 2220 A J2Agy(T) 55 Thyy — 0.

(ii) If vw™1(2) = 1, we have an exact sequence of A-modules

0 — AJ(T) & Thuy — (U/C)y 22225 A JA(gy (T)/T) —> 0.
In particular, we have
chary (U/C')y) = (9u(T)), n(U/C)y) = 1.
In [12], we proved the following for odd prime p.

Theorem 3.6 ([12, Theorem 3.3]). Let p be an odd prime number. If
Yw™l(p) = 1, there exists an exact sequence of A-modules

0— A/(T) — (U/C)y — (A A/(d,T))/Axy — 0.

Here d is the order of the decomposition group of Gal(k/Q) and xy the
element (g, (T)/T, —By 1) of A& A/(d, T).

As the same method in the proof of Theorem 3.5, we can prove a modified
version of this theorem as follows.

Theorem 3.7. Let p be an odd prime number. If Yyw™'(p) = 1, we have
an exact sequence of A-modules

0 — AJ(T) — U/C)y —22% AJ2A(gy(T)/T) — 0.

4. Semi-local units

Recall that k is a finite abelian extension of QQ of the first kind and m
is the odd part of the conductor of k, hence the conductor of k is m or
dm. Put F' = Q((n) Nk(Cs), which is an abelian extension of Q unramified
at 2. Since the conductor of k((4) is 4m, we have k(C4)Q(¢m) = Q(Cam),
so [k(Cs) : F] = [Q(Cam) : Q(Gn)] = 2. We see that k(¢4) D F((4) and
[F'(¢4) : F] = 2, hence F(C4) = k(Ca). If the conductor of k is m, that is, k is
unramified at 2, we see that k(¢4) D F' D kand [k(¢4) : k] = 2, hence k = F..
Put K,, = F(pon+2) = k(ptgnt2) for n > 0 and Koo = F(pr9o) = k(o)
Hence K /Ky is the cyclotomic Zg-extension. Put

A = Gal(F/Q), Gy = Gal(Ky/F), Gs = Gal(Ks/F).
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Therefore we have
Gal(Koo/Q) 2 A X Gy, Goo =G x T,

Recall that 1 is a non-trivial even character of G = Gal(k/Q). The Teich-
miiller character w is the unique non-trivial character of Gy. We will regard
Y as a character of Gal(K/Q) = A x Gy and let x be the restriction of ¥
to A. We can write
P = xo'

with ¢ = 0 or 1. Let D be the decomposition group of 2 in A and ¢ € A
the Frobenius element of 2, thus D = (o). For any prime ideal g of F' lying
above 2, let F, denote the completion of I at p. Let Op (resp. O, ) denote
the integer ring of F' (resp. F),).

Op == [[ Or, = Or @7 Zs,
p
where p runs over all prime ideals F' lying above 2.

We recall the results of Coleman [1, 2]. For details, see [8, §7] and [13,
§13.7-8]. We denote Zy(1) = Hm prgnr2 where the projective limit is taken
with respect to the map pon+2 — pont1 defined by ¢ + (2 for ¢ € pon+e.
We fix a generator ((gn+2)n>0 0f Zo(1), S0 (342 = Cont1 for n > 1. For a
Z2]Goo]-module M, we put M(1) = M ®g, Zz(1). For u = (uy) € U, =
Wm U, , there exists a unique power series fu(X) € Op[X] satisfying

fu(1 = Cont2) = (Un)ana
which is called Coleman’s power series associated to u. Let

d
D=(1-X)—
( e
be the derivative operator on Op[X]. Define the endomorphism ¢ of
Or[X] by
(eN)(X)=0o(f(1-(1-X)?)

where ¢ acts on Op[X] via the coefficients. We can extend a power of the
cyclotomic character k¥ : Goo — Z3 to a ring homomorphism Op[Go] —
Or linearly for k € N. For u € Uk __, there exists a unique element ¥ (u)
in Op[G] satisfying
@y D (1= 5 log )| = (- ()

which defines a Zs[A][Goo]-homomorphism U : U — Op[Goo]. Uk,.0
contains pron+2 and lim Uk, , contains lim piyn+2 where the projective limit
is taken with respect to the norm map N, 1 from Uk, ,, to Uk, _, o,. We
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see that Nnjnfl(—czn-m) = (—Con+2)(Con+2) = —C22n+2 = —(9n+1. Then the
following diagram is commutative

fn
Iul:2n+2 — H2n+2

J/Q an,nl
fnfl

Hon+1 — Hon+1
where f,((5.42) = (—(ant2)® for a € Z. Hence the corresponding

(Con+2)n>0 = (—Con+2)n>0

defines an injection Zg(l ) — m Uk, o, which induces a homomorphism

1 Zo[A/D)(1) = [[ 22(1) — [[lim Uk, o = Ux..
pl2 ©l2
of Zo[A][Goo]-modules. The cyclotomic character x induces a Za[A][Goo-
homomorphism —x : Op[Gos] — (Op/(c — 1)Op)(1). The following is
known (cf. [2, Theorem 4] and [8, Theorem 2.8, Proposition 2.10]):

Theorem 4.1 (Coleman). Let F' be a finite abelian extension of Q unrami-
fied at 2 and put Koo = F (9o ). There is an exact sequence of Za|A][Goo]-
modules

0 — Zo[A/D](1) % U, 2525 Op[Gos] =5 (Op /(0 — 1)Op)(1) —s 0.

For y € @F, we denote by yr, or y, its image under the natural sur-
jection @F —» @EX‘ We shall often consider an element of y of @F as an
element of Op ®y, Zs[x]. Since 2 is unramified in F/Q, we have Op = Zy[A]
as Za[A]-modules. Therefore @}‘, = Zs[x] and @F% = Zalx]. We fix these

isomorphisms as follows:

Lemma 4.2.
(a) The additive group (5 is a free Zo|x|-module of rank one generated

by 2X = fX(TrQ (f)/Q(f mF(g‘f)) where & = s x(8)67Y, § running
over all elements in Gal( (f)NF/Q). Further, for all a € N, we

have §X(Tr@(f)/<@(f)mf(€?)) = x(a)zX.
(b) The additive group OF,, is a free Zs[x]|-module of rank one gener-

ated by zpy = [Q(m) : Q(me)] ™ (Tl —x(1)(Trgum)/r(Cme ) Fix-
Further, if the conductor of F is f, we have (TTQ(f)/F(C}Z))F,X =
x(a)zpy for all a € N.

Proof. The statement (a) is exactly [12, Lemma 5.1 (a)] for p = 2, which can
be proved similarly. Although (b) can be induced by [12, Lemma 5.1 (b)] for
= 2, we prove this directly. Since O = Zy[A], the map Ay Op — O

gives an isomorphism where &a, = Y sen X(6)67 1 € Zp[x][A] and Ay 18
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the Zs[x]-homomorphism induced by £, (see Section 2). Since &a, =
&x Trrq(p)nr, we have

EAn(2Fx) = Eay ([@(m) 1 Q(mg)] ! (H —X(l)) Tr@(m)/F(Cmg))
ler

=[Q(m): Q (H —x( ) Ex (Trgm) /o()nF(Gme))
ler

=[Q(m): Q (H —x( ) Ex(Traeme) /oHnF (Trgem) /ame) (Gme)))
ler

= [ TT —xO) ) &(Trgm ) sa(nne(Gme))
leL

= | [T —x® | &(Tropsannr Trgmme) e Gne))
lel

= (I x| & (Tr@ H/QHNF (H —0f1> (Cf))
lel lel

= &(Trgep)a0nnr(Cr) = 2%

Here o7 is the Frobenius element of [ in Gal(Q(f)/Q). Therefore (b) follows
from (a). O

Remark 4.3. Lemma 4.2 holds also for odd prime p.

We can extend the character w' : Gp — Z5 to ring homomorphisms

. OX w[Go][I'] — OX %»[I] and w* @EX[GO] [r] — @F,XHF]] linearly. For

Yy € OF[GO] [I'], we also denote by yp, or y, its image under the natural
surjection Op[Go][T] = Op[Gol[T].

Proposition 4.4. We write ¢ = xw' as above.
(a) We can define A-homomorphism \Il;foo :L{,:io — A by

1 .
Ty ()2} = g0 (P (u?))
for u¥ € Z/{,io where we regard u¥ as an element of Ux_ .
(b) Put Koo = koo(Ca) = k(poe). We can define A-homomorphism
\I’kocﬂll :Ukoww — A by

1 . _
Uy p(U)2Fy = WUJ (Vi (@)Fy)
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foru € Uy o where u denotes a representative of u in Uy and we
regard u as an element of Ur .

Proof. We simply write ¥ for Vg . Put Ko = F({4) = k(C4) and let 7 be
a generator of Gy = Gal(Ky/F). _

Since ¥(u¥) € (Or[Gol[T])Y = (OF[Go][T])*" = (1 + 7w'(1) O[],
we have w!(¥(u?)) € 20%[I']. By Lemma 4.2 (a), there exists an element
Up (u?) € Zy[x][T] = A such that ¥} (u¥)zX = Lw!(¥(u¥)), which
proves (a).

Assume that koo 7# Koo i.e. (4 € k. Let g denote a generator of Gal(Ky/k).
The restriction (7g)|ge,) of 79 € Gal(Ko/Q) to Q((s) is trivial, since
79(C1) = 7(9(Ca)) = 7(—Ca) = Ga. For y € Op[Go][I'] and h € Gal(Ko/Q) =
Go x A, we see that h(y,) = (hy)yx = hlg,)X(h)yy. Therefore we have

T(W(u)y) = (T¥(w))x = ("), = ¥(a"), = ((1g)¥(u))x
= (79l x(T9) ¥ (u)y = x(T9)¥(1)y
since @ € Uy__. On the other hand, regarding y, w® and 9 as characters of
Gal(Ky/Q), we have

X(19) = x(19)w'(19) = ¢(19) = ¥(1)¥(9) = P(r) = x (7)o (1) = W'().

Then we have '
T(U(u)y) = ' (1) (¥(@)y)

and \Il(ﬂ)x € OF,X[GO]A[[I’]] is in ((QEX[GO][[I’]]ZW = (1 + 7w'(7))OFp[I'].
Hence w'(¥(u)y) € 20py[I'] = [Keo : koo|OFy[I']. By Lemma 4.2(b),
there exists an element Wy (u) € Zo[x|[I'] = A such that ¥y, _ ,(u)zF, =
m&(\ll(ﬁ)x), which proves (b) if koo # Koo. The statement (b) in the
case where ko, = K is clear. O

If pis 0dd, [keo(Cp) : koo] is a divisor of p—1 and Z,[Go] = @~ e, Z,[Go] =
@f:_g Z, where e; € Z,[Go) is the idempotent of w’, we can also prove the
following similarly:
Proposition 4.5. Assume p is an odd prime. We write 1) = yw® where
0 <i<p—2 and the conductor of x is prime to p.

(a) We can define A-homomorphism \Il}foo :L{g}m — A by
P (u¥)eX = w (T (u¥))
for u¥ € Z/{]io where we regard u¥ as an element of U .
(b) We can define A-homomorphism Vi : Uy — A by
koo (W) 2y = wi(\I’Koo (W) Fx)

foru € Uy y where u denotes a representative of u in Uy, and we
regard u as an element of Ux__ .
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We return the case p = 2. By the formula (4.1) and Proposition 4.4, we
have

(4.3) (—H)k(‘ykm,w(u))zﬂx — [Koolw (Dk (1 — g) log fa(X)‘XZO >F,x

for k=4 mod 2.
We often write ¥ = U, U¥ = U} and Uy = U simply. We will
prove the following propositions.

Proposition 4.6.
(i) If pw=1(2) # 1, .
is an isomorphism.
(ii) If pw=1(2) = 1, we have an exact sequence of A-modules

. vy
0— A/(T) — U —"TA—0

where the first map induced by ¢.
Proposition 4.7. Let Ty, be A/(T, exo,1(2) + w1 (2) — 1) where ez
1s the ramification index of 2 in k.
(i) If w1 (2) # 1, we have an exact sequence of A-modules

Vhoo,w
0— Tk’w — L{kww —= A — Tk,d) — O,

where the first map induced by v and the last map is a natural sur-
jection.
(i) If Yw=1(2) = 1, we have an exact sequence of A-modules

. ] .
0— A/(T) @Tk,w — Ukomw ﬂ) TA — 0
where the first map induced by ¢.

Proofs of Propositions 4.6 and 4.7. Recall that F' = Q((n) N k({4) where
m is the odd part of the conductor of k and K,, = F(pton+2) = k(pon+2) for
0 <n < oo. Let 7 be a generator of Gy = Gal(Ky/F).

The case koo = K. Suppose that ko = K, equivalently {4 € k or
k = F({4). By Theorem 4.1, we have a A-homomorphism ¥* : Z/{}éw —

(@F [Gso])¥ by restricting ¥ to Ll}/éoo. By Lemma 4.2, we have
(Or[Goal)” = (OF[Gal)*' [T] = A(1 + 7w (7))2X.

Then the A-homomorphism \Il}b(oo : Z/l}éoo — A in Proposition 4.4 coincides
with the composition map of ¥* : L{}ﬁm — (Op[Gso])? and the isomorphism
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(OF[Go])¥ =5 A given by (1 + 7w!(7))zX — 1. Hence, to prove Propo-
sition 4.6, we have to decide the kernel and the cokernel of ¥*. The ho-
momorphism ¥ in Theorem 4.1 induces a A-homomorphism W, : U, —
(OF [Gs])y naturally and the surjection map w’ : @F,X (Go] — @F»X induces
an isomorphism (@F’X[GO]XJ)Z’ = @EX' By Lemma 4.2, we have @p%[[lj]] =
Azp,. Then the A-homomorphism Wg__  : Uk, — A in Proposition 4.4
coincides with the composition map of ¥, : Ur__ 4 — (@F[[Goo]])w, the
isomorphism (@F[[Goo}]w = @F,x [T] induced by w® and the isomorphism
@F,x [T] = A given by zg, — 1. Hence, to prove Proposition 4.7, we have
to decide the kernel and the cokernel of WU,.

Let H be the kernel of y : A — Q2" and M the fixed field of H. Put
L, = M(pgn+2) for n > 0 and Lo, = M(pty). Then we have Z/{}’[éoo =
U )Y = Z/lg)oo and @’ﬁ = (@g X = (5%4 Furthermore the generators
of @3‘; and @}/1 in Lemma 4.2 coincide. Therefore we have \II%OO = \Il?(oo
Hence, to prove Proposition 4.6, we may assume that Ko, = Lo, i.€. x is
a faithful character of A.

To prove Proposition 4.7, we consider the case where x is not faithful, i.e.
H is not trivial. The kernel and the cokernel of a map Uk, x — Uy, induced
by the norm map Ny : K,, — Ly, are H~'(H, Uk, ) and HO(H, U, ) respec-
tively. Since K,/ L,, is unramified extension at the prime ideals above 2, we
have H~'(H,Uy,) = H°(H,Uy,) = 0. Hence we have Uy, i ~ Uy, . By
using Uk, o = (Uk,, 1)y, we have an isomorphism Nj; : U, 4 — » Ur,, -
Slmllarly the trace ‘map Tryg : FF — M induces an isomorphism (’)F g —
O since H™ (H Op) = HY(H,Op) = 0. Then we have an isomorphism
Try : Opy = Opry and we see that Try(y)ary = Ty (yry) for y € Op.
Recall that

Ly = {1 : prime number | I | m,l 1 f}
where m (resp. f) is the odd part of the conductor of k (resp. ). Since the

conductor of M is f, we have Ly(¢,)» = @. The generetors of the additive
groups O Fy and @ M,y in Lemma 4.2 are

2y = [Q(m) : Q(mg)] ! ( 11 —X(l)> (Troem)/F(Cme ) Fix
ler

and

2y = (Trgep e (Cr))
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respectively. Here we put £ = L, ;,. We can see that
Tru (Trgm)/F(Cme)) = Trom)m (Gm,)

= [Q(m) : Q(me)] Trgs)/m (Trome) /o) (Gme))
= [Q(m) : Q(mc)] Tros)/m (( II —Uf1> (Cf)>

lel
where 0y is a Frobenius of [ in Gal(Q(¢y)/Q), so we have

Tr(zry) = [Q(m) - Q (H —x(l ) (Tr (Trqm) /7 (Cme ))) M

lel
= (Trap)/m (C))mx = 20y
Then, for u € Ug__ 4, we have
Vg ow(wemy = Vi w(w) Try(zry) = Try (Ve o (w)2ry)
= TI"H( N(T(@)Fy)) = W' (Trp(P(a@) Fy))
(U (@)arx) = w (P (Nm(@)ar,)
= W (NG (u)arx) = Cro,u (N (ug))zu,y

and therefore

(4.4) Uk (t) = Vi p(Np(u).
Hence, to prove Proposition 4.7, we may assume Ko, = Lo
In the rest of the proof in the case ko, = Ky, we assume that y is a

faithful character of A, that is, ' = M, the fixed field of x and K
We fix a prime ideal p of F' over 2, and put U = Uk, = l‘glUKmp.
Then U is a Zz[D][Goo]-module and we have Za[A][G]-isomorphisms
U = U ®z,(p) Z2[A] = Homg,p)(Z2[A],U),

where D is the decomposition group of 2 in A. We put xp = X|p and
Yp = xpw'. Then we can define Zs[tp|[I']-modules U¥P and Uy,, and
the above isomorphisms induce A-isomorphisms

(45) U 2 UYP @ppy,) Zoy] and Uy = Uy, @z, 1y Zalt)]-

Theorem 4.1 is equivalent to the assertion that there is an exact sequence
of Z3[D][G s ]-modules

(46) 0—Zo(1) 5 U L Op [Goo] = (O, /(0 = 1)Ok,)(1) — 0.

We will consider the kernel and the cokernel of the homomorphisms ¥* :
UYP — (O, [Goo])¥? and U, : Uy, — (O, [Goo])y,, induced by the map
VU in (4.6). We put V' = ker(—+ : OF,[G] = (OF, /(0 —1)OF,)(1)).
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First we assume x(2) € po i.e. the order of xp is not 2-power. Then
Zo(1)XP = Zs(1)y,, = 1. By the exact sequence (4.6) and Lemma 2.1, we
obtain U* : U¥P? = (Op, [G])¥P and U, : Uy, — (OF, [Goo])yp- In this
case, ¥(2) +yw1(2) —1 = x(2) —1 is unit in Zs[y)], so Ty is trivial. Hence
the assertion follows from (4.5).

Next, we assume x(2) € poe and x(2) # 1 i.e. xp is non-trivial and
of 2-power order. In this case, Zy(1)XP = 1 and Zs(1)y, = py. Let C be
the subgroup of order 2 in D. Since F|,/Q is an unramified extension, we

have H%(C,U) = 1. Then, by the exact sequence (4.6) and Corollary 2.3,
we have an exact sequence

0 —UXP — VX — iy — 0.

Furthermore, by Lemma 2.1, we have U, ,, = V, . On the other hand, by
the exact sequence (4.6) and Lemma 2.1, we have VXD = (’)}%’ [Gs] and
an exact sequence

0 — Vip — OF, xp[Goo] — 1y — 0.
Therefore, we have exact sequences
(4.7) 0— U — O [Goo] — 1y — 0,
(4.8) 0 — Uyxp — OFyxp[Goo] — po — 0.

By these exact sequences, we have I;Tj(Go, Uxp) = ﬁj(Go, Uyp) = py for
j = —1,0. Taking w'-parts of the exact sequence (4.7) and using Lemma 2.1,
we have an exact sequence

0 — UY? — (Op,[Goo])¥? — py — py — 0.

Hence we have an isomorphism ¥* : U¥? = (Op, [Goo])¥P and, in this
case, Proposition 4.6 follows from (4.5). Also taking w'-quotients of the
exact sequence (4.8) and using Lemma 2.1, we have an exact sequence
W
0 — py — Uy, — (OF, [Geo])yp — e — 0.
We recall
Ty = M (T, ep2,0(2) + ™' (2) = 1) = A/ (T, g2, x(2) — 1)

where ey, o is the ramification index of 2 in k. Since assuming (4 € k, we
have ey o = 2. In the case where x(2) € py~ and x(2) # 1, we see that
x(2) — 1 divides ey 2 and

P2 ®zy1yp] LolY] = (Z2[¥D]/(X(2) — 1)) ®z,yp) L[] = Thy-

Hence, in this case, Proposition 4.7 follows from (4.5).
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In the case where x(2) = 1, i.e. xp is trivial, we have F,, = Q2 and D = 1,
so U¥p = U%" and Uy, = U,i. In this case, we note that Zs[¢p] = Zs and

(49) by Rzl ZolV] = La[¥)/(2) = /(T en2,X(2) = 1) = Ty
Here e 2 = 2 since we assume that (4 € k.

We first assume that x(2) = 1 and ¢ = xw’ = x. By the exact se-
quence (4.6) and Lemma 2.1, we have an exact sequence

0—>U“0W—*>V“0—>u2—>Uwoi>Vwo—>0.
Also we have V¥ = (Z3[Gso])*" and an exact sequence
0— Voo — (Z2[Go])o —> g — 0.

In [5], Gillard proved that Ug, . = Z2[I'], where Q2 is the cyclotomic
Zo-extension of Qy. Since U W' = yGo = UQs. o, We have an isomorphism

~

U+ U 55 (Zy]Go])*, and hence

0 — pty — Upo 5 (Zo[Goo])o — 15 — 0

is exact. Hence, in this case, Propositions 4.6 and 4.7 follows from (4.5)
and (4.9).

We finally assume that x(2) = 1 and ¢ = xw. Recall that 7 be a generator
of Gy. By the exact sequence (4.6), Corollary 2.3 and H°(Gy,Z2(1)) = 1,
we have an exact sequence

0—>ZQ(1)—>U°J£>VLU—>O.
Since V = (1 + 7)Z2[G o] + T72[G o], we see that
VY =T(1 - 7)Z[T] = T(Z2[Go])”-

Hence, in the case where x(2) = 1 and ¥ = yw, Proposition 4.6 can be
proved by using (4.5). We will decide the image and the kernel of the
homomorphism

U, : Uy — (Z2]Goo])w-
Here note that U, = U/(1 + 7)U and
(Zo[Gool)w = Z2[Goo] /(1 + 7)Z2[G o]
Since the image of U is V = (14 7)Z[Goo] + TZ2[G o], the image of W, is

(V 4+ (14 7)Z2[Goo])/ (1 + 7)Z2[Go]

(1 +7)Z2[Goo] + TZa[Goc])) /(1 + )2 [ Gox]
T(Zao[Goo] /(1 + 7)Z2[Goxc])

T(Z3[G o)) = TZo[T7.
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For u € U, assume that v mod (1 + 7)U € ker(¥,). Then we have ¥(u) €
(1 + 7)Z2[Goo]. Since (1 4 7)Z2[Gu] = Zg[[Goo]]wO and we proved that
V(U") = Zy [[GOO]]“O in the above. Hence we have u € ker(¥) + U*". Con-

versely, we can also prove that if u € ker(¥) + U*" then « mod (1 + 7)U €
ker(W¥,). Therefore we obtain

ker(0,) = (ker(¥) + U*")/(1 + r)U.

We can see that ker(¥) = Zy(1), U<’ Nker(¥) = 1 and U’ /(1 + 1)U =
H°(Gy,U). By using the definition of V, we have

HO(G(]’ V) = ﬁ_l(G():Z?(l)) = Mo, ﬁ_l(G& V) = ﬁO(G()aZQ(l)) =1
and an exact sequence
1 — HY(Go,U) — py — pg — H 1 (Go,U) — 1

If H°(Go,U) = 1, then we have H'(Gy,U) = 1, and hence U’ = U,.
This is a contradiction to the above results in the case where x(2) = 1 and
¢ = x. Hence H%(Gy,U) is nontrivial, so H*(Go,U) = pt,. Summarizing
the above, we obtain an isomorphism

ker(W,) = Za(1) @ py.
Hence we have an exact sequence
0 — Zo(1) ® py — Uy — TZso[T] — 0.

Proposition 4.7 can be proved by using (4.5) and (4.9).
The case koo # Koo. Suppose that ke # Koo, 6. (4 € k. Then Koo /koo is
a quadratic extension and put G = Gal(K/kso) = Gal(k((a)/k).

Since Uy, = U[g(OC, we have Z/{;foo = (Mioo)w = L{}@m. Therefore Proposi-
tion 4.6 in this case is reduced to the case koo = K.

We will prove Proposition 4.7. First, we assume that k/Q is an unramified
extension at 2. In this case, k¥ = F, ¢ = yw® = xy and G = A. Let

k¥ be the fixed field of keriy = H. As in the case where ko, = Ko, We
can show that N}, : Up . m — Z/{,gc = U,y . Assume that the order of

A/H is even. Let C be the subgroup of order 2 in A/H. Since k¥/Q is
an unramified extension at 2, we have Hj(C,Z/{kw) =1 for j = —1,0. By

Lemma 2.2, {§, A/n = Ysea/n x(6)716 gives an isomorphism Z/{kg,m =
Z/{;@o. If the order of A/H is odd, we also have Uy — Z/{;f’&. We see
that &4 = Ysea x(6)716 = Nu&y a/a- Therefore, for uy € Uy, 4, the
correspondence wuy, — & A(tUy) gives the isomorphism Uy, o = Z/{]io where
Uy is a representative of uy, in Uy, . We define W} (uy) = \I/}foo (& (Uy))-
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Then we have an isomorphism \Ilzomw : Ug...p — A by using Proposition 4.6
for the isomorphism \I/ZO<> : Z/l,:io = A. By the definition of \I/ZOO, we have

W ()X =), (& a(iy))2
1

= §w0(\I/KOO (fX,A(azZJ)»

15 .
= 5w (EaYra (@p))).
Then &, A(VYk, (ty)) maps to Wi (Uy)F,y, by the isomorphism
OF[Gc]l = Orx[G]

given by 2X — zp,. Hence W}, (uy)zry = 200Uk (Ty)Fy), SO Vo
coincides with Wy __ 4 in Proposmon 4.4. Then we have an isomorphism
Vot Uno = A. Since we assume that 2 is unramified in k, i.e. ex o = 1,
Ty is trivial. Hence, in this case, we prove Proposition 4.7.

Next, we assume that k/Q is a ramified extension at 2. In this case
the conductor of k is 4m, thus K/k is an unramified extension at 2. Then
norm map Ng induces an isomorphism N¢ : Uk g = L{[g(oo = Uy, . There-
fore Uy, = (Uf%oo)w = Uk ,6)y = Uk, »- We define a homomorphism
Wl Unoy p — A to the composition of this isomorphism Uy, y = U, 4

and Vg @ Uk, p — A. The kernel and the cokernel of ¥} coincide
with these of Ug__ . Furthermore, we see that e, = ex 2 = 2 and

Ty = M(T,2,0(2) + vw ) (2) - 1) = Tic .

Hence, it is enough to show that \I/k « coincides with Wy, in Proposi-
tion 4.4. Let uy, be an element of Uy . We take a representatlve Uy € U,
of wuy. Since Uy, = Z/{goo = Ng(Uk_,), there exists v’ € Uk, such that
Ng(u') = ty. Denote by [u'] the residue class of v’ in Uk . Then we have
Vo w(ug) = Uy ([u]). By the definition of Wy, _ . in Proposition 4.4,
we have W} (up)zry = w' (Vi (4')Fy). By regarding @y as an element
of Uk, we have

W' (Wi, (W) Fy) = &' (Y, (Ng(w))F )
=" (14 9) ¥k (W) Ex)
= (1+¢(9)w' (Yo, (W) Fy)
= 20" (Vg () Fy)

where g is a generator of G. Therefore we obtain

1, _
oo ()28 = 500" (Wi (Ty ) px).
Thus \I!;m’d} coincides with Wy _ ,, in Proposition 4.4. H
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In [12], we proved that if p is odd and ¥w ™! (p) = 1, there exists an exact
sequence of A-modules

0— A/(T) — Uy, p — TADA/(d,T) — 0

where d is the order of the decomposition group of Gal(k/Q). In the same
way as the proof of Proposition 4.7, we can also prove the following:

Proposition 4.8. If p is odd prime number and 1w~ (p) = 1, we have an
exact sequence of A-modules

0 — A/(T) — Un, Troows Ay,

5. cyclotomic units

In this section we recall the definition of the cyclotomic units in the
sense of Sinnott [10] and we define two cyclotomic units groups Cy__ and
C,’%O. We will determine generators of the 1-part of Cr_ and the i-quotients
of Cp_. and Cl’%o. For any abelian field L, let Dy, denote the subgroup of the
multiplicative group L* generated by

{:tl, NQ(t)/Q(t)ﬁL(l — sz) | t,ae Z,t > 1, (a,t) = 1}.

Denote Ep, by the group of units in L. The cyclotomic units C} in L in
the sense of Sinnott is defined by Dy N Ey. For a real abelian field L, let
C1,1, be the group of units in L whose squares lie in C. We define a group
of cyclotomic units Cy, in L by C7, - Cy p+ where LT is the maximal real
subfield of L. If L is real, then C} C Cy 1, and hence Cp, = C 1.

Recall that F' = Q(m) N k(C4) where m is the odd part of the conductor
of k and K, = F(pon+2) = k(pgn+2). We define

e = (Ng@r2njg@m20ni, (1= Gre2(f " ))nzo € lim Ck,
for t | m, t # 1 and
r(y)—1 _ .
= (~Gor2) "3 (1 = 2] ™z € lim i,

For an abelian field L, we identify C7, and C] with their images under the
diagonal embedding E;, — (O ®7Zs)*. Since (O, ®zZa)* is decomposed
into a product of the principal units /7, and a finite group of odd order,
there is the projection (O ® Zg)* — Up. Let Cr, and C} be the closure
of the intersections Uy, N Cr, and Uy, N C in Uy Hence Cr, and C}, are the
closure of the image of C, and C} under the projection (O, ® Z2)* — Uy,
respectively. Put

C=Cp. =lmC,, € =Ch =lmC.
For n € T&HC K, Or 1 € @Ckn, we shall also denote by 7 its image under
the projection lim(Ok,, ® Zz)* — Uk, or §m(Ok, @ Z2)* — Uy, so 1y is
in Cfc__. For any t with ¢ | m, identifying Gal(Q(2""2t) N K,,/Q(2""%t) Nk,,)
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with G = Gal(Ko/k), we have Ng(n;) € C;,__. Put € = (—=(on+2)n>0 € Cr, -
First, we prove the following:
Lemma 5.1.

(a) Cy_. is generated by

{Ng(€), Ng(m) | t[m}
as Zs|G][T']-module.
(b) Assume that k is a real abelian field. Then Ci_ has a submodule of
finite index generated by

{Ng(m). 0/ ™" oy [ ] m.t # 1)
as Zs|G][T]-module and C;__ has a submodule C._ of finite index.
Furthermore if hy = [Q(t) : Q(t) N F] is even fort | m,t # 1, then
Cr.. 1is generated by

{2, m |t mt£1}
as Zo|G][T']-modules.

Proof. In [8], it is proved that Cj_ is generated by {e, n; | ¢ | m}. Since
(Q(272t) N ky) (Ca) = Q(27F2t) N K, we have (Q(2"T2t) N K,,) - kyp = Ky,
so G = Gal(Q(2"*%t) N K,,/Q(2"2t) N ky). Therefore Ng(Cj_ ) = C;,_ and
the claim (a) is proved.

Assume that k is real. Fix ¢ with 1 # ¢ | m. Let g, be the element
of Gal(Q(2"*2t)/Q) such that (C2n+2<t)5n = <2—711+24t—1 and g, the restric-
tion of g, to Q(2""%t) N K,,. Since Q(2"*2t) N k,, is the maximal real sub-
field of Q(2""2t) N K,,, the element g, is a generator of Gal(Q(2"*2t) N
K,/Q(2"2t) N k,). We see that

NQ(2n+2t)/Q(2n+2t)ﬂKn (1 —_ C2n+2 Cg_n ) (77"{(’7))9’!1
(1 - Gy ") )

= Ng(an+2¢)/Q(2n+26)NKn (1= ConiaCy ") 0gn

1 G
(1= CoraG " )r
(oD - GG
(_<2711+2C;‘7_n)5(7)(1 — C2n+2Cfin)’i(’Y)
11—
(1= Gone2g7 "))

= Ng(an+2s) gtz (1 — Grr2¢f )77+,

= Ng(an+2¢)/Q(2n+26)NKn

= Ng(an+2¢)/Q(2n+26)NKn

= Ng(an+2¢)/Q(2n+26)NKn
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We used that Ngant2y) /geant2enk, (Ct) = 1 in Uk, . Therefore

Noan+2ty /om0, (1 — Gunizf )Y+

is an element of Q(2"*2t) N k,,. Then (7]?_”(7))2 = Ng(n¢)Y~*). Therefore
by (a), we have
({Ngm), = | ¢ 1m}) = ({No(m)%, Non)y== |t |m})
(C )(2 T

O()

In particular, we have ({Ng(n.), 77;’_”(7) | t | m})? C C,_. Since Cy,, =
{n € & | n* €Cp_}, we have

({Notm, = | 1 m}) < i

Therefore we have
_k 2 .
Cllcoo 2 Ciw D <{Ng(7]t), n, ™) ‘ t| m}> - (C]’%o)(ZT)_

Since C,__ is a finitely genereted Zy[T]-module, C;,_/ (C,’Coo)(z’T.) is finite.

Then C;,_ D Ci_ and Cf_ D ({Ng(me), nzfﬁ(v) | t | m})? are of finite index.
The module U has no nontrivial element killed by 2 by Theorem 4.1.

Therefore C, O ({Ng(nt), 773_”(7) | t | m}) is also of finite index.
Assume that h; is even, i.e. % € 7Z. We also see that

h n gn
<(_C2”+2)_;NQ(2"+2t)/Q(2"+2t)ﬂKn(1 — (on+2¢y ))

(—Gonsa) # Ngan+21y ion+20nk, (1 — GasaG 7 )
(—Gonsz) # No(an+24) /Q2n+26)n K, (( (o2 G 7 (1= Czn+2CtU_n)>

(—Cant2)™ 2NQ(2"+2t)/Q(2”+2t i, (1= Gon2(7 )

where we used [Q(2""%t) : Q(2"2t) N K,,] = [Q(¢) : Q(¢t) N F] = hy and
NQ(2n+2t)/Q(2n+2t)mKn (Ct) =1in Z/[Kn' Hence

h —n
(—Can+2) ™2 Nogantasy gnt2nnm, (1 — Gt )

is a unit in k,. Then (e~"/21,)% = Ng("/?n,) = Ng(n:) € Ng(Ck..) = Cr..
since Ng(e) = 1, so e /2

Furthermore, we see that

Cho DCh D ({e ™ Py, my | | m,t #1})°

n¢ is in Cj . Similarly we see that m € Cp__.
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and
Ch, = Ng(Ck..) = ({Ng(e), Ng(m) | t|m})

= ({2 i | ¢ | mt #1})

= ({e Py, | £ mot £ 132
Therefore C7_ = ({e /20, my | t | m,t # 1})2. The module Uy has no
nontrivial element killed by 2 by Theorem 4.1. Therefore, we obtain

Choo = ({7 Pme, mu | £ m,t #1}).

Il

Remark 5.2. The condition that 2 | hy = [Q(¢) : Q(¢) N F] in Lemma 5.1

(b) holds, if 2 is unramified in k. Indeed, if k is real and 2 is unramified in k,
then F' = k, so F is real. Hence, Q(¢)N F is also real, so 2 | [Q(¢) : Q(¢) N F].

Lemma 5.3. Assume that ¢ = xw' is a non-trivial, even character of G.
Put & = S 5x(6)07Y, & running over all elements in Gal(F N Q(f)/Q).
Then the A-module C}io is generated by nfcx

Proof. We regard x as a character of Gal(Q(f)/Q). Since x(6) = 1 for
0 € Gal(Q(f)/Q(f) N F), we have

nfr:( 11 <1—<2n+2<;f"“>><<5>)
5eGal(Q(f)/Q) n>0

Let k¥ be the fixed field of ¢ and FX = Q(f) N k¥(¢4). Then FX((y) =
kY (Ca)- Put kY = kYQn = kY (Conia +(ontia), K = URY, K = kY (Gni2) =
FX((yni2) and KY = UKY. Let g, be the element of Gal(Q(2"2f)/Q)
such that (C2n+2Cf)E" = (;,}jLQCJﬂ and g, the restriction of g, to K. Since

k¥ is a real abelian field and [KY : k¥] = 2, the element g, is a generator
of Gal(KY/k¥). We see that

In
(H(l _ C2n+2<?—"6—1)x(6)>
1)
(1= oGy 0 X®

(=CotiaGr ™ O (A = G " O

-1 s
(=G T YT (A = Guang "OTXO)

= °">:] %':l %121

(77 X (1 = Gueacy TN
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where ¢ runs over all elements of Gal(Q(f)/Q). The image of

(TG )..,

under the projection l'&n(OKn ®Z9)* — Uk, is 1. Then we obtain (nff‘)g =

nfc" where g = (gn)n>0 € Gal(K% /k% ). Therefore nfcx is an element in £ .y
on which g acts trivially hence is in €,y . We see that

(17)° = Nyce s (7)

. o—n§1 )
- ( 11 Noggans ) jqanta g (1 = GonraCF 07X ))

6€Gal(Q(f)NFX/Q) n=>0

is in C,::wa so in C, . . Hence 7]?‘ € C+ C Cg,. Let 7 be the generator

of Gal(Kff /FX). As in the proof of Proposition 4.4, by the isomorphism
Gal(Kgf/@) ~ Gal(Kg’/FX) x Gal(FX/Q), Tg maps to (1,(7g)|rx) and
x(79) = w(7). Hence we see that

()7 = (7)== ().

Clearly any element of A acts on nfc" via x. Therefore any element of G acts

on nfcx via 1, so nff‘ isin CZOO. Then CZOO contains the submodule generated

by nfc". We can show that both modules are coincide as in the proof of odd
prime version [12, Lemma 6.2 (a)]. O

For n € Uy, we denote by ni_ 4 = 1y its image under the surjection
Uy, — Uy, - Let Cpy = Cy and 5,;00#1 = 51’11 denote the images of Cy,__
and C,’goo under the surjection Uy — Uy, 4 respectively. Then we have
isomorphisms (U/C)y, = Uy /Cy and U/C')y = U¢/C~1’p.

Lemma 5.4. Assume that k is an abelian field of the first kind and ¢ = xw'
is a non-trivial, even character of G = Gal(k/Q). The A-module C},__,, is
generated by {Ng(Mm,; )k | I C L}.

Proof. By Lemma 5.1 (a), CN{& is generated by {Ng(€)y, Ng(ni)y | t | m}. If
f1t, then there exists 6 € A such that 0 ¢ ker y and 0 € Gal(F/Q(t) N F),
hence x(8) # 1 and 70~! = 1. Let sy be the surjection map from Ug
to Uk, the x-quotient as a Zs[A]-module Uk . Since sy (1)
5 ()X =1 we have s, ()X =1 = 1, i.e. s,(n) is a torsion element of
Uk x- In the proof of Proposition 4.7 we see that U, has no torsion ele-
ment and Uy, = Uy p @z, ] Z2[x], then sy (1) = 1. The image (1) i, v
of s, (n¢) under the surjection Ug_  — Uk y is trivial, where Ug__ , is the
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y-quotient of the Zy[Gal(Ky/Q)]-module Uk . If koo = Koo, i.6. G = {1},
then (Ng(m¢))y = (M)k,w = 1. In the case where ko # Koo and 2 is
ramified in k, we see that Uy o = Uk and Ng(n:)y maps to (1) k..
by this isomorphism in the proof of Proposition 4.7, hence Ng(n;)y = 1. In
the case where ko # Ko and 2 is unramified in k, Uy 4 has no torsion
element, hence Ng(n:)y = 1 by the same method as in another case. For
any 0 € Gal(F/Q), we have ¢>~! = 1. Hence we can prove that Ng(e)y = 1
similarly. Therefore C~{p is generated by {Ng(n:)y | t | m, f | t}. The rest
of the proof, we can prove in the same way as in the proof of odd prime
version [12, Lemma 6.2 (b)]. O

Lemma 5.5. Assume that k is a real abelian field of the first kind and
Y = xw' is a non-trivial, even character of G = Gal(k/Q). The A-module

CNkww has a submodule of finite index generated by

{Ng('rlmj)koo,lh(n;ynzﬁ(’y))koo,’l/i ’ Ic ‘C}

and the A-module CN;COO W has a submodule CNI%OO,w of finite index. Furthermore
if h; = [Q(myp) : Q(my) N F| is even for I C L then CNkooyd, is generated by

{0 Voo | T C L.

Proof. By Lemma 5.1(b), we can show that the A-module Cj__ , has a
submodule of finite index generated by

{NG My oo s (10" N | T € L)

similarly as the proof of the previous lemma. Similarly we can show that if
hr is even for I C L then C__  is generated by

{2y Yo | 1 C L3

by Lemma 5.1(b). Also we can see that CNl{cw,w has a submodule 51%0@,1# of
finite index by Lemma 5.1 (b).

6. The proof of main theorems

Proof of Theorem 3.1. Coleman’s power series of nfﬁ‘ is

[T a-a-x)¢ »o.
6€Gal(Q(f)/Q)
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By using the formula (4.2) and Lemma 4.2 (a), for k =i mod 2,
3
(=) (T} (7)) 2

= %Dk (1 — 2) log (H(l — (1 - X)ggl)x(6)>

1

X=0

= %Dk_l(l —¢)Dlog (H(l -(1- X)g;i*)x@))

)

X=0

_ %Za—lx(é)(Dk_l(l —¢)Dlog(1 — (1 — X)¢y))|x=0
é

e - (1 - X)¢r (1= X)°¢
—525 "x(8) D! (1—(1—X)Cf - 1—(1_X)2412” X=0

B )¢y (1—X)2agk
_2Z DklZ(l—l—X)f 1—(1—X)2f>X:0

_ (1= X6 (Tr(¢F)) (1= X)*6,(Tr(GF))
=3 1;( 1—(1iX)ff N 1—(1fX)2ff >

_lpeiy (x(a)(l - X x(2a)(1 - X>2“> N

1-(1-X)f 1-(1-X)2f
_1 _i k—1 i X(a)eaZ B X(QCL)QQGZ X
2\ dZ) HZ\1-elZ  1-e¥Z Yo

1/ d\N*'& 7/ Buy oo B, -
:2<_dZ> Z( =X 7 4 x(2) =X (22) 1)z><

|
=1 n: n:

X=0

Z=0

= LD ()2t P
= 5 (=D gy(r(n)* — 12X

= LR gyl - 1)
where J runs over all elements of Gal(Q(f)/Q), Tr = Trg(s)/q()nr and
1-X=¢?s0D=(1-X)d/dX = —d/dZ. Therefore we obtain
1

(5 = —595(T)-

By Lemma 5.3, we have
Wy (CY) = (gu(T)/2) C A
Therefore Theorem 3.1 follows from Proposition 4.6. O
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Proof of Theorems 3.2, 3.4 and 3.5. We first calculate W __ o ((0m;) Koo 1)
Let M be the fixed field of ker x and L,, = M (pgn+2) for 0 < n < co. We
see that

= (Nk, 1. No@i+2my)/@@m+2mnni, (L = G2, ) nz0

(]. — C2n+2<-m )[KnQ(2n+2mI)mKn])

Q(2"+2m;) /Ly >0

)[F:@(mz)ﬂF])

(

= (N,

(N (2n+2£) /L, NQ(2n+2mI)/Q(2n+2f (1 - <2n+2< n>0
=0

)[FQ'I’)’Z[ OF]HZGI M= )

where ~; (resp. 07) is the Frobenius element of | in G (resp. Gal(M/Q))
and we put 7y = (Ngn+25)/L, (1 — C2n+2c‘?7n))n20. We have, by (4.4)

\IjKoozw((nmI)Koozw)
=V (VKo /Lo Mmy) Lo )

= \I,LooW(((n})[F:Q(mI)mF} HleI(VZ—UfI))¢)

lel

=[F:Q(m) N F) (H(wi(l)(l +T)" — x(l)_l)) VL (17) Lo )

lel

=[F:Q(m (H —x()™' A -v(0)(1 +T)tl)) UL oo (17) L) -
For k =i mod 2, by the formula (4.3) and Lemma 4.2 (b), we have
(=R) WL (1) o) 201,
= (D1 = £)10g N (1 = (1 = X)¢p) 0]
= (D* (1 = ) Te(Dlog(1 — (1 = X)¢5)) x=0)Mx

)“Tr(c ) (1= X)*Tr(GF)
(D“Z< X)Jf - 1—(1—X)2]; )

XZO)MX

_ ket zf: ((1 —1 X)*Tr(Chmy (11— X)* TT(C?“)M,X>

-(1-X)f 1—(1-X)2f

f 2a
. x(a)(1—X)*  x(2a)(1 - X)
= D* 1; (1—(1—X)f T I-(1-x) )ZMﬁx

X=0

X=0
where N = Ng(y)/m and Tr = Trg(sy/ar- Then we have

VLo s (1) L) = —9¢(T),
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and hence

(6.1) VK o o ((hmy) Koo ) = v1d1 (H(l — ()1 + T)“)) gu(T)

lel

where we put vy = —[F : Q(mz) NF][L;e;(—x(1)™!) and this is a unit in A.
Assume koo = Koo. In this case, the Galois group G is trivial, and then
we have

koo, (NG (M oo ) = VKo (M) Ko )
=vrdr [J(1 = ()1 +T)") gy (T).

lel

Assume ko # K. By Proposition 4.4 (b), we have

Weoo o (NG (Mg D koo ) 2Fx

= %wi(\I’Kw (Ng(1mr))x)

_ %w(% (g 1) + & (T (0%,)x)

1
= 5(‘1’Koo,¢(77m1)f<w,¢) + Vo (M0, ) Koo ) ) 2F x

1
= Sk () ) + i ()52 2

1

o 5(\PK007¢((nmI)Koov¢) + \I/Kooﬂl)((nml)Koovw))szx
= Uk o o ((Mmy) Koo ) 2F,x5

and hence, by (6.1),

koo o (NG (M Do ) = vrds (H(l ()1 + T)“)) 9y(T).
lel

Ic£>

We can see that ker(¥y__ ) N 5,’%0#) = {1}. Therefore Theorem 3.5 follows
from Proposition 4.7.

By Lemma 5.4, we have

Voo (Ch ) = <d1 [ =2+ 1)) gy(T)

lel
= Agy(T) C A.
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Assume that k is real. We will calculate the values \I/komw((n?n_f(w)) foo )
and Wy 4 ((€"1/20,, )k 4). We can see that

—x 1, .
‘I’kw,w((%, (7))1@00,1;,)21:7)( = 5@; Uk, ("731, (v))x)

1

— 5(7 — /g(’}/))wi(\IIKOO (nmf)x)

1.

and hence, by (6.1),
W@wﬂmﬁ“”nww%=w@([ﬂ1—¢UKP+TW0;T%MT)
lel

Furthermore, we can see that

_ 1 . _
Wy (€M P00 Vi )2y, = 5 (Vi (e ")y

1 .
= iwz(\IlKoo (67h1/2)x + \DKOO (nm1>x)

= S (Wi m,)y)

1

= Q\I’Kooﬂ/)((nmI)Koo»"z’)Zva

and hence, by (6.1),

U (€72 Yio,0) = vrds < [T —»+ T)”)> %%(T)-

lel
Let C” koo, D€ the submodule of 5koo,¢ generated by

{NG (i oo s (i | T € LY.

By the above calculation, we have

U (ko)
= 2d; [0 =)@ +T)"),Td; [T = w1+ T)) [ T C L)gy(T)/2
lel lel

= (2,1)2A(gy(T)/2).
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By Lemma 5.5, 5]%071/, D é\//lkoo,w and <Ng(7]m1)koo’w ‘ I C £> = 5’]%071/, D)
C,%ww, so we have

Voo 0 (o) O (2, 1)A(g0(T) /2),
Wi (Che,p) = A9 (T) D 20k (Crov ).
Since A is an integral domain, we have
A9y (1)/2 D Upore p(Chre,) D (2, T)A(9(T)/2).

Therefore there is an ideal A" of A such that % D " D (T,2)A and
U (Cho ) = A (gy(T)/2). This completes the proof of Theorem 3.2.
Assume that k is imaginary. We put

" = (Ngnrag e rzgmit (1= G2 )Inz0 € lim Cpr ¢

for ¢ | m, t # 1. Recall C, = C},__ - C,+. Then CNkww has a submodule of
finite index generated by

{NG (i ) koo 5 Nk;(@)/kjo (777—!!_1[)]9007'(/}7 ((UTTLI)’Y_H(’Y))I%OW | ICL}

and if 2 | b} = [Q(4my) : Qdmy) N kT ()] for I C L, then Cp_ is
generated by

{(e"7 12008 Voo NG (i oo | 1 C L}

by Lemma 5.1. We put a; = [Q(4m;) N Ko : Q(4my) N k™ ((y)], which is 1
or 2. Then ;= 1m; or N i+ ¢,y (m,) if ar = 1 or 2 respectively. Since

kL (C4) D kg)ov we have (NKoo/kio(Q)(nmI))Koo,w = (nml)%(m’w. Therefore

(M) Koo = (M) %

By Proposition 4.4, we compute the following:

+ 1 i
‘I’koo,w(( ~h /277m,)koo,¢)ZFx mw (Vi (€ h1/277;2,) )
_ n

1
= +
I:F(O . k] Kmylﬁ((nm[)Km,w)ZF;X

(073
= m\IjKOO7¢((nmI)K007¢)ZF,X>
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o (Niit o) i iy Voo ) 2B
1, N
" Ko k] (P koo (Nict ¢y, (i ))x)

1
= 15y -7 Vet (Nt ot O i) 2

1
= m‘I’Kmnﬁ((n%)%{m,lp)Zﬂx

20[1
= m‘I’Kwnp((nmI)Kwnp)ZRxa

and

W () "N ) 2my = [Kol:k]‘“i(‘l’Koo (it )50,

— [K()l: 7 (v — k(7)) (Tk.. (TI;FL,)X)

1
= & k]T‘I/KOO (M) Koot 2F

ay
= [KO . k]T‘IJKoovw((nmI)Koovw)Zva'

Therefore, by (6.1), we have

e (205 e ¢>=[ng)‘{“,j](Hu—w(z)(lw)tl))w),

lel

Uhoo s (Nict ()t Ol Voo t) = 2[;511%]1 (H(l — () (1 + T)“))gw(T),

lel

Vi (5, D) = HELL (Hu — 1+ Tm) Ty (T).
’ lel

Since k is imaginary, we have [k : k™| = [kT(¢4) : k7] = 2, and hence [K :
k] = [Ko : kT((4)]- Recall that vy = —[F : Q(mgz) N F][Le;(—x ()71 =
—[KO : Q(4m£)ﬂ[(0] Hle[(_X(l)il) and d; = [Q(4m£)ﬂ[(0 : Q(4m1)ﬁK0].
Then we have

vrdrar _ [Ko : Q(mr) Nk (Ca)] (H - >

[Ko: k] [Ko : kT (Ca)]

lel

= —[k"(C) : Q(dmr) N ET(Ca) (H —x(l )

lel
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We can show that

agdy ¢
A = 1—()(1+T)" ICL) DAy
k4 <[K0‘k]<l|€[|( P(I)( ) )> > et
Using <Nk§o(c4)/k;(n$1)kww | I CL)= 5’ko+o’¢ > C~z+ o e have

Voo (Cht ) = 2%t 4 g0(T)

and hence
Wit 96 (T) D s p(Crio ) D Ry + (2, 1)U ) g0 (1),

If 2 | hj for I C L, then Wy (Crop) = At 4gy(T). We note that if
C4 € k, then Ryt , = Ay . This completes the proof of Theorem 3.4. [

Remark 6.1. By Lemma 5.5, if [Q(¢) : Q(t) N F] is even for ¢t | m,t # 1
then Cy_ 4 is generated by

{0 Voo | I C L}

where hy = [Q(my) : Q(my) N F]. In this case, using the above calculation,
we have

Vhoo 1o (Choo ) = 2A(90(T)/2)-
Then under the condition that [Q(¢) : Q(t) N F] is even for ¢ | m,t # 1, we
have 2’ = 2. In Remark 5.2, we mentioned that if 2 is unramified in & then
this condition holds. Therefore, if 2 is unramified in k, it holds that A’ = 2
in Theorem 3.2.

7. p-invariants and the Iwasawa main conjecture

Let M be the maximal abelian pro 2-extension of ks, unramified outside
all primes over 2 and put

X = Gal(M /koo).

As usual, X is a module over Zs[G][I'] so A-modules X¥ and X are defined.
We will consider the p-invariants of X% and Xy

Assume that k is real. In this case, it is known that X is a finite generated
torsion Zso[[I']-module. Furthermore, in [7], it is shown that the p-invariant
of X is zero by using Ferrero’s result [3]. Therefore we have p(X¥) = 0 and
n(Xy) = 0.

Assume that k is imaginary. In this case, the Zy[I']-rank of X is equal to
[k : Q]/2. Let k™ be the maximal real subfield of k and J the generator of
Gal(k/k') = Gal(koo/kZL), i.e. J is the complex conjugation. We put

Xt={reXx|Jz=2}), X =X/(J-1DX
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Since 1) is even, we regard 1) as a character of Gal(k*/Q) and we have
XV (xhY Xy = (X))

Let M* be the maximal abelian pro 2-extension of kX unramified out-
side all primes over 2. We can show that XT is pseudo-isomorphic to
Gal(M™/kL). Therefore the y-invariant of X¥ is zero. Let M’/kL be the
maximal abelian subfield of M/kZL, then M’ is the fixed field of (J — 1)X,

i.e. Gal(M'/kso) = X4. Let M™ be the maximal abelian pro 2-extension
of kI, unramified outside all primes over 2 and all infinite primes. Then

kL C koo C M+ c M’. Since all infinite primes are totally ramified in
koo/kZ and the number of finite primes of £} which ramified in M’ is
finite, the degree [M’ : M™] is finite. Therefore the kernel and the cokernel
of the restriction map

X, — Gal(M/kL)

are finite. By [6, Proposition 8], the torsion submodule of Gal(M™* /k1) is
pseudo-isomorphic to (Z2[I']/(2))[Gal(k*/Q)]. Therefore u(%Xy) = 1.
Summarizing the above, we have
(7.1) p(x’) =0
and
0 if k is real,
(7.2) p(Xy) = e
1 if £ is imaginary.
By Theorem 3.1, 3.2 and 3.4, the p-invariant of X¥ and Xy coincide with
that of U¥/C¥ and (U/C),, respectively, that is, we obtain the following:

Theorem 7.1. For an abelian field k of the first kind and an even character
¥ of Gal(k/Q),
pXY) = p@?[CY), p(Xy) = p(U/C)y).
Put
W =2X®z, Q
and define W (%) the eigenspace of W corresponding to the action of G via
v and char A(W(w)) the characteristic polynomial of T acting on this space.
We see that
W) =~ x¢ 7, Q, = Xy ®z, Q,.
The Iwasawa main conjecture proved by Wiles [14] is that

1
chary (WW) = §g¢(T).

It is known that (394 (7)) = 0 by Ferrero-Washington [3, 4]. By (7.1)
and (7.2), the Iwasawa main conjecture is the following:
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Theorem 7.2. For an abelian field k of the first kind and an even charac-

ter 1,

charp (XY) = g, (T)/2
and
g9u(T)/2 if k is real,

harp (Xy) =
chary (Xy) 9y(T) if k is imaginary.

By Theorems 3.1, 3.2 and 3.4, we can show the following:

Theorem 7.3. For an abelian field k of the first kind and an even character
¥ of Gal(k/Q),
chary (X¥) = charpy (UY/C¥), chary(Xy) = charpy (U/C)y).
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