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Semi-local units modulo cyclotomic units in the
cyclotomic Z2-extensions

par Takae TSUJI

Résumé. Fixons un corps abélien k dont le conducteur n’est pas divisible
par 8 et notons k∞/k la Z2-extension cyclotomique avec le n-ième corps in-
termédiaire kn. Soit U (resp. C) la limite projective des groupes des unités
semi-locales (resp. des unités cyclotomiques) en 2 de kn. Pour un caractère
pair non-trivial ψ de Gal(k/Q), nous étudions la structure galoisienne de
la ψ-partie Uψ/Cψ et du ψ-quotient (U/C)ψ de U/C y compris dans le cas
2 | [k : Q].

Abstract. Fix an abelian field k whose conductor is not divisible by 8 and
denote by k∞/k the cyclotomic Z2-extension with n-th layer kn. Let U (resp.
C) be the projective limit of the semi-local units at 2 (resp. of the cyclotomic
units) of kn. For a non-trivial even character ψ of Gal(k/Q), we study the
Galois module structure of the ψ-part Uψ/Cψ and ψ-quotient (U/C)ψ of U/C,
taking into account the case 2 | [k : Q].

1. Introduction
Let p be any prime number and k an abelian field. We denote by k∞/k

the cyclotomic Zp-extension with n-th layer kn for n ≧ 0. Let Ukn be the
semi-local units of kn at p and Ckn a group of cyclotomic units of kn defined
in Section 5. Put U = Uk∞ = lim←−Ukn and C = Ck∞ = lim←−Ckn where the
projective limits are taken with respect to the relative norm maps. In this
paper, we study the Galois module structure of U/C for p = 2.

We still assume that p is an arbitrary prime number. We may assume
that k is of the first kind, that is, the conductor of k is not divisible by
8 or p2 if p = 2 or not respectively. Then k ∩ Q∞ = Q where Q∞ is the
cyclotomic Zp-extension of Q and Gal(k∞/Q) = G×Γ with G = Gal(k/Q)
and Γ = Gal(k∞/k). We regard U/C as a module over the completed group
ring Zp[G][[Γ]]. We decompose U/C by the action of G. Let ψ be a non-
trivial even character of G with values in Qp

× and eψ the idempotent of
Qp[G] corresponding to ψ. If [k : Q] = |G| is not divisible by p, then eψ is in
Zp[G] and eψ(U/C) becomes a modules over Zp[ψ][[Γ]] where Zp[ψ] denotes
the ring generated by the values of ψ over Zp. As usual, we regard any
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Zp[ψ][[Γ]]-module as a module over Λ = Zp[ψ][[T ]], by fixing a topological
generator of Γ. When p | [k : Q], one cannot define a ψ-component as a
direct summand. However we can define two Λ-modules, the ψ-part Uψ/Cψ
and the ψ-quotient (U/C)ψ. If p ∤ [k : Q], both Uψ/Cψ and (U/C)ψ coincide
with eψ(U/C) and, generally, after tensoring with Qp, these coincide with
eψ((U/C)⊗Qp).

We recall the former results on the structure of the Λ-modules Uψ/Cψ
and (U/C)ψ. For any prime p and any k with p ∤ [k : Q], the structure of
the Λ-module eψ(U/C) = Uψ/Cψ = (U/C)ψ was determined by Iwasawa [9]
and Gillard [5], which is described in terms of the power series gψ(T ) of
Λ associated to the Kubota–Leopoldt p-adic L-function. For odd prime p
and any k without assumption p ∤ [k : Q], the author [12] determined the
structure of the Λ-modules Uψ/Cψ and (U/C)ψ. She showed that Coleman’s
homomorphism induces two Λ-homomorphisms

Ψψ : Uψ/Cψ −→ Λ/(gψ(T )/2), Ψψ : (U/C)ψ −→ Λ/(gψ(T )/2)

and determined the kernels and the cokernels of Ψψ and Ψψ respectively.
(In [12], Ψψ and Ψψ was denoted by Colψ and Colψ respectively.) In par-
ticular, she showed that

charΛ(Uψ/Cψ) = (gψ(T )/2), charΛ((U/C)ψ) = (gψ(T )/2)
where charΛ(M) denotes the characteristic ideal of a Λ-module M . We
note that (gψ(T )/2) = (gψ(T )) holds as an ideal of Λ since p is odd. For
the µ-invariants of Uψ/Cψ and (U/C)ψ, we can deduce

µ(Uψ/Cψ) = 0, µ((U/C)ψ) = 0
from our results and the Ferrero–Washington theorem [3, 4]. Under the
assumption p ∤ [k : Q], the main results of [12] coincide with the results of
Iwasawa and Gillard for odd prime p. For any prime p and any k without
the assumption p ∤ [k : Q], Greither [8] determined the structure of the
Λ ⊗ Qp-module eψ((U/C) ⊗ Qp) = (Uψ/Cψ) ⊗ Qp = (U/C)ψ ⊗ Qp. Only in
the case where p = 2 and 2 | [k : Q], the structure of the Λ-modules Uψ/Cψ
and (U/C)ψ have not been determined yet. In this paper, we determine
those structure in the remaining case, that is, p = 2 and 2 | [k : Q].

Let p = 2 and k be any abelian field of the first kind including the case
where 2 | [k : Q]. We study both cases where k is real and imaginary and
let ψ be a non-trivial even character of Gal(k/Q).

In the main results of this paper, Theorems 3.1, 3.2 and 3.4, we define
two Λ-homomorphisms

Ψψ : Uψ/Cψ −→ Λ/(gψ(T )/2), Ψψ : (U/C)ψ −→ Λ/(gψ(T )/2)

and determine the kernels and the cokernels of Ψψ and Ψψ respectively
for p = 2. We show that the kernel of Ψψ has the µ-invariant 1 when k is
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imaginary. In particular, we can deduce the following
charΛ(Uψ/Cψ) = (gψ(T )/2)

and

charΛ((U/C)ψ) =
{

(gψ(T )/2) if k is real,
(gψ(T )) if k is imaginary.

Therefore, by using the Ferrero–Washington theorem [3, 4], we obtain the
following

µ(Uψ/Cψ) = 0
and

µ((U/C)ψ) =
{

0 if k is real,
1 if k is imaginary.

Our results in the cases where 2 ∤ [k : Q] (and p = 2) coincide with the
results of Iwasawa and Gillard. If k is imaginary, that is, the infinite places
ramified in k, then [k : Q] is divisible by p = 2. Therefore Iwasawa and
Gillard did not treat the cases where k is imaginary. We show that the
structure of (U/C)ψ depends on whether 2 is ramified in k or not. Actually,
if p = 2 is ramified in k, the kernel of Ψψ has a finite Λ-submodule Tk,ψ
defined in Section 3. When p is odd, whether p is ramified in k does not
affect the structure of (U/C)ψ and the Λ-module Tk,ψ does not appear in the
kernel of Ψψ. We remark that the ramification index of p in k is a divisor
of p or p− 1 if p = 2 or not since k is of the first kind. We further remark
that Iwasawa and Gillard did not treat the cases where 2 is ramified in k.

In this paper, we study a relation between the Iwasawa main conjecture
and our main theorems. Let M be the maximal abelian pro 2-extension of
k∞ unramified outside all primes over 2 and put

X = Gal(M/k∞).
Then Λ-modules Xψ and Xψ are defined. By our main theorems, we can
show that

µ(Xψ) = µ(Uψ/Cψ), µ(Xψ) = µ((U/C)ψ)
in both cases where k is real and imaginary. Therefore, by the Iwasawa
main conjecture proved by Wiles [14] and our results, we obtain

charΛ(Xψ) = charΛ(Uψ/Cψ), charΛ(Xψ) = charΛ((U/C)ψ)
including the µ-invariants.

The content of this paper is as follows: In Section 2, we recall the defi-
nition of the ψ-part and the ψ-quotient and their basic properties. In Sec-
tion 3, we state the main results. In Section 4, we define Λ-homomorphisms
Ψψ : Uψ → Λ and Ψψ : Uψ → Λ and determine their kernels and cokernels.
In Section 5, we determine generators of the ψ-part and the ψ-quotient of
the cyclotomic units group C. In Section 6, we calculate the images of the
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generators of the ψ-part and the ψ-quotient of C via Ψψ and Ψψ respec-
tively. This completes the proof of the main results. Finally, in Section 7
we mention a relation between the Iwasawa main conjecture and the main
theorems.

Acknowledgments. I would like to thank Yositaka Hachimori and Kazuo
Matsuno for helpful comments and for encouragements.

2. χ-parts and χ-quotients
In this section, let p be any prime number, ∆ any finite abelian group and

χ : ∆ → Qp
× any character. We define χ-parts and χ-quotients of Zp[∆]-

modules and recall some basic facts. For further properties, see [8, 11, 12].
We denote by Zp[χ] the ring generated by the values of χ over Zp and

by Zp[χ] a free Zp[χ]-module of rank one on which ∆ acts via χ. For a
Zp[∆]-module M , we define the following Zp[χ]-modules:

Mχ = HomZp[∆](Zp[χ],M), Mχ = M ⊗Zp[∆] Zp[χ],

which we call the χ-part and the χ-quotient of M respectively.
Let Iχ denote the ideal of Zp[χ][∆] generated by all elements of the form

δ − χ(δ), δ ∈ ∆. We have isomorphisms of Zp[χ]-modules
Mχ ∼= {m ∈M ⊗Zp Zp[χ] | δm = χ(δ)m,∀ δ ∈ ∆}

and
Mχ
∼= (M ⊗Zp Zp[χ])/Iχ(M ⊗Zp Zp[χ]).

Then Mχ (resp. Mχ) is isomorphic to the largest submodule (resp. quotient
module) of M ⊗Zp Zp[χ] on which ∆ acts via χ.

Let ξ∆,χ =
∑
δ∈∆ χ(δ)δ−1 ∈ Zp[χ][∆]. Multiplication of ξ∆,χ defines an

endomorphism of M ⊗Zp Zp[χ], which induces a Zp[χ]-homomorphism

ξ∗
∆,χ : Mχ −→Mχ.

We define a quotient module M̃χ of Mχ and a submodule M̃χ of Mχ by

M̃χ ∼= Mχ/ Im(ξ∆,χ) = coker(ξ∗
∆,χ)

and
M̃χ
∼= ker(ξ∆,χ)/Iχ(M ⊗Zp Zp[χ]) = ker(ξ∗

∆,χ).
The following lemmas can be proved easily.

Lemma 2.1. Assume that ∆ is a cyclic group and
0 −→M1 −→M2 −→M3 −→ 0

is an exact sequence of Zp[∆]-modules. We have an exact sequence
0 −→Mχ

1 −→Mχ
2 −→Mχ

3 −→M1,χ −→M2,χ −→M3,χ −→ 0.
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Furthermore
0 −→Mχ

1 −→Mχ
2 −→Mχ

3 −→ M̃1,χ −→ M̃2,χ −→ M̃3,χ

and
M̃χ

1 −→ M̃χ
2 −→ M̃χ

3 −→M1,χ −→M2,χ −→M3,χ −→ 0
are also exact.

Lemma 2.2 ([11, Lemma II.2]). Assume χ to be a faithful character of a
cyclic group ∆ of p-power order. We denote by C the subgroup of the order
p in ∆, and NC its norm in Zp[∆]. For any Zp[∆]-module M , there are
Zp[∆]-isomorphisms:

Mχ ∼= ker(NC : M −→M) and Mχ
∼= coker(NC : M −→M).

Furthermore, we have Zp[∆]-isomorphisms:

M̃χ ∼= Ĥ−1(C,M) and M̃χ
∼= Ĥ0(C,M).

Corollary 2.3. Under the same assumption as in Lemma 2.2, if
0 −→M1 −→M2 −→M3 −→ 0

is an exact sequence of Zp[∆]-modules, then

0 −→Mχ
1 −→Mχ

2 −→Mχ
3 −→ Ĥ0(C,M1) −→ Ĥ0(C,M2) −→ Ĥ0(C,M3)

and
Ĥ−1(C,M1)→ Ĥ−1(C,M2)→ Ĥ−1(C,M3)→M1,χ →M2,χ →M3,χ → 0
are exact.

3. The main results
For natural number t, let ζt be a primitive t-th root of unity with the

property that ζsst = ζt for all s ≥ 1, and we denote by µt the group of t-th
roots of unity. Put µ2∞ =

⋃
µ2n . We shall often denote Q(ζt) by Q(t).

Put Qn = Q(ζ2n+2 + ζ−1
2n+2) for n ≥ 0 and Q∞ =

⋃
nQn. Then Q∞ is the

cyclotomic Z2-extension of Q. Let k be a finite abelian extension of Q of
the first kind, that is, the conductor of k is not divisible by 8. We study
both cases where k is real and imaginary. Put kn = kQn for 0 ≤ n ≤ ∞,
hence k∞ is the cyclotomic Z2-extension of k with n-th layer kn. We can
see that for any finite abelian extension k′ of Q, there exists an abelian field
k of the first kind such that k′

∞ = k′Q∞ = k∞.
Let ℘ be a prime ideal of k lying above 2, and ℘n the unique prime ideal

of kn lying above ℘. We denote Ukn,℘ the principal units in the completion
kn,℘ of kn at ℘n. Put

Un = Ukn =
∏
℘|2
Ukn,℘
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where ℘ runs over all prime ideals of k lying above 2, which is called the
group of semi-local units of kn at 2. Then Ukn is a Z2[Gal(kn/Q)]-module.
Let Ckn be a group of cyclotomic units of kn defined in Section 5. We
identify Ckn with its image under the diagonal embedding k×

n →
∏
k×
n,℘ =

(kn ⊗ Q2)×. Let Ckn be the closure of the intersection Ukn ∩ Ckn in Ukn .
Then Ckn is a closed Z2[Gal(kn/Q)]-submodule of Ukn . Put

U = Uk∞ = lim←−Ukn , C = Ck∞ = lim←−Ckn ,

where the projective limits are taken with respect to the relative norms.
Put G = Gal(k/Q) and Γ = Gal(k∞/k). Since we assume that k is of
the first kind, we have isomorphisms G ∼= Gal(kn/Qn) (0 ≤ n ≤ ∞),
Γ ∼= Gal(Q∞/Q) and Gal(k∞/Q) ∼= G×Γ. Therefore U and C are modules
over the completed group ring Z2[G][[Γ]].

Let ψ be a non-trivial, even character of G whose values are in Q2
×.

We define Z2[ψ][[Γ]]-modules Uψ/Cψ and (U/C)ψ as in Section 2. Fixing a
topological generator γ of Γ, we identify, as usual, the completed group ring
Z2[ψ][[Γ]] with the formal power series ring Λ = Z2[ψ][[T ]] by γ = 1 +T . We
will investigate the structures of the Λ-modules Uψ/Cψ and (U/C)ψ.

We regard ψ as a primitive Dirichlet character. Let L2(ψ, s) denote the
Kubota–Leopoldt 2-adic L-function associated to ψ. We write the cyclo-
tomic character by κ : Gal(Q(µ2∞)/Q)→ Z×

2 and the Teichmüller charac-
ter by ω. We often regard ω as a character of Gal(Q(µ2n+2)/Qn). By the
isomorphism Γ ∼= Gal(Q(µ2∞)/Q(ζ4)), we can regard κ as a character of Γ.
It is known that there exists a unique power series gψ(T ) in 2Λ such that

gψ(κ(γ)s − 1) = L2(ψ, 1− s)

for all s ∈ Z2. Let π be a uniformizing parameter for Q2(ψ). For a power
series f(T ) ̸= 0 in Λ, we can uniquely write

f(T ) = πµ
′(f(T ))P (T )U(T )

where µ′(f(T )) is a non-negative integer, P (T ) is a distinguished polyno-
mial and U(T ) is a unit in Λ. We put µ(f(T )) = µ′(f(T ))/µ′(2), which we
call the µ-invariant of f(T ). By the Ferrero–Washington Theorem [3, 4], we
know that

µ(gψ(T )) = 1 or eauivalently µ(gψ(T )/2) = 0.

For every Λ-module M , we write charΛ(M) for the characteristic ideal
of M and put µ(M) = µ(charΛ(M)), the µ-invariant of M . Put Ṫ =
κ(γ)(1 + T )−1 − 1 ∈ Λ.

In Section 4, we will define Λ-homomorphisms Ψψ
k∞

: Uψk∞
→ Λ and

Ψk∞,ψ : Uk∞,ψ → Λ. In our main theorem, we describe the structure of
Λ-module Uψ/Cψ (resp. (U/C)ψ) by using Ψψ

k∞
(resp. Ψk∞,ψ) in terms of
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2-adic L-function gψ(T ). Our main theorem about the structure of the Λ-
module Uψ/Cψ as follows:
Theorem 3.1.

(i) If ψω−1(2) ̸= 1, the Λ-homomorphism Ψψ
k∞

gives an isomorphism:

Uψ/Cψ ∼= Λ/(gψ(T )/2).
(ii) If ψω−1(2) = 1, we have an exact sequence of Λ-modules

0 −→ Λ/(Ṫ ) −→ Uψ/Cψ
Ψψ
k∞−−−→ Λ/(gψ(T )/2Ṫ ) −→ 0.

In particular, we have
charΛ(Uψ/Cψ) = (gψ(T )/2), µ(Uψ/Cψ) = 0.

As in the case where p is odd prime, we prepare some notation which we
need to state our results about the structure of (U/C)ψ. Let m (resp. f)
be the odd part of the conductor of k (resp. ψ). Clearly f | m and, by the
assumption that k is of the first kind, the conductor of k (resp. ψ) is m or
4m (resp. f or 4f). Furthermore, since ψ is non-trivial and even, we see
that f ̸= 1 and also m ̸= 1. We define a finite set L of prime numbers as
follows:

L = Lk,ψ = {l : prime number | l | m, l ∤ f}.
For a subset I of L, we put mI = f

∏
l∈I l and

dI = [Q(ζ4mL) ∩ k(ζ4) : Q(ζ4mI ) ∩ k(ζ4)].
If k is the cyclic extension of Q associated to ψ, then L = ∅. For x ∈ Z×

2 ,
we denote by tx the unique element in Z2 such that x = ω(x)κ(γ)tx . We
define an ideal of finite index in Λ as follows:

A = Ak,ψ =
〈
dI
∏
l∈I

(1− ψ(l)(1 + T )tl)

∣∣∣∣∣∣ I ⊂ L
〉
.

The quotient Λ/A is finite since the generator for I = ∅ is a constant, but
for I = L is not divisible by 2. We note that A = Λ if L = ∅. We put

Tk,ψ = Λ/(Ṫ , ek,2, ψ(2) + ψω−1(2)− 1)
where ek,2 is the ramification index of 2 in k. Since k is of the first kind,
ek,2 is 1 or 2 and either ψ(2) = 0 or ψω−1(2) = 0 holds. In particular
if 2 is unramified in k, then Tk,ψ is trivial. The structure of Λ-module
(U/C)ψ depends on k being real or imaginary. Our main theorems about
the structure of the Λ-module (U/C)ψ are as follows:
Theorem 3.2. Assume that k is a real abelian field. Then there is an
ideal A′ of Λ satisfying that A ⊃ A′ ⊃ (Ṫ , 2)A and the natural surjection
Λ→ Tk,ψ induces a surjection s : Λ/A′(gψ(T )/2)→ Tk,ψ. Furthermore, the
following hold:



452 Takae Tsuji

(i) If ψω−1(2) ̸= 1, we have an exact sequence of Λ-modules

0 −→ Tk,ψ −→ (U/C)ψ
Ψk∞,ψ−−−−→ Λ/A′(gψ(T )/2) s−→ Tk,ψ −→ 0.

(ii) If ψω−1(2) = 1, we have an exact sequence of Λ-modules

0 −→ Λ/(Ṫ )⊕ Tk,ψ −→ (U/C)ψ
Ψk∞,ψ−−−−→ Λ/A′(gψ(T )/2Ṫ ) −→ 0.

In particular, we have

charΛ((U/C)ψ) = (gψ(T )/2), µ((U/C)ψ) = 0.

Remark 3.3. We will give a sufficient condition for A′ = A in Lemma 5.5
and Remark 6.1. In particular, if 2 is unramified in k, we can show that
A′ = A. See also Lemma 5.1.

Theorem 3.4. Assume that k is an imaginary abelian field with maximal
subfield k+. Then there is an ideal A′′ of Λ such that

Ak+,ψ ⊃ A′′ ⊃ Ak,ψ + (Ṫ , 2)Ak+,ψ

and the natural surjection Λ→ Tk,ψ induces a surjection s : Λ/A′′gψ(T )→
Tk,ψ and the following hold:

(i) If ψω−1(2) ̸= 1, we have an exact sequence of Λ-modules

0 −→ Tk,ψ −→ (U/C)ψ
Ψk∞,ψ−−−−→ Λ/A′′gψ(T ) s−→ Tk,ψ −→ 0.

(ii) If ψω−1(2) = 1, we have an exact sequence of Λ-modules

0 −→ Λ/(Ṫ )⊕ Tk,ψ −→ (U/C)ψ
Ψk∞,ψ−−−−→ Λ/A′′(gψ(T )/Ṫ ) −→ 0.

In particular, we have

charΛ((U/C)ψ) = (gψ(T )), µ((U/C)ψ) = 1.

For both cases where k is real or imaginary, we have

charΛ((U/C)ψ) = ([k : k+]gψ(T )/2)

where k+ is the maximal real subfield of k. Composing Ψk∞,ψ in Theo-
rem 3.2 (resp. Theorem 3.4) with the canonical surjection

Λ/A′(gψ(T )/2) −→ Λ/(gψ(T )/2) (resp.Λ/A′′gψ(T ) −→ Λ/(gψ(T )/2)),

we get a Λ-homomorphism

(U/C)ψ −→ Λ/(gψ(T )/2),

which we mentioned in the introduction. Theorem 3.2 and Theorem 3.4
determine the kernels and the cokernels of those homomorphisms. In par-
ticular, the µ-invariant of the kernel is 0 or 1 according to k is real or
imaginary.
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Let be C′ = C′
k∞

the projective limit of cyclotomic unit groups of kn
in the sense of Sinnott defined in Section 5. We will also determine the
structure of (U/C′)ψ as follows:

Theorem 3.5. Let k be an abelian field of the first kind. Then the natural
surjection Λ → Tk,ψ induces a surjection s : Λ/Agψ(T ) → Tk,ψ and the
following hold:

(i) If ψω−1(2) ̸= 1, we have an exact sequence of Λ-modules

0 −→ Tk,ψ −→ (U/C′)ψ
Ψk∞,ψ−−−−→ Λ/Agψ(T ) s−→ Tk,ψ −→ 0.

(ii) If ψω−1(2) = 1, we have an exact sequence of Λ-modules

0 −→ Λ/(Ṫ )⊕ Tk,ψ −→ (U/C′)ψ
Ψk∞,ψ−−−−→ Λ/A(gψ(T )/Ṫ ) −→ 0.

In particular, we have
charΛ((U/C′)ψ) = (gψ(T )), µ((U/C′)ψ) = 1.

In [12], we proved the following for odd prime p.

Theorem 3.6 ([12, Theorem 3.3]). Let p be an odd prime number. If
ψω−1(p) = 1, there exists an exact sequence of Λ-modules

0 −→ Λ/(Ṫ ) −→ (U/C)ψ −→ (Λ⊕ Λ/(d, Ṫ ))/Axψ −→ 0.
Here d is the order of the decomposition group of Gal(k/Q) and xψ the
element (gψ(T )/Ṫ ,−B1,ψω−1) of Λ⊕ Λ/(d, Ṫ ).

As the same method in the proof of Theorem 3.5, we can prove a modified
version of this theorem as follows.

Theorem 3.7. Let p be an odd prime number. If ψω−1(p) = 1, we have
an exact sequence of Λ-modules

0 −→ Λ/(Ṫ ) −→ (U/C)ψ
Ψk∞,ψ−−−−→ Λ/A(gψ(T )/Ṫ ) −→ 0.

4. Semi-local units
Recall that k is a finite abelian extension of Q of the first kind and m

is the odd part of the conductor of k, hence the conductor of k is m or
4m. Put F = Q(ζm)∩ k(ζ4), which is an abelian extension of Q unramified
at 2. Since the conductor of k(ζ4) is 4m, we have k(ζ4)Q(ζm) = Q(ζ4m),
so [k(ζ4) : F ] = [Q(ζ4m) : Q(ζm)] = 2. We see that k(ζ4) ⊃ F (ζ4) and
[F (ζ4) : F ] = 2, hence F (ζ4) = k(ζ4). If the conductor of k is m, that is, k is
unramified at 2, we see that k(ζ4) ⊃ F ⊃ k and [k(ζ4) : k] = 2, hence k = F .
Put Kn = F (µ2n+2) = k(µ2n+2) for n ≥ 0 and K∞ = F (µ2∞) = k(µ2∞)
Hence K∞/K0 is the cyclotomic Z2-extension. Put

∆ = Gal(F/Q), G0 = Gal(K0/F ), G∞ = Gal(K∞/F ).
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Therefore we have

Gal(K∞/Q) ∼= ∆×G∞, G∞ ∼= G0 × Γ.

Recall that ψ is a non-trivial even character of G = Gal(k/Q). The Teich-
müller character ω is the unique non-trivial character of G0. We will regard
ψ as a character of Gal(K0/Q) ∼= ∆×G0 and let χ be the restriction of ψ
to ∆. We can write

ψ = χωi

with i = 0 or 1. Let D be the decomposition group of 2 in ∆ and σ ∈ ∆
the Frobenius element of 2, thus D = ⟨σ⟩. For any prime ideal ℘ of F lying
above 2, let F℘ denote the completion of F at ℘. Let OF (resp. OF℘) denote
the integer ring of F (resp. F℘).

ÔF :=
∏
℘|2
OF℘ ∼= OF ⊗Z Z2,

where ℘ runs over all prime ideals F lying above 2.
We recall the results of Coleman [1, 2]. For details, see [8, §7] and [13,

§13.7–8]. We denote Z2(1) = lim←−µ2n+2 where the projective limit is taken
with respect to the map µ2n+2 → µ2n+1 defined by ζ 7→ ζ2 for ζ ∈ µ2n+2 .
We fix a generator (ζ2n+2)n≥0 of Z2(1), so ζ2

2n+2 = ζ2n+1 for n ≥ 1. For a
Z2[[G∞]]-module M , we put M(1) = M ⊗Z2 Z2(1). For u = (un) ∈ UK∞ =
lim←−UKn , there exists a unique power series fu(X) ∈ ÔF [[X]] satisfying

fu(1− ζ2n+2) = (un)σn ,

which is called Coleman’s power series associated to u. Let

D = (1−X) d
dX

be the derivative operator on ÔF [[X]]. Define the endomorphism φ of
ÔF [[X]] by

(φf)(X) = σ(f(1− (1−X)2))
where σ acts on ÔF [[X]] via the coefficients. We can extend a power of the
cyclotomic character κk : G∞ → Z×

2 to a ring homomorphism ÔF [[G∞]]→
ÔF linearly for k ∈ N. For u ∈ UK∞ , there exists a unique element ΨK∞(u)
in ÔF [[G∞]] satisfying

(4.1) Dk
(

1− φ

2

)
log fu(X)

∣∣∣∣
X=0

= (−κ)k(ΨK∞(u)),

which defines a Z2[∆][[G∞]]-homomorphism ΨK∞ : UK∞ → ÔF [[G∞]]. UKn,℘
contains µ2n+2 and lim←−UKn,℘ contains lim←−µ2n+2 where the projective limit
is taken with respect to the norm map Nn,n−1 from UKn,℘ to UKn−1,℘. We
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see that Nn,n−1(−ζ2n+2) = (−ζ2n+2)(ζ2n+2) = −ζ2
2n+2 = −ζ2n+1 . Then the

following diagram is commutative

µ2n+2
fn //

2
��

µ2n+2

Nn,n−1

��
µ2n+1

fn−1
// µ2n+1

where fn(ζa2n+2) = (−ζ2n+2)a for a ∈ Z. Hence the corresponding
(ζ2n+2)n≥0 7−→ (−ζ2n+2)n≥0

defines an injection Z2(1)→ lim←−UKn,℘, which induces a homomorphism

ι : Z2[∆/D](1) =
∏
℘|2

Z2(1) −→
∏
℘|2

lim←−UKn,℘ = UK∞

of Z2[∆][[G∞]]-modules. The cyclotomic character κ induces a Z2[∆][[G∞]]-
homomorphism −κ : ÔF [[G∞]] → (ÔF /(σ − 1)ÔF )(1). The following is
known (cf. [2, Theorem 4] and [8, Theorem 2.8, Proposition 2.10]):

Theorem 4.1 (Coleman). Let F be a finite abelian extension of Q unrami-
fied at 2 and put K∞ = F (µ2∞). There is an exact sequence of Z2[∆][[G∞]]-
modules

0 −→ Z2[∆/D](1) ι−→ UK∞
ΨK∞−−−→ ÔF [[G∞]] −κ−−→ (ÔF /(σ − 1)ÔF )(1) −→ 0.

For y ∈ ÔF , we denote by yF,χ or yχ its image under the natural sur-
jection ÔF ↠ ÔF,χ. We shall often consider an element of y of ÔF as an
element of ÔF⊗Z2 Z2[χ]. Since 2 is unramified in F/Q, we have ÔF ∼= Z2[∆]
as Z2[∆]-modules. Therefore ÔχF ∼= Z2[χ] and ÔF,χ ∼= Z2[χ]. We fix these
isomorphisms as follows:

Lemma 4.2.
(a) The additive group ÔχF is a free Z2[χ]-module of rank one generated

by zχ = ξχ(TrQ(f)/Q(f)∩F (ζf )) where ξχ =
∑
δ χ(δ)δ−1, δ running

over all elements in Gal(Q(f) ∩ F/Q). Further, for all a ∈ N, we
have ξχ(TrQ(f)/Q(f)∩F (ζaf )) = χ(a)zχ.

(b) The additive group ÔF,χ is a free Z2[χ]-module of rank one gener-
ated by zF,χ = [Q(m) : Q(mL)]−1(

∏
l∈L−χ(l))(TrQ(m)/F (ζmL))F,χ.

Further, if the conductor of F is f , we have (TrQ(f)/F (ζaf ))F,χ =
χ(a)zF,χ for all a ∈ N.

Proof. The statement (a) is exactly [12, Lemma 5.1(a)] for p = 2, which can
be proved similarly. Although (b) can be induced by [12, Lemma 5.1(b)] for
p = 2, we prove this directly. Since ÔF ∼= Z2[∆], the map ξ∗

∆,χ : ÔF,χ → ÔχF
gives an isomorphism where ξ∆,χ =

∑
δ∈∆ χ(δ)δ−1 ∈ Zp[χ][∆] and ξ∗

∆,χ is
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the Z2[χ]-homomorphism induced by ξ∆,χ (see Section 2). Since ξ∆,χ =
ξχ TrF/Q(f)∩F , we have

ξ∗
∆,χ(zF,χ) = ξ∆,χ

[Q(m) : Q(mL)]−1

∏
l∈L
−χ(l)

TrQ(m)/F (ζmL)


= [Q(m) : Q(mL)]−1

∏
l∈L
−χ(l)

 ξχ(TrQ(m)/Q(f)∩F (ζmL))

= [Q(m) : Q(mL)]−1

∏
l∈L
−χ(l)

 ξχ(TrQ(mL)/Q(f)∩F (TrQ(m)/Q(mL)(ζmL)))

=

∏
l∈L
−χ(l)

 ξχ(TrQ(mL)/Q(f)∩F (ζmL))

=

∏
l∈L
−χ(l)

 ξχ(TrQ(f)/Q(f)∩F TrQ(mL)/Q(f)(ζmL))

=

∏
l∈L
−χ(l)

 ξχ
TrQ(f)/Q(f)∩F

∏
l∈L
−σ−1

l

 (ζf )


= ξχ(TrQ(f)/Q(f)∩F (ζf )) = zχ.

Here σl is the Frobenius element of l in Gal(Q(f)/Q). Therefore (b) follows
from (a). □

Remark 4.3. Lemma 4.2 holds also for odd prime p.

We can extend the character ωi : G0 → Z×
2 to ring homomorphisms

ωi : ÔχF [G0][[Γ]] → ÔχF [[Γ]] and ωi : ÔF,χ[G0][[Γ]] → ÔF,χ[[Γ]] linearly. For
y ∈ ÔF [G0][[Γ]], we also denote by yF,χ or yχ its image under the natural
surjection ÔF [G0][[Γ]] ↠ ÔF,χ[G0][[Γ]].

Proposition 4.4. We write ψ = χωi as above.
(a) We can define Λ-homomorphism Ψψ

k∞
: Uψk∞

→ Λ by

Ψψ
k∞

(uψ)zχ = 1
2ω

i(ΨK∞(uψ))

for uψ ∈ Uψk∞
where we regard uψ as an element of UK∞.

(b) Put K∞ = k∞(ζ4) = k(µ2∞). We can define Λ-homomorphism
Ψk∞,ψ : Uk∞,ψ → Λ by

Ψk∞,ψ(u)zF,χ = 1
[K∞ : k∞]ω

i(ΨK∞(ũ)F,χ)
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for u ∈ Uk∞,ψ where ũ denotes a representative of u in Uk∞ and we
regard ũ as an element of UK∞.

Proof. We simply write Ψ for ΨK∞ . Put K0 = F (ζ4) = k(ζ4) and let τ be
a generator of G0 = Gal(K0/F ).

Since Ψ(uψ) ∈ (ÔF [G0][[Γ]])ψ = (ÔχF [G0][[Γ]])ωi = (1 + τωi(τ))ÔχF [[Γ]],
we have ωi(Ψ(uψ)) ∈ 2ÔχF [[Γ]]. By Lemma 4.2(a), there exists an element
Ψψ
k∞

(uψ) ∈ Z2[χ][[Γ]] = Λ such that Ψψ
k∞

(uψ)zχ = 1
2ω

i(Ψ(uψ)), which
proves (a).

Assume that k∞ ̸= K∞ i.e. ζ4 ̸∈ k. Let g denote a generator of Gal(K0/k).
The restriction (τg)|Q(ζ4) of τg ∈ Gal(K0/Q) to Q(ζ4) is trivial, since
τg(ζ4) = τ(g(ζ4)) = τ(−ζ4) = ζ4. For y ∈ ÔF [G0][[Γ]] and h ∈ Gal(K0/Q) =
G0 ×∆, we see that h(yχ) = (hy)χ = h|Q(ζ4)χ(h)yχ. Therefore we have

τ(Ψ(ũ)χ) = (τΨ(ũ))χ = Ψ(ũτ )χ = Ψ(ũτg)χ = ((τg)Ψ(ũ))χ
= (τg)|Q(ζ4)χ(τg)Ψ(ũ)χ = χ(τg)Ψ(ũ)χ

since ũ ∈ Uk∞ . On the other hand, regarding χ, ωi and ψ as characters of
Gal(K0/Q), we have
χ(τg) = χ(τg)ωi(τg) = ψ(τg) = ψ(τ)ψ(g) = ψ(τ) = χ(τ)ωi(τ) = ωi(τ).

Then we have
τ(Ψ(ũ)χ) = ωi(τ)(Ψ(ũ)χ)

and Ψ(ũ)χ ∈ ÔF,χ[G0][[Γ]] is in (ÔF,χ[G0][[Γ]])ωi = (1 + τωi(τ))ÔF,χ[[Γ]].
Hence ωi(Ψ(ũ)χ) ∈ 2ÔF,χ[[Γ]] = [K∞ : k∞]ÔF,χ[[Γ]]. By Lemma 4.2(b),
there exists an element Ψk∞,ψ(u) ∈ Z2[χ][[Γ]] = Λ such that Ψk∞,ψ(u)zF,χ =

1
[K∞:k∞]ω

i(Ψ(ũ)χ), which proves (b) if k∞ ̸= K∞. The statement (b) in the
case where k∞ = K∞ is clear. □

If p is odd, [k∞(ζp) : k∞] is a divisor of p−1 and Zp[G0] = ⊕p−2
i=0 eiZp[G0] ∼=

⊕p−2
i=0Zp where ei ∈ Zp[G0] is the idempotent of ωi, we can also prove the

following similarly:
Proposition 4.5. Assume p is an odd prime. We write ψ = χωi where
0 ≤ i ≤ p− 2 and the conductor of χ is prime to p.

(a) We can define Λ-homomorphism Ψψ
k∞

: Uψk∞
→ Λ by

Ψψ
k∞

(uψ)zχ = ωi(ΨK∞(uψ))

for uψ ∈ Uψk∞
where we regard uψ as an element of UK∞.

(b) We can define Λ-homomorphism Ψk∞,ψ : Uk∞,ψ → Λ by
Ψk∞,ψ(u)zF,χ = ωi(ΨK∞(ũ)F,χ)

for u ∈ Uk∞,ψ where ũ denotes a representative of u in Uk∞ and we
regard ũ as an element of UK∞.
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We return the case p = 2. By the formula (4.1) and Proposition 4.4, we
have

(−κ)k(Ψψ
k∞

(uψ))zχ = 1
2D

k
(

1− φ

2

)
log(fuψ(X))

∣∣∣∣
X=0

,(4.2)

(−κ)k(Ψk∞,ψ(u))zF,χ = 1
[K∞ : k∞]

(
Dk
(

1− φ

2

)
log fũ(X)

∣∣∣∣
X=0

)
F,χ

(4.3)

for k ≡ i mod 2.
We often write Ψ = ΨK∞ , Ψψ = Ψψ

k∞
and Ψψ = Ψk∞,ψ simply. We will

prove the following propositions.

Proposition 4.6.
(i) If ψω−1(2) ̸= 1,

Ψψ
k∞

: Uψk∞

∼−→ Λ
is an isomorphism.

(ii) If ψω−1(2) = 1, we have an exact sequence of Λ-modules

0 −→ Λ/(Ṫ ) −→ Uψk∞

Ψψ
k∞−−−→ ṪΛ −→ 0

where the first map induced by ι.

Proposition 4.7. Let Tk,ψ be Λ/(Ṫ , ek,2, ψ(2) + ψω−1(2) − 1) where ek,2
is the ramification index of 2 in k.

(i) If ψω−1(2) ̸= 1, we have an exact sequence of Λ-modules

0 −→ Tk,ψ −→ Uk∞,ψ
Ψk∞,ψ−−−−→ Λ −→ Tk,ψ −→ 0,

where the first map induced by ι and the last map is a natural sur-
jection.

(ii) If ψω−1(2) = 1, we have an exact sequence of Λ-modules

0 −→ Λ/(Ṫ )⊕ Tk,ψ −→ Uk∞,ψ
Ψk∞,ψ−−−−→ ṪΛ −→ 0

where the first map induced by ι.

Proofs of Propositions 4.6 and 4.7. Recall that F = Q(ζm) ∩ k(ζ4) where
m is the odd part of the conductor of k and Kn = F (µ2n+2) = k(µ2n+2) for
0 ≤ n ≤ ∞. Let τ be a generator of G0 = Gal(K0/F ).

The case k∞ = K∞. Suppose that k∞ = K∞, equivalently ζ4 ∈ k or
k = F (ζ4). By Theorem 4.1, we have a Λ-homomorphism Ψ∗ : UψK∞

→
(ÔF [[G∞]])ψ by restricting Ψ to UψK∞

. By Lemma 4.2, we have

(ÔF [[G∞]])ψ = (ÔχF [G0])ωi [[Γ]] = Λ(1 + τωi(τ))zχ.

Then the Λ-homomorphism Ψψ
K∞

: UψK∞
→ Λ in Proposition 4.4 coincides

with the composition map of Ψ∗ : UψK∞
→ (ÔF [[G∞]])ψ and the isomorphism
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(ÔF [[G∞]])ψ ∼−→ Λ given by (1 + τωi(τ))zχ → 1. Hence, to prove Propo-
sition 4.6, we have to decide the kernel and the cokernel of Ψ∗. The ho-
momorphism Ψ in Theorem 4.1 induces a Λ-homomorphism Ψ∗ : UK∞,ψ →
(ÔF [[G∞]])ψ naturally and the surjection map ωi : ÔF,χ[G0]→ ÔF,χ induces
an isomorphism (ÔF,χ[G0])ωi

∼−→ ÔF,χ. By Lemma 4.2, we have ÔF,χ[[Γ]] =
ΛzF,χ. Then the Λ-homomorphism ΨK∞,ψ : UK∞,ψ → Λ in Proposition 4.4
coincides with the composition map of Ψ∗ : UK∞,ψ → (ÔF [[G∞]])ψ, the
isomorphism (ÔF [[G∞]])ψ

∼−→ ÔF,χ[[Γ]] induced by ωi and the isomorphism
ÔF,χ[[Γ]] ∼−→ Λ given by zF,χ 7→ 1. Hence, to prove Proposition 4.7, we have
to decide the kernel and the cokernel of Ψ∗.

Let H be the kernel of χ : ∆ → Q2
× and M the fixed field of H. Put

Ln = M(µ2n+2) for n ≥ 0 and L∞ = M(µ2∞). Then we have UψK∞
=

(UHK∞)ψ = UψL∞
and ÔχF = (ÔHF )χ = ÔχM . Furthermore the generators

of ÔχF and ÔχM in Lemma 4.2 coincide. Therefore we have Ψψ
L∞

= Ψψ
K∞

.
Hence, to prove Proposition 4.6, we may assume that K∞ = L∞, i.e. χ is
a faithful character of ∆.

To prove Proposition 4.7, we consider the case where χ is not faithful, i.e.
H is not trivial. The kernel and the cokernel of a map UKn,H → ULn induced
by the norm map NH : Kn → Ln are Ĥ−1(H,UKn) and Ĥ0(H,UKn) respec-
tively. Since Kn/Ln is unramified extension at the prime ideals above 2, we
have Ĥ−1(H,UKn) = Ĥ0(H,UKn) = 0. Hence we have UKn,H

∼−→ ULn . By
using UKn,ψ = (UKn,H)ψ, we have an isomorphism N∗

H : UK∞,ψ
∼−→ UL∞,ψ.

Similarly the trace map TrH : F → M induces an isomorphism ÔF,H
∼−→

ÔM since Ĥ−1(H, ÔF ) = Ĥ0(H, ÔF ) = 0. Then we have an isomorphism
Tr∗

H : ÔF,χ
∼−→ ÔM,χ and we see that TrH(y)M,χ = Tr∗

H(yF,χ) for y ∈ ÔF .
Recall that

Lk,ψ = {l : prime number | l | m, l ∤ f}

where m (resp. f) is the odd part of the conductor of k (resp. ψ). Since the
conductor of M is f , we have LM(ζ4),ψ = ∅. The generetors of the additive
groups ÔF,χ and ÔM,χ in Lemma 4.2 are

zF,χ = [Q(m) : Q(mL)]−1
(∏
l∈L
−χ(l)

)
(TrQ(m)/F (ζmL))F,χ.

and

zM,χ = (TrQ(f)/M (ζf ))M,χ
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respectively. Here we put L = Lk,ψ. We can see that
TrH(TrQ(m)/F (ζmL)) = TrQ(m)/M (ζmL)

= [Q(m) : Q(mL)] TrQ(f)/M (TrQ(mL)/Q(f)(ζmL))

= [Q(m) : Q(mL)] TrQ(f)/M

((∏
l∈L
−σ−1

l

)
(ζf )

)
where σl is a Frobenius of l in Gal(Q(ζf )/Q), so we have

Tr∗
H(zF,χ) = [Q(m) : Q(mL)]−1

(∏
l∈L
−χ(l)

)
(TrH(TrQ(m)/F (ζmL)))M,χ

= (TrQ(f)/M (ζf ))M,χ = zM,χ.

Then, for u ∈ UK∞,ψ, we have
ΨK∞,ψ(u)zM,χ = ΨK∞,ψ(u) Tr∗

H(zF,χ) = Tr∗
H(ΨK∞,ψ(u)zF,χ)

= Tr∗
H(ωi(Ψ(ũ)F,χ)) = ωi(Tr∗

H(Ψ(ũ)F,χ))
= ωi(TrH(Ψ(ũ))M,χ) = ωi(Ψ(NH(ũ))M,χ)

= ωi(Ψ(Ñ∗
H(u))M,χ) = ΨL∞,ψ(N∗

H(uψ))zM,χ,

and therefore
(4.4) ΨK∞,ψ(u) = ΨL∞,ψ(N∗

H(u)).
Hence, to prove Proposition 4.7, we may assume K∞ = L∞.

In the rest of the proof in the case k∞ = K∞, we assume that χ is a
faithful character of ∆, that is, F = M , the fixed field of χ and K∞ =
L∞ = M(µ2∞).

We fix a prime ideal ℘ of F over 2, and put U = UK∞,℘ = lim←−UKn,℘.
Then U is a Z2[D][[G∞]]-module and we have Z2[∆][[G∞]]-isomorphisms

U ∼= U ⊗Z2[D] Z2[∆] ∼= HomZ2[D](Z2[∆], U),

where D is the decomposition group of 2 in ∆. We put χD = χ|D and
ψD = χDω

i. Then we can define Z2[ψD][[Γ]]-modules UψD and UψD , and
the above isomorphisms induce Λ-isomorphisms
(4.5) Uψ ∼= UψD ⊗Z2[ψD] Z2[ψ] and Uψ ∼= UψD ⊗Z2[ψD] Z2[ψ].
Theorem 4.1 is equivalent to the assertion that there is an exact sequence
of Z2[D][[G∞]]-modules

(4.6) 0 −→ Z2(1) ι−→ U
Ψ−→ OF℘ [[G∞]] −κ−−→ (OF℘/(σ − 1)OF℘)(1) −→ 0.

We will consider the kernel and the cokernel of the homomorphisms Ψ∗ :
UψD → (OF℘ [[G∞]])ψD and Ψ∗ : UψD → (OF℘ [[G∞]])ψD induced by the map
Ψ in (4.6). We put V = ker(−κ : OF℘ [[G∞]]→ (OF℘/(σ − 1)OF℘)(1)).
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First we assume χ(2) ̸∈ µ2∞ i.e. the order of χD is not 2-power. Then
Z2(1)χD = Z2(1)χD = 1. By the exact sequence (4.6) and Lemma 2.1, we
obtain Ψ∗ : UψD ∼−→ (OF℘ [[G∞]])ψD and Ψ∗ : UψD

∼−→ (OF℘ [[G∞]])ψD . In this
case, ψ(2)+ψω−1(2)−1 = χ(2)−1 is unit in Z2[ψ], so Tk,ψ is trivial. Hence
the assertion follows from (4.5).

Next, we assume χ(2) ∈ µ2∞ and χ(2) ̸= 1 i.e. χD is non-trivial and
of 2-power order. In this case, Z2(1)χD = 1 and Z2(1)χD = µ2. Let C be
the subgroup of order 2 in D. Since F℘/Q2 is an unramified extension, we
have Ĥ0(C,U) = 1. Then, by the exact sequence (4.6) and Corollary 2.3,
we have an exact sequence

0 −→ UχD −→ V χD −→ µ2 −→ 0.

Furthermore, by Lemma 2.1, we have UχD ∼= VχD . On the other hand, by
the exact sequence (4.6) and Lemma 2.1, we have V χD = OχDF℘ [[G∞]] and
an exact sequence

0 −→ VχD −→ OF℘,χD [[G∞]] −→ µ2 −→ 0.

Therefore, we have exact sequences

0 −→ UχD −→ OχDF℘ [[G∞]] −→ µ2 −→ 0,(4.7)
0 −→ UχD −→ OF℘,χD [[G∞]] −→ µ2 −→ 0.(4.8)

By these exact sequences, we have Ĥj(G0, U
χD) = Ĥj(G0, UχD) = µ2 for

j = −1, 0. Taking ωi-parts of the exact sequence (4.7) and using Lemma 2.1,
we have an exact sequence

0 −→ UψD −→ (OF℘ [[G∞]])ψD −→ µ2 −→ µ2 −→ 0.

Hence we have an isomorphism Ψ∗ : UψD ∼−→ (OF℘ [[G∞]])ψD and, in this
case, Proposition 4.6 follows from (4.5). Also taking ωi-quotients of the
exact sequence (4.8) and using Lemma 2.1, we have an exact sequence

0 −→ µ2 −→ UψD
Ψ∗−−→ (OF℘ [[G∞]])ψD −→ µ2 −→ 0.

We recall

Tk,ψ = Λ/(Ṫ , ek,2, ψ(2) + ψω−1(2)− 1) = Λ/(Ṫ , ek,2, χ(2)− 1)

where ek,2 is the ramification index of 2 in k. Since assuming ζ4 ∈ k, we
have ek,2 = 2. In the case where χ(2) ∈ µ2∞ and χ(2) ̸= 1, we see that
χ(2)− 1 divides ek,2 and

µ2 ⊗Z2[ψD] Z2[ψ] = (Z2[ψD]/(χ(2)− 1))⊗Z2[ψD] Z2[ψ] = Tk,ψ.

Hence, in this case, Proposition 4.7 follows from (4.5).
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In the case where χ(2) = 1, i.e. χD is trivial, we have F℘ = Q2 and D = 1,
so UψD = Uω

i and UψD = Uωi . In this case, we note that Z2[ψD] = Z2 and

µ2 ⊗Z2[ψD] Z2[ψ] = Z2[ψ]/(2) = Λ/(Ṫ , ek,2, χ(2)− 1) = Tk,ψ.(4.9)

Here ek,2 = 2 since we assume that ζ4 ∈ k.
We first assume that χ(2) = 1 and ψ = χω0 = χ. By the exact se-

quence (4.6) and Lemma 2.1, we have an exact sequence

0 −→ Uω
0 Ψ∗
−−→ V ω0 −→ µ2 −→ Uω0

Ψ∗−−→ Vω0 −→ 0.

Also we have V ω0 = (Z2[[G∞]])ω0 and an exact sequence

0 −→ Vω0 −→ (Z2[[G∞]])ω0 −→ µ2 −→ 0.

In [5], Gillard proved that UQ2,∞
∼= Z2[[Γ]], where Q2,∞ is the cyclotomic

Z2-extension of Q2. Since Uω0 = UG0 = UQ2,∞ , we have an isomorphism
Ψ∗ : Uω0 ∼−→ (Z2[[G∞]])ω0 , and hence

0 −→ µ2 −→ Uω0
Ψ∗−−→ (Z2[[G∞]])ω0 −→ µ2 −→ 0

is exact. Hence, in this case, Propositions 4.6 and 4.7 follows from (4.5)
and (4.9).

We finally assume that χ(2) = 1 and ψ = χω. Recall that τ be a generator
of G0. By the exact sequence (4.6), Corollary 2.3 and Ĥ0(G0,Z2(1)) = 1,
we have an exact sequence

0 −→ Z2(1) −→ Uω
Ψ∗
−−→ V ω −→ 0.

Since V = (1 + τ)Z2[[G∞]] + ṪZ2[[G∞]], we see that

V ω = Ṫ (1− τ)Z2[[Γ]] = Ṫ (Z2[[G∞]])ω.

Hence, in the case where χ(2) = 1 and ψ = χω, Proposition 4.6 can be
proved by using (4.5). We will decide the image and the kernel of the
homomorphism

Ψ∗ : Uω −→ (Z2[[G∞]])ω.
Here note that Uω = U/(1 + τ)U and

(Z2[[G∞]])ω = Z2[[G∞]]/(1 + τ)Z2[[G∞]].

Since the image of Ψ is V = (1 + τ)Z2[[G∞]] + ṪZ2[[G∞]], the image of Ψ∗ is

(V + (1 + τ)Z2[[G∞]])/(1 + τ)Z2[[G∞]]
= ((1 + τ)Z2[[G∞]] + ṪZ2[[G∞]])/(1 + τ)Z2[[G∞]]
= Ṫ (Z2[[G∞]]/(1 + τ)Z2[[G∞]])
= Ṫ (Z2[[G∞]])ω = ṪZ2[[Γ]].
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For u ∈ U , assume that u mod (1 + τ)U ∈ ker(Ψ∗). Then we have Ψ(u) ∈
(1 + τ)Z2[[G∞]]. Since (1 + τ)Z2[[G∞]] = Z2[[G∞]]ω

0
and we proved that

Ψ(Uω0) = Z2[[G∞]]ω
0

in the above. Hence we have u ∈ ker(Ψ) + Uω
0 . Con-

versely, we can also prove that if u ∈ ker(Ψ) +Uω
0 then u mod (1 + τ)U ∈

ker(Ψ∗). Therefore we obtain

ker(Ψ∗) = (ker(Ψ) + Uω
0)/(1 + τ)U.

We can see that ker(Ψ) ∼= Z2(1), Uω0 ∩ ker(Ψ) = 1 and Uω
0
/(1 + τ)U =

Ĥ0(G0, U). By using the definition of V , we have

Ĥ0(G0, V ) = Ĥ−1(G0,Z2(1)) = µ2, Ĥ−1(G0, V ) = Ĥ0(G0,Z2(1)) = 1

and an exact sequence

1 −→ Ĥ0(G0, U) −→ µ2 −→ µ2 −→ Ĥ−1(G0, U) −→ 1

If Ĥ0(G0, U) = 1, then we have Ĥ−1(G0, U) = 1, and hence Uω0 ∼= Uω0 .
This is a contradiction to the above results in the case where χ(2) = 1 and
ψ = χ. Hence Ĥ0(G0, U) is nontrivial, so Ĥ0(G0, U) = µ2. Summarizing
the above, we obtain an isomorphism

ker(Ψ∗) ∼= Z2(1)⊕ µ2.

Hence we have an exact sequence

0 −→ Z2(1)⊕ µ2 −→ Uω −→ ṪZ2[[Γ]] −→ 0.

Proposition 4.7 can be proved by using (4.5) and (4.9).

The case k∞ ̸= K∞. Suppose that k∞ ̸= K∞, i.e. ζ4 ̸∈ k. Then K∞/k∞ is
a quadratic extension and put G = Gal(K∞/k∞) ∼= Gal(k(ζ4)/k).

Since Uk∞ = UG
K∞

, we have Uψk∞
= (UG

K∞
)ψ = UψK∞

. Therefore Proposi-
tion 4.6 in this case is reduced to the case k∞ = K∞.

We will prove Proposition 4.7. First, we assume that k/Q is an unramified
extension at 2. In this case, k = F , ψ = χω0 = χ and G = ∆. Let
kψ be the fixed field of kerψ = H. As in the case where k∞ = K∞, we
can show that N∗

H : Uk∞,H
∼−→ UHk∞

= U
kψ∞

. Assume that the order of
∆/H is even. Let C be the subgroup of order 2 in ∆/H. Since kψ/Q is
an unramified extension at 2, we have Ĥj(C,U

kψ∞
) = 1 for j = −1, 0. By

Lemma 2.2, ξχ,∆/H =
∑
δ∈∆/H χ(δ)−1δ gives an isomorphism U

kψ∞,ψ

∼−→
Uψ
kψ∞

. If the order of ∆/H is odd, we also have U
kψ∞,ψ

∼−→ Uψ
kψ∞

. We see
that ξχ,∆ =

∑
δ∈∆ χ(δ)−1δ = NHξχ,∆/H . Therefore, for uψ ∈ Uk∞,ψ, the

correspondence uψ 7→ ξχ,∆(ũψ) gives the isomorphism Uk∞,ψ
∼−→ Uψk∞

where
ũψ is a representative of uψ in Uk∞ . We define Ψ′

k∞,ψ(uψ) = Ψψ
k∞

(ξχ,∆(ũψ)).
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Then we have an isomorphism Ψ′
k∞,ψ : Uk∞,ψ

∼−→ Λ by using Proposition 4.6
for the isomorphism Ψψ

k∞
: Uψk∞

∼−→ Λ. By the definition of Ψψ
k∞

, we have

Ψ′
k∞,ψ(uψ)zχ = Ψψ

k∞
(ξχ,∆(ũψ))zχ

= 1
2ω

0(ΨK∞(ξχ,∆(ũψ)))

= 1
2ω

0(ξχ,∆(ΨK∞(ũψ))).

Then ξχ,∆(ΨK∞(ũψ)) maps to ΨK∞(ũψ)F,χ, by the isomorphism

ÔχF [[G∞]] ∼−→ ÔF,χ[[G∞]]

given by zχ 7→ zF,χ. Hence Ψ′
k∞,ψ(uψ)zF,χ = 1

2ω
0(ΨK∞(ũψ)F,χ), so Ψ′

k∞,ψ

coincides with Ψk∞,ψ in Proposition 4.4. Then we have an isomorphism
Ψk∞,ψ : Uk∞,ψ

∼−→ Λ. Since we assume that 2 is unramified in k, i.e. ek,2 = 1,
Tψ is trivial. Hence, in this case, we prove Proposition 4.7.

Next, we assume that k/Q is a ramified extension at 2. In this case
the conductor of k is 4m, thus K/k is an unramified extension at 2. Then
norm map NG induces an isomorphism N∗

G : UK∞,G
∼−→ UG

K∞
= Uk∞ . There-

fore Uk∞,ψ = (UG
K∞

)ψ ∼= (UK∞,G)ψ = UK∞,ψ. We define a homomorphism
Ψ′
k∞,ψ : Uk∞,ψ → Λ to the composition of this isomorphism Uk∞,ψ

∼= UK∞,ψ

and ΨK∞,ψ : UK∞,ψ → Λ. The kernel and the cokernel of Ψ′
k∞,ψ coincide

with these of ΨK∞,ψ. Furthermore, we see that ek,2 = eK,2 = 2 and

Tk,ψ = Λ/(Ṫ , 2, ψ(2) + ψω−1(2)− 1) = TK,ψ.

Hence, it is enough to show that Ψ′
k∞,ψ coincides with Ψk∞,ψ in Proposi-

tion 4.4. Let uψ be an element of Uk∞,ψ. We take a representative ũψ ∈ Uk∞

of uψ. Since Uk∞ = UG
K∞

= NG(UK∞), there exists u′ ∈ UK∞ such that
NG(u′) = ũψ. Denote by [u′] the residue class of u′ in UK∞,ψ. Then we have
Ψ′
k∞,ψ(uψ) = ΨK∞,ψ([u′]). By the definition of ΨK∞,ψ in Proposition 4.4,

we have Ψ′
k∞,ψ(uψ)zF,χ = ωi(ΨK∞(u′)F,χ). By regarding ũψ as an element

of UK∞ , we have

ωi(ΨK∞(ũψ)F,χ) = ωi(ΨK∞(NG(u′))F,χ)
= ωi(((1 + g)ΨK∞(u′))F,χ)
= (1 + ψ(g))ωi(ΨK∞(u′)F,χ)
= 2ωi(ΨK∞(u′)F,χ)

where g is a generator of G. Therefore we obtain

Ψ′
k∞,ψ(uψ)zF,χ = 1

2ω
i(ΨK∞(ũψ)F,χ).

Thus Ψ′
k∞,ψ coincides with Ψk∞,ψ in Proposition 4.4. □
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In [12], we proved that if p is odd and ψω−1(p) = 1, there exists an exact
sequence of Λ-modules

0 −→ Λ/(Ṫ ) −→ Uk∞,ψ −→ ṪΛ⊕ Λ/(d, Ṫ ) −→ 0
where d is the order of the decomposition group of Gal(k/Q). In the same
way as the proof of Proposition 4.7, we can also prove the following:

Proposition 4.8. If p is odd prime number and ψω−1(p) = 1, we have an
exact sequence of Λ-modules

0 −→ Λ/(Ṫ ) −→ Uk∞,ψ
Ψk∞,ψ−−−−→ ṪΛ −→ 0.

5. cyclotomic units
In this section we recall the definition of the cyclotomic units in the

sense of Sinnott [10] and we define two cyclotomic units groups Ck∞ and
C′
k∞

. We will determine generators of the ψ-part of Ck∞ and the ψ-quotients
of Ck∞ and C′

k∞
. For any abelian field L, let DL denote the subgroup of the

multiplicative group L× generated by
{±1, NQ(t)/Q(t)∩L(1− ζat ) | t, a ∈ Z, t > 1, (a, t) = 1}.

Denote EL by the group of units in L. The cyclotomic units C ′
L in L in

the sense of Sinnott is defined by DL ∩ EL. For a real abelian field L, let
C1,L be the group of units in L whose squares lie in C ′

L. We define a group
of cyclotomic units CL in L by C ′

L · C1,L+ where L+ is the maximal real
subfield of L. If L is real, then C ′

L ⊂ C1,L, and hence CL = C1,L.
Recall that F = Q(m) ∩ k(ζ4) where m is the odd part of the conductor

of k and Kn = F (µ2n+2) = k(µ2n+2). We define

ηt = (NQ(2n+2t)/Q(2n+2t)∩Kn(1− ζ2n+2ζσ
−n

t ))n≥0 ∈ lim←−CKn
for t | m, t ̸= 1 and

η1 = ((−ζ2n+2)
κ(γ)−1

2 (1− ζ2n+2)γ−1)n≥0 ∈ lim←−CKn .
For an abelian field L, we identify CL and C ′

L with their images under the
diagonal embedding EL → (OL⊗ZZ2)×. Since (OL⊗ZZ2)× is decomposed
into a product of the principal units UL and a finite group of odd order,
there is the projection (OL ⊗ Z2)× → UL. Let CL and C′

L be the closure
of the intersections UL ∩ CL and UL ∩ C ′

L in UL. Hence CL and C′
L are the

closure of the image of CL and C ′
L under the projection (OL ⊗ Z2)× → UL

respectively. Put
C = Ck∞ = lim←−Ckn , C′ = C′

k∞ = lim←−C
′
kn .

For η ∈ lim←−CKn or η ∈ lim←−Ckn , we shall also denote by η its image under
the projection lim←−(OKn ⊗ Z2)× → UK∞ or lim←−(Okn ⊗ Z2)× → Uk∞ so ηt is
in CK∞ . For any t with t | m, identifying Gal(Q(2n+2t)∩Kn/Q(2n+2t)∩kn)
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with G = Gal(K0/k), we have NG(ηt) ∈ C′
k∞

. Put ϵ = (−ζ2n+2)n≥0 ∈ CK∞ .
First, we prove the following:
Lemma 5.1.

(a) C′
k∞

is generated by
{NG(ϵ), NG(ηt) | t | m}

as Z2[G][[Γ]]-module.
(b) Assume that k is a real abelian field. Then Ck∞ has a submodule of

finite index generated by

{NG(ηt), ηγ−κ(γ)
t , η1 | t | m, t ̸= 1}

as Z2[G][[Γ]]-module and C′
k∞

has a submodule C2
k∞

of finite index.
Furthermore if ht = [Q(t) : Q(t) ∩ F ] is even for t | m, t ̸= 1, then
Ck∞ is generated by{

ϵ−ht/2ηt, η1
∣∣∣ t | m, t ̸= 1

}
as Z2[G][[Γ]]-modules.

Proof. In [8], it is proved that C′
K∞ is generated by {ϵ, ηt | t | m}. Since

(Q(2n+2t) ∩ kn)(ζ4) = Q(2n+2t) ∩Kn, we have (Q(2n+2t) ∩Kn) · kn = Kn,
so G ∼= Gal(Q(2n+2t)∩Kn/Q(2n+2t)∩ kn). Therefore NG(C′

K∞) = C′
k∞

and
the claim (a) is proved.

Assume that k is real. Fix t with 1 ̸= t | m. Let g̃n be the element
of Gal(Q(2n+2t)/Q) such that (ζ2n+2ζt)g̃n = ζ−1

2n+2ζ
−1
t and gn the restric-

tion of g̃n to Q(2n+2t) ∩Kn. Since Q(2n+2t) ∩ kn is the maximal real sub-
field of Q(2n+2t) ∩ Kn, the element gn is a generator of Gal(Q(2n+2t) ∩
Kn/Q(2n+2t) ∩ kn). We see that

NQ(2n+2t)/Q(2n+2t)∩Kn(1− ζ2n+2ζσ
−n

t )(γ−κ(γ))gn

= NQ(2n+2t)/Q(2n+2t)∩Kn

 (1− ζκ(γ)
2n+2ζ

σ−n
t )gn

(1− ζ2n+2ζσ
−n

t )κ(γ)gn


= NQ(2n+2t)/Q(2n+2t)∩Kn

 1− ζ−κ(γ)
2n+2 ζ−σ−n

t

(1− ζ−1
2n+2ζ

−σ−n
t )κ(γ)


= NQ(2n+2t)/Q(2n+2t)∩Kn

 (−ζ−κ(γ)
2n+2 ζ−σ−n

t )(1− ζκ(γ)
2n+2ζ

σ−n
t )

(−ζ−1
2n+2ζ

−σ−n
t )κ(γ)(1− ζ2n+2ζσ

−n
t )κ(γ)


= NQ(2n+2t)/Q(2n+2t)∩Kn

 1− ζκ(γ)
2n+2ζ

σ−n
t

(1− ζ2n+2ζσ
−n

t )κ(γ)


= NQ(2n+2t)/Q(2n+2t)∩Kn(1− ζ2n+2ζσ

−n
t )γ−κ(γ).
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We used that NQ(2n+2t)/Q(2n+2t)∩Kn(ζt) = 1 in UKn . Therefore

NQ(2n+2t)/Q(2n+2t)∩Kn(1− ζ2n+2ζσ
−n

t )γ−κ(γ)

is an element of Q(2n+2t) ∩ kn. Then (ηγ−κ(γ)
t )2 = NG(ηt)γ−κ(γ). Therefore

by (a), we have〈{
NG(ηt), ηγ−κ(γ)

t

∣∣∣ t | m}〉2
=
〈{
NG(ηt)2, NG(ηt)γ−κ(γ)

∣∣∣ t | m}〉
= (C′

k∞)(2,Ṫ ).

In particular, we have ⟨{NG(ηt), ηγ−κ(γ)
t | t | m}⟩2 ⊂ C′

k∞
. Since Ck∞ =

{η ∈ Ek∞ | η2 ∈ C′
k∞
}, we have〈{
NG(ηt), ηγ−κ(γ)

t

∣∣∣ t | m}〉 ⊂ Ck∞ .

Therefore we have

C′
k∞ ⊃ C

2
k∞ ⊃

〈{
NG(ηt), ηγ−κ(γ)

t

∣∣∣ t | m}〉2
= (C′

k∞)(2,Ṫ ).

Since C′
k∞

is a finitely genereted Z2[[T ]]-module, C′
k∞
/(C′

k∞
)(2,Ṫ ) is finite.

Then C′
k∞
⊃ C2

k∞
and C2

k∞
⊃ ⟨{NG(ηt), ηγ−κ(γ)

t | t | m}⟩2 are of finite index.
The module Uk∞ has no nontrivial element killed by 2 by Theorem 4.1.
Therefore Ck∞ ⊃ ⟨{NG(ηt), ηγ−κ(γ)

t | t | m}⟩ is also of finite index.
Assume that ht is even, i.e. ht

2 ∈ Z. We also see that(
(−ζ2n+2)−ht

2 NQ(2n+2t)/Q(2n+2t)∩Kn(1− ζ2n+2ζσ
−n

t )
)gn

= (−ζ2n+2)
ht
2 NQ(2n+2t)/Q(2n+2t)∩Kn(1− ζ−1

2n+2ζ
−σ−n
t )

= (−ζ2n+2)
ht
2 NQ(2n+2t)/Q(2n+2t)∩Kn

(
(−ζ−1

2n+2ζ
−σ−n
t )(1− ζ2n+2ζσ

−n
t )

)
= (−ζ2n+2)−ht

2 NQ(2n+2t)/Q(2n+2t)∩Kn(1− ζ2n+2ζσ
−n

t ))

where we used [Q(2n+2t) : Q(2n+2t) ∩ Kn] = [Q(t) : Q(t) ∩ F ] = ht and
NQ(2n+2t)/Q(2n+2t)∩Kn(ζt) = 1 in UKn . Hence

(−ζ2n+2)−ht
2 NQ(2n+2t)/Q(2n+2t)∩Kn(1− ζ2n+2ζσ

−n
t )

is a unit in kn. Then (ϵ−ht/2ηt)2 = NG(ϵht/2ηt) = NG(ηt) ∈ NG(CK∞) = C′
k∞

since NG(ϵ) = 1, so ϵ−ht/2ηt is in Ck∞ . Similarly we see that η1 ∈ Ck∞ .
Furthermore, we see that

C′
k∞ ⊃ C

2
k∞ ⊃ ⟨{ϵ

−ht/2ηt, η1 | t | m, t ̸= 1}⟩2
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and
C′
k∞ = NG(CK∞) = ⟨{NG(ϵ), NG(ηt) | t | m}⟩

= ⟨{(ϵ−h/2ηt)2, η2
1 | t | m, t ̸= 1}⟩

= ⟨{ϵ−ht/2ηt, η1 | t | m, t ̸= 1}⟩2.

Therefore C2
k∞

= ⟨{ϵ−ht/2ηt, η1 | t | m, t ̸= 1}⟩2. The module Uk∞ has no
nontrivial element killed by 2 by Theorem 4.1. Therefore, we obtain

Ck∞ = ⟨{ϵ−ht/2ηt, η1 | t | m, t ̸= 1}⟩.
□

Remark 5.2. The condition that 2 | ht = [Q(t) : Q(t) ∩ F ] in Lemma 5.1
(b) holds, if 2 is unramified in k. Indeed, if k is real and 2 is unramified in k,
then F = k, so F is real. Hence, Q(t)∩F is also real, so 2 | [Q(t) : Q(t)∩F ].
Lemma 5.3. Assume that ψ = χωi is a non-trivial, even character of G.
Put ξχ =

∑
δ χ(δ)δ−1, δ running over all elements in Gal(F ∩ Q(f)/Q).

Then the Λ-module Cψk∞
is generated by ηξχf .

Proof. We regard χ as a character of Gal(Q(f)/Q). Since χ(δ) = 1 for
δ ∈ Gal(Q(f)/Q(f) ∩ F ), we have

η
ξχ
f =

 ∏
δ∈Gal(Q(f)/Q)

(1− ζ2n+2ζσ
−nδ−1

f )χ(δ)


n≥0

Let kψ be the fixed field of ψ and Fχ = Q(f) ∩ kψ(ζ4). Then Fχ(ζ4) =
kψ(ζ4). Put kψn = kψQn = kψ(ζ2n+2 +ζ−1

2n+2), kψ∞ =
⋃
kψn , Kψ

n = kψ(ζ2n+2) =
Fχ(ζ2n+2) and Kψ

∞ =
⋃
Kψ
n . Let g̃n be the element of Gal(Q(2n+2f)/Q)

such that (ζ2n+2ζf )g̃n = ζ−1
2n+2ζ

−1
f and gn the restriction of g̃n to Kψ

n . Since
kψn is a real abelian field and [Kψ

n : kψn ] = 2, the element gn is a generator
of Gal(Kψ

n /k
ψ
n ). We see that(∏

δ

(1− ζ2n+2ζσ
−nδ−1

f )χ(δ)
)gn

=
∏
δ

(1− ζ−1
2n+2ζ

−σ−nδ−1

f )χ(δ)

=
∏
δ

(−ζ−1
2n+2ζ

−σ−nδ−1

f )χ(δ)(1− ζ2n+2ζσ
−nδ−1

f )χ(δ)

=
∏
δ

(−ζ−χ(δ)
2n+2 ζ

−σ−nχ(δ)δ−1

f )(1− ζ2n+2ζσ
−nδ−1

f )χ(δ)

=
∏
δ

(ζ−σ−nχ(δ)δ−1

f )(1− ζ2n+2ζσ
−nδ−1

f )χ(δ)
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where δ runs over all elements of Gal(Q(f)/Q). The image of(∏(
ζ

−σ−nχ(δ)δ−1

f

))
n≥0

under the projection lim←−(OKn⊗Z2)× → UK∞ is 1. Then we obtain (ηξχf )g =
η
ξχ
f where g = (gn)n≥0 ∈ Gal(Kψ

∞/k
ψ
∞). Therefore ηξχf is an element in E

Kψ
∞

on which g acts trivially hence is in E
kψ∞

. We see that

(ηξχf )2 = N
Kψ

∞/kψ∞
(ηξχf )

=

 ∏
δ∈Gal(Q(f)∩Fχ/Q)

NQ(2n+2f)/Q(2n+2f)∩kψn
(1− ζ2n+2ζσ

−nδ−1
f )χ(δ)


n≥0

is in C′
kψ∞

, so in C′
k+

∞
. Hence η

ξχ
f ∈ Ck+

∞
⊂ Ck∞ . Let τ be the generator

of Gal(Kψ
0 /F

χ). As in the proof of Proposition 4.4, by the isomorphism
Gal(Kψ

0 /Q) ∼= Gal(Kψ
0 /F

χ) × Gal(Fχ/Q), τg maps to (1, (τg)|Fχ) and
χ(τg) = ωi(τ). Hence we see that

(ηξχf )τ = (ηξχf )τg = (ηξχf )χ(τg) = (ηξχf )ωi(τ).

Clearly any element of ∆ acts on ηξχf via χ. Therefore any element of G acts
on ηξχf via ψ, so ηξχf is in Cψk∞

. Then Cψk∞
contains the submodule generated

by ηξχf . We can show that both modules are coincide as in the proof of odd
prime version [12, Lemma 6.2(a)]. □

For η ∈ Uk∞ , we denote by ηk∞,ψ = ηψ its image under the surjection
Uk∞ → Uk∞,ψ. Let C̃k∞,ψ = C̃ψ and C̃′

k∞,ψ = C̃′
ψ denote the images of Ck∞

and C′
k∞

under the surjection Uk∞ → Uk∞,ψ respectively. Then we have
isomorphisms (U/C)ψ ∼= Uψ/C̃ψ and (U/C′)ψ ∼= Uψ/C̃′

ψ.

Lemma 5.4. Assume that k is an abelian field of the first kind and ψ = χωi

is a non-trivial, even character of G = Gal(k/Q). The Λ-module C̃′
k∞,ψ is

generated by {NG(ηmI )k∞,ψ | I ⊂ L}.

Proof. By Lemma 5.1(a), C̃′
ψ is generated by {NG(ϵ)ψ, NG(ηt)ψ | t | m}. If

f ∤ t, then there exists δ ∈ ∆ such that δ ̸∈ kerχ and δ ∈ Gal(F/Q(t) ∩ F ),
hence χ(δ) ̸= 1 and ηδ−1

t = 1. Let sχ be the surjection map from UK∞

to UK∞,χ, the χ-quotient as a Z2[∆]-module UK∞ . Since sχ(ηδ−1
t ) =

sχ(ηt)χ(δ)−1, we have sχ(ηt)χ(δ)−1 = 1, i.e. sχ(ηt) is a torsion element of
UK∞,χ. In the proof of Proposition 4.7 we see that UχD has no torsion ele-
ment and UK∞,χ = UχD ⊗Z2[χD] Z2[χ], then sχ(ηt) = 1. The image (ηt)K∞,ψ

of sχ(ηt) under the surjection UK∞,χ → UK∞,ψ is trivial, where UK∞,ψ is the
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ψ-quotient of the Z2[Gal(K0/Q)]-module UK∞ . If k∞ = K∞, i.e. G = {1},
then (NG(ηt))ψ = (ηt)K∞,ψ = 1. In the case where k∞ ̸= K∞ and 2 is
ramified in k, we see that Uk∞,ψ

∼= UK∞,ψ and NG(ηt)ψ maps to (ηt)K∞,ψ

by this isomorphism in the proof of Proposition 4.7, hence NG(ηt)ψ = 1. In
the case where k∞ ̸= K∞ and 2 is unramified in k, Uk∞,ψ has no torsion
element, hence NG(ηt)ψ = 1 by the same method as in another case. For
any δ ∈ Gal(F/Q), we have ϵδ−1 = 1. Hence we can prove that NG(ϵ)ψ = 1
similarly. Therefore C̃′

ψ is generated by {NG(ηt)ψ | t | m, f | t}. The rest
of the proof, we can prove in the same way as in the proof of odd prime
version [12, Lemma 6.2(b)]. □

Lemma 5.5. Assume that k is a real abelian field of the first kind and
ψ = χωi is a non-trivial, even character of G = Gal(k/Q). The Λ-module
C̃k∞,ψ has a submodule of finite index generated by

{NG(ηmI )k∞,ψ, (ηγ−κ(γ)
mI

)k∞,ψ | I ⊂ L}

and the Λ-module C̃′
k∞,ψ has a submodule C̃2

k∞,ψ of finite index. Furthermore
if hI = [Q(mI) : Q(mI) ∩ F ] is even for I ⊂ L then C̃k∞,ψ is generated by

{(ϵ−hI/2ηmI )k∞,ψ | I ⊂ L}.

Proof. By Lemma 5.1(b), we can show that the Λ-module C̃k∞,ψ has a
submodule of finite index generated by

{NG(ηmI )k∞,ψ, (ηγ−κ(γ)
mI

)k∞,ψ | I ⊂ L}

similarly as the proof of the previous lemma. Similarly we can show that if
hI is even for I ⊂ L then C̃k∞,ψ is generated by

{(ϵ−hI/2ηmI )k∞,ψ | I ⊂ L}

by Lemma 5.1(b). Also we can see that C̃′
k∞,ψ has a submodule C̃2

k∞,ψ of
finite index by Lemma 5.1(b). □

6. The proof of main theorems

Proof of Theorem 3.1. Coleman’s power series of ηξχf is

∏
δ∈Gal(Q(f)/Q)

(1− (1−X)ζδ−1
f )χ(δ).
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By using the formula (4.2) and Lemma 4.2 (a), for k ≡ i mod 2,

(−κ)k(Ψψ
k∞

(ηξχf ))zχ

= 1
2D

k
(

1− φ

2

)
log

(∏
δ

(1− (1−X)ζδ−1
f )χ(δ)

)∣∣∣∣∣
X=0

= 1
2D

k−1(1− φ)D log
(∏

δ

(1− (1−X)ζδ−1
f )χ(δ)

)∣∣∣∣∣
X=0

= 1
2
∑
δ

δ−1χ(δ)(Dk−1(1− φ)D log(1− (1−X)ζf ))|X=0

= 1
2
∑
δ

δ−1χ(δ)Dk−1
(

(1−X)ζf
1− (1−X)ζf

−
(1−X)2ζ2

f

1− (1−X)2ζ2
f

)∣∣∣∣∣
X=0

= 1
2
∑
δ

δ−1χ(δ)Dk−1
f∑
a=1

(
(1−X)aζaf

1− (1−X)f −
(1−X)2aζ2a

f

1− (1−X)2f

)∣∣∣∣∣
X=0

= 1
2D

k−1
f∑
a=1

(
(1−X)aξχ(Tr(ζaf ))

1− (1−X)f −
(1−X)2aξχ(Tr(ζ2a

f ))
1− (1−X)2f

)∣∣∣∣∣
X=0

= 1
2D

k−1
f∑
a=1

(
χ(a)(1−X)a

1− (1−X)f −
χ(2a)(1−X)2a

1− (1−X)2f

)
zχ
∣∣∣∣∣
X=0

= 1
2

(
− d

dZ

)k−1 f∑
a=1

(
χ(a)eaZ

1− efZ −
χ(2a)e2aZ

1− e2fZ

)
zχ
∣∣∣∣∣
Z=0

= 1
2

(
− d

dZ

)k−1 ∞∑
n=1

(
−Bn,χ

n! Zn−1 + χ(2)Bn,χ
n! (2Z)n−1

)
zχ
∣∣∣∣
Z=0

= 1
2(−1)k(1− χ(2)2k−1)Bk,χ

k
zχ

= 1
2(−1)k−1gψ(κ(γ)k − 1)zχ

= 1
2(−κ)k(−gψ(γ − 1))zχ

where δ runs over all elements of Gal(Q(f)/Q), Tr = TrQ(f)/Q(f)∩F and
1−X = eZ , so D = (1−X)d/dX = −d/dZ. Therefore we obtain

Ψψ
k∞

(ηξχf ) = −1
2gψ(T ).

By Lemma 5.3, we have

Ψψ
k∞

(Cψ) = (gψ(T )/2) ⊂ Λ.

Therefore Theorem 3.1 follows from Proposition 4.6. □
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Proof of Theorems 3.2, 3.4 and 3.5. We first calculate ΨK∞,ψ((ηmI )K∞,ψ).
Let M be the fixed field of kerχ and Ln = M(µ2n+2) for 0 ≤ n ≤ ∞. We
see that

NK∞/L∞(ηmI )

= (NKn/LnNQ(2n+2mI)/Q(2n+2mI)∩Kn(1− ζ2n+2ζσ
−n

mI
))n≥0

= (NQ(2n+2mI)/Ln(1− ζ2n+2ζσ
−n

mI
)[Kn:Q(2n+2mI)∩Kn])n≥0

= (NQ(2n+2f)/LnNQ(2n+2mI)/Q(2n+2f)(1− ζ2n+2ζσ
−n

mI
)[F :Q(mI)∩F ])n≥0

= (η′
f )[F :Q(mI)∩F ]

∏
l∈I(γl−σ−1

l
)

where γl (resp. σl) is the Frobenius element of l in G∞ (resp. Gal(M/Q))
and we put η′

f = (NQ(2n+2f)/Ln(1− ζ2n+2ζσ
−n

f ))n≥0. We have, by (4.4)

ΨK∞,ψ((ηmI )K∞,ψ)
= ΨL∞,ψ(NK∞/L∞(ηmI )L∞,ψ)

= ΨL∞,ψ(((η′
f )[F :Q(mI)∩F ]

∏
l∈I(γl−σ−1

l
))ψ)

= [F : Q(mI) ∩ F ]

∏
l∈I

(ωi(l)(1 + T )tl − χ(l)−1)

ΨL∞,ψ((η′
f )L∞,ψ)

= [F : Q(mL) ∩ F ]dI

∏
l∈I
−χ(l)−1(1− ψ(l)(1 + T )tl)

ΨL∞,ψ((η′
f )L∞,ψ).

For k ≡ i mod 2, by the formula (4.3) and Lemma 4.2(b), we have

(−κ)kΨL∞,ψ((η′
f )L∞,ψ)zM,χ

= (Dk(1− φ

2 ) logN(1− (1−X)ζf )|X=0)M,χ

= (Dk−1(1− φ) Tr(D log(1− (1−X)ζf ))|X=0)M,χ

=

Dk−1
f∑
a=1

(
(1−X)a Tr(ζaf )

1− (1−X)f −
(1−X)2a Tr(ζ2a

f )
1− (1−X)2f

)∣∣∣∣∣
X=0


M,χ

= Dk−1
f∑
a=1

(
(1−X)a Tr(ζaf )M,χ

1− (1−X)f −
(1−X)2a Tr(ζ2a

f )M,χ

1− (1−X)2f

)∣∣∣∣∣
X=0

= Dk−1
f∑
a=1

(
χ(a)(1−X)a

1− (1−X)f −
χ(2a)(1−X)2a

1− (1−X)2f

)
zM,χ

∣∣∣∣∣
X=0

where N = NQ(f)/M and Tr = TrQ(f)/M . Then we have

ΨL∞,ψ((η′
f )L∞,ψ) = −gψ(T ),
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and hence

ΨK∞,ψ((ηmI )K∞,ψ) = vIdI

∏
l∈I

(1− ψ(l)(1 + T )tl)

 gψ(T )(6.1)

where we put vI = −[F : Q(mL)∩F ]
∏
l∈I(−χ(l)−1) and this is a unit in Λ.

Assume k∞ = K∞. In this case, the Galois group G is trivial, and then
we have

Ψk∞,ψ(NG(ηmI )k∞,ψ) = ΨK∞,ψ((ηmI )K∞,ψ)

= vIdI
∏
l∈I

(1− ψ(l)(1 + T )tl)gψ(T ).

Assume k∞ ̸= K∞. By Proposition 4.4(b), we have

Ψk∞,ψ(NG(ηmI )k∞,ψ)zF,χ

= 1
2ω

i(ΨK∞(NG(ηmI ))χ)

= 1
2(ωi(ΨK∞(ηmI )χ) + ωi(ΨK∞(ηgmI )χ))

= 1
2(ΨK∞,ψ(ηmI )K∞,ψ) + ΨK∞,ψ((ηgmI )K∞,ψ))zF,χ

= 1
2(ΨK∞,ψ((ηmI )K∞,ψ) + ΨK∞,ψ((ηmI )

ψ(g)
K∞,ψ))zF,χ

= 1
2(ΨK∞,ψ((ηmI )K∞,ψ) + ΨK∞,ψ((ηmI )K∞,ψ))zF,χ

= ΨK∞,ψ((ηmI )K∞,ψ)zF,χ,

and hence, by (6.1),

Ψk∞,ψ(NG(ηmI )k∞,ψ) = vIdI

∏
l∈I

(1− ψ(l)(1 + T )tl)

 gψ(T ).

By Lemma 5.4, we have

Ψk∞,ψ(C̃′
k∞,ψ) =

〈
dI
∏
l∈I

(1− ψ(l)(1 + T )tl)gψ(T )

∣∣∣∣∣∣ I ⊂ L
〉

= Agψ(T ) ⊂ Λ.

We can see that ker(Ψk∞,ψ) ∩ C̃′
k∞,ψ = {1}. Therefore Theorem 3.5 follows

from Proposition 4.7.
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Assume that k is real. We will calculate the values Ψk∞,ψ((ηγ−κ(γ)
mI )k∞,ψ)

and Ψk∞,ψ((ϵ−hI/2ηmI )k∞,ψ). We can see that

Ψk∞,ψ((ηγ−κ(γ)
mI

)k∞,ψ)zF,χ = 1
2ω

i(ΨK∞(ηγ−κ(γ)
mI

)χ)

= 1
2(γ − κ(γ))ωi(ΨK∞(ηmI )χ)

= 1
2 ṪΨK∞,ψ((ηmI )K∞,ψ)zF,χ

and hence, by (6.1),

Ψk∞,ψ((ηγ−κ(γ)
mI

)k∞,ψ) = vIdI

(∏
l∈I

(1− ψ(l)(1 + T )tl)
)

1
2 Ṫ gψ(T ).

Furthermore, we can see that

Ψk∞,ψ((ϵ−hI/2ηmI )k∞,ψ)zF,χ = 1
2ω

i(ΨK∞(ϵ−hI/2ηmI )χ)

= 1
2ω

i(ΨK∞(ϵ−hI/2)χ + ΨK∞(ηmI )χ)

= 1
2ω

i(ΨK∞(ηmI )χ)

= 1
2ΨK∞,ψ((ηmI )K∞,ψ)zF,χ

and hence, by (6.1),

Ψk∞,ψ((ϵ−hI/2ηmI )k∞,ψ) = vIdI

(∏
l∈I

(1− ψ(l)(1 + T )tl)
)

1
2gψ(T ).

Let C̃′′
k∞,ψ be the submodule of C̃k∞,ψ generated by

{NG(ηmI )k∞,ψ, (ηγ−κ(γ)
mI

)k∞,ψ | I ⊂ L}.

By the above calculation, we have

Ψk∞,ψ(C̃′′
k∞,ψ)

= ⟨2dI
∏
l∈I

(1− ψ(l)(1 + T )tl), Ṫ dI
∏
l∈I

(1− ψ(l)(1 + T )tl) | I ⊂ L⟩gψ(T )/2

= (2, Ṫ )A(gψ(T )/2).
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By Lemma 5.5, C̃k∞,ψ ⊃ C̃′′
k∞,ψ and ⟨NG(ηmI )k∞,ψ | I ⊂ L⟩ = C̃′

k∞,ψ ⊃
C̃2
k∞,ψ, so we have

Ψk∞,ψ(C̃k∞,ψ) ⊃ (2, Ṫ )A(gψ(T )/2),

Ψk∞,ψ(C̃′
k∞,ψ) = Agψ(T ) ⊃ 2Ψk∞,ψ(C̃k∞,ψ).

Since Λ is an integral domain, we have

Agψ(T )/2 ⊃ Ψk∞,ψ(C̃k∞,ψ) ⊃ (2, Ṫ )A(gψ(T )/2).

Therefore there is an ideal A′ of Λ such that A ⊃ A′ ⊃ (Ṫ , 2)A and
Ψk∞,ψ(C̃k∞,ψ) = A′(gψ(T )/2). This completes the proof of Theorem 3.2.

Assume that k is imaginary. We put

η+
t = (NQ(2n+2t)/Q(2n+2t)∩k+

n (ζ4)(1− ζ2n+2ζσ
−n

t ))n≥0 ∈ lim←−Ck+
n (ζ4)

for t | m, t ̸= 1. Recall Ck∞ = C′
k∞
· Ck+

∞
. Then C̃k∞,ψ has a submodule of

finite index generated by

{NG(ηmI )k∞,ψ, Nk+
∞(ζ4)/k+

∞
(η+
mI

)k∞,ψ, ((η+
mI

)γ−κ(γ))k∞,ψ | I ⊂ L}

and if 2 | h+
I = [Q(4mI) : Q(4mI) ∩ k+(ζ4)] for I ⊂ L, then Ck∞,ψ is

generated by

{(ϵ−h
+
I /2η+

mI
)k∞,ψ, NG(ηmI )k∞,ψ | I ⊂ L}

by Lemma 5.1. We put αI = [Q(4mI) ∩K0 : Q(4mI) ∩ k+(ζ4)], which is 1
or 2. Then η+

mI
= ηmI or NK∞/k+

∞(ζ4)(ηmI ) if αI = 1 or 2 respectively. Since
k+

∞(ζ4) ⊃ kψ∞, we have (NK∞/k+
∞(ζ4)(ηmI ))K∞,ψ = (ηmI )2

K∞,ψ. Therefore

(η+
mI

)K∞,ψ = (ηmI )
αI
K∞,ψ

By Proposition 4.4, we compute the following:

Ψk∞,ψ((ϵ−h
+
I /2η+

mI
)k∞,ψ)zF,χ = 1

[K0 : k]ω
i(ΨK∞(ϵ−hI/2η+

mI
)χ)

= 1
[K0 : k]ω

i(ΨK∞(η+
mI

)χ)

= 1
[K0 : k]ΨK∞,ψ((η+

mI
)K∞,ψ)zF,χ

= αI
[K0 : k]ΨK∞,ψ((ηmI )K∞,ψ)zF,χ,
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Ψk∞,ψ(Nk+
∞(ζ4)/k+

∞
(η+
mI

)k∞,ψ)zF,χ

= 1
[K0 : k]ω

i(ΨK∞(Nk+
∞(ζ4)/k+

∞
(η+
mI

))χ)

= 1
[K0 : k]ΨK∞,ψ((Nk+

∞(ζ4)/k+
∞

(η+
mI

))K∞,ψ)zF,χ

= 1
[K0 : k]ΨK∞,ψ((η+

mI
)2
K∞,ψ)zF,χ

= 2αI
[K0 : k]ΨK∞,ψ((ηmI )K∞,ψ)zF,χ,

and

Ψk∞,ψ(((η+
mI

)γ−κ(γ))k∞,ψ)zF,χ = 1
[K0 : k]ω

i(ΨK∞((η+
mI

)γ−κ(γ))χ)

= 1
[K0 : k] (γ − κ(γ))ωi(ΨK∞(η+

mI
)χ)

= 1
[K0 : k] ṪΨK∞,ψ((η+

mI
)K∞,ψ)zF,χ

= αI
[K0 : k] ṪΨK∞,ψ((ηmI )K∞,ψ)zF,χ.

Therefore, by (6.1), we have

Ψk∞,ψ((ϵ−h
+
I /2η+

mI
)k∞,ψ) = vIdIαI

[K0 : k]

(∏
l∈I

(1− ψ(l)(1 + T )tl)
)
gψ(T ),

Ψk∞,ψ(Nk+
∞(ζ4)/k+

∞
(η+
mI

)k∞,ψ) = 2vIdIαI
[K0 : k]

(∏
l∈I

(1− ψ(l)(1 + T )tl)
)
gψ(T ),

Ψk∞,ψ(((η+
mI

)γ−κ(γ))k∞,ψ) = vIdIαI
[K0 : k]

(∏
l∈I

(1− ψ(l)(1 + T )tl)
)
Ṫ gψ(T ).

Since k is imaginary, we have [k : k+] = [k+(ζ4) : k+] = 2, and hence [K0 :
k] = [K0 : k+(ζ4)]. Recall that vI = −[F : Q(mL) ∩ F ]

∏
l∈I(−χ(l)−1) =

−[K0 : Q(4mL)∩K0]
∏
l∈I(−χ(l)−1) and dI = [Q(4mL)∩K0 : Q(4mI)∩K0].

Then we have

vIdIαI
[K0 : k] = − [K0 : Q(4mI) ∩ k+(ζ4)]

[K0 : k+(ζ4)]

(∏
l∈I
−χ(l)

)

= −[k+(ζ4) : Q(4mI) ∩ k+(ζ4)]
(∏
l∈I
−χ(l)

)
.
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We can show that

Ak+,ψ =
〈

αIdI
[K0 : k]

(∏
l∈I

(1− ψ(l)(1 + T )tl)
) ∣∣∣∣∣∣ I ⊂ L

〉
⊃ Ak,ψ.

Using ⟨Nk+
∞(ζ4)/k+

∞
(η+
mI

)k∞,ψ | I ⊂ L⟩ = C̃′
k+

∞,ψ ⊃ C̃
2
k+

∞,ψ
, we have

Ψk∞,ψ(C̃′
k+

∞,ψ
) = 2Ak+,ψgψ(T )

and hence

Ak+,ψgψ(T ) ⊃ Ψk∞,ψ(C̃k∞,ψ) ⊃ (Ak,ψ + (2, Ṫ )Ak+,ψ)gψ(T ).

If 2 | h+
I for I ⊂ L, then Ψk∞,ψ(C̃k∞,ψ) = Ak+,ψgψ(T ). We note that if

ζ4 ∈ k, then Ak+,ψ = Ak,ψ. This completes the proof of Theorem 3.4. □

Remark 6.1. By Lemma 5.5, if [Q(t) : Q(t) ∩ F ] is even for t | m, t ̸= 1
then C̃k∞,ψ is generated by

{(ϵ−hI/2ηmI )k∞,ψ | I ⊂ L}

where hI = [Q(mI) : Q(mI)∩ F ]. In this case, using the above calculation,
we have

Ψk∞,ψ(C̃k∞,ψ) = A(gψ(T )/2).
Then under the condition that [Q(t) : Q(t) ∩ F ] is even for t | m, t ̸= 1, we
have A′ = A. In Remark 5.2, we mentioned that if 2 is unramified in k then
this condition holds. Therefore, if 2 is unramified in k, it holds that A′ = A
in Theorem 3.2.

7. µ-invariants and the Iwasawa main conjecture
LetM be the maximal abelian pro 2-extension of k∞ unramified outside

all primes over 2 and put

X = Gal(M/k∞).

As usual, X is a module over Z2[G][[Γ]] so Λ-modules Xψ and Xψ are defined.
We will consider the µ-invariants of Xψ and Xψ.

Assume that k is real. In this case, it is known that X is a finite generated
torsion Z2[[Γ]]-module. Furthermore, in [7], it is shown that the µ-invariant
of X is zero by using Ferrero’s result [3]. Therefore we have µ(Xψ) = 0 and
µ(Xψ) = 0.

Assume that k is imaginary. In this case, the Z2[[Γ]]-rank of X is equal to
[k : Q]/2. Let k+ be the maximal real subfield of k and J the generator of
Gal(k/k+) ∼= Gal(k∞/k

+
∞), i.e. J is the complex conjugation. We put

X+ = {x ∈ X | Jx = x}, X+ = X/(J − 1)X.
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Since ψ is even, we regard ψ as a character of Gal(k+/Q) and we have

Xψ ∼= (X+)ψ, Xψ ∼= (X+)ψ.
Let M+ be the maximal abelian pro 2-extension of k+

∞ unramified out-
side all primes over 2. We can show that X+ is pseudo-isomorphic to
Gal(M+/k+

∞). Therefore the µ-invariant of Xψ is zero. Let M′/k+
∞ be the

maximal abelian subfield of M/k+
∞, then M′ is the fixed field of (J − 1)X,

i.e. Gal(M′/k∞) ∼= X+. Let M̃+ be the maximal abelian pro 2-extension
of k+

∞ unramified outside all primes over 2 and all infinite primes. Then
k+

∞ ⊂ k∞ ⊂ M̃+ ⊂ M′. Since all infinite primes are totally ramified in
k∞/k

+
∞ and the number of finite primes of k+

∞ which ramified in M′ is
finite, the degree [M′ : M̃+] is finite. Therefore the kernel and the cokernel
of the restriction map

X+ −→ Gal(M̃+/k+
∞)

are finite. By [6, Proposition 8], the torsion submodule of Gal(M̃+/k+
∞) is

pseudo-isomorphic to (Z2[[Γ]]/(2))[Gal(k+/Q)]. Therefore µ(Xψ) = 1.
Summarizing the above, we have

(7.1) µ(Xψ) = 0
and

(7.2) µ(Xψ) =
{

0 if k is real,
1 if k is imaginary.

By Theorem 3.1, 3.2 and 3.4, the µ-invariant of Xψ and Xψ coincide with
that of Uψ/Cψ and (U/C)ψ respectively, that is, we obtain the following:

Theorem 7.1. For an abelian field k of the first kind and an even character
ψ of Gal(k/Q),

µ(Xψ) = µ(Uψ/Cψ), µ(Xψ) = µ((U/C)ψ).

Put
W = X⊗Z2 Q2

and define W (ψ) the eigenspace of W corresponding to the action of G via
ψ and charΛ(W (ψ)) the characteristic polynomial of T acting on this space.
We see that

W (ψ) ∼= Xψ ⊗Z2 Q2 ∼= Xψ ⊗Z2 Q2.

The Iwasawa main conjecture proved by Wiles [14] is that

charΛ(W (ψ)) = 1
2gψ(T ).

It is known that µ(1
2gψ(T )) = 0 by Ferrero–Washington [3, 4]. By (7.1)

and (7.2), the Iwasawa main conjecture is the following:
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Theorem 7.2. For an abelian field k of the first kind and an even charac-
ter ψ,

charΛ(Xψ) = gψ(T )/2
and

charΛ(Xψ) =
{
gψ(T )/2 if k is real,
gψ(T ) if k is imaginary.

By Theorems 3.1, 3.2 and 3.4, we can show the following:

Theorem 7.3. For an abelian field k of the first kind and an even character
ψ of Gal(k/Q),

charΛ(Xψ) = charΛ(Uψ/Cψ), charΛ(Xψ) = charΛ((U/C)ψ).
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