

Takae TSUJI

Semi-local units modulo cyclotomic units in the cyclotomic \mathbb{Z}_2 -extensions

Tome 36, nº 2 (2024), p. 445-479.

https://doi.org/10.5802/jtnb.1284

© Les auteurs, 2024.

Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 4.0 FRANCE. http://creativecommons.org/licenses/by-nd/4.0/fr/

Le Journal de Théorie des Nombres de Bordeaux est membre du Centre Mersenne pour l'édition scientifique ouverte http://www.centre-mersenne.org/

e-ISSN: 2118-8572

Semi-local units modulo cyclotomic units in the cyclotomic \mathbb{Z}_2 -extensions

par Takae TSUJI

RÉSUMÉ. Fixons un corps abélien k dont le conducteur n'est pas divisible par 8 et notons k_{∞}/k la \mathbb{Z}_2 -extension cyclotomique avec le n-ième corps intermédiaire k_n . Soit \mathcal{U} (resp. \mathcal{C}) la limite projective des groupes des unités semi-locales (resp. des unités cyclotomiques) en 2 de k_n . Pour un caractère pair non-trivial ψ de $Gal(k/\mathbb{Q})$, nous étudions la structure galoisienne de la ψ -partie $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ et du ψ -quotient $(\mathcal{U}/\mathcal{C})_{\psi}$ de \mathcal{U}/\mathcal{C} y compris dans le cas $2 \mid [k : \mathbb{Q}]$.

ABSTRACT. Fix an abelian field k whose conductor is not divisible by 8 and denote by k_{∞}/k the cyclotomic \mathbb{Z}_2 -extension with n-th layer k_n . Let \mathcal{U} (resp. \mathcal{C}) be the projective limit of the semi-local units at 2 (resp. of the cyclotomic units) of k_n . For a non-trivial even character ψ of $\operatorname{Gal}(k/\mathbb{Q})$, we study the Galois module structure of the ψ -part $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ and ψ -quotient $(\mathcal{U}/\mathcal{C})_{\psi}$ of \mathcal{U}/\mathcal{C} , taking into account the case $2 \mid [k : \mathbb{Q}]$.

1. Introduction

Let p be any prime number and k an abelian field. We denote by k_{∞}/k the cyclotomic \mathbb{Z}_p -extension with n-th layer k_n for $n \geq 0$. Let \mathcal{U}_{k_n} be the semi-local units of k_n at p and \mathcal{C}_{k_n} a group of cyclotomic units of k_n defined in Section 5. Put $\mathcal{U} = \mathcal{U}_{k_{\infty}} = \varprojlim \mathcal{U}_{k_n}$ and $\mathcal{C} = \mathcal{C}_{k_{\infty}} = \varprojlim \mathcal{C}_{k_n}$ where the projective limits are taken with respect to the relative norm maps. In this paper, we study the Galois module structure of \mathcal{U}/\mathcal{C} for p = 2.

We still assume that p is an arbitrary prime number. We may assume that k is of the first kind, that is, the conductor of k is not divisible by 8 or p^2 if p=2 or not respectively. Then $k \cap \mathbb{Q}_{\infty} = \mathbb{Q}$ where \mathbb{Q}_{∞} is the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} and $\operatorname{Gal}(k_{\infty}/\mathbb{Q}) = G \times \Gamma$ with $G = \operatorname{Gal}(k/\mathbb{Q})$ and $\Gamma = \operatorname{Gal}(k_{\infty}/k)$. We regard \mathcal{U}/\mathcal{C} as a module over the completed group ring $\mathbb{Z}_p[G][\Gamma]$. We decompose \mathcal{U}/\mathcal{C} by the action of G. Let ψ be a nontrivial even character of G with values in $\overline{\mathbb{Q}_p}^{\times}$ and e_{ψ} the idempotent of $\mathbb{Q}_p[G]$ corresponding to ψ . If $[k:\mathbb{Q}] = |G|$ is not divisible by p, then e_{ψ} is in $\mathbb{Z}_p[G]$ and $e_{\psi}(\mathcal{U}/\mathcal{C})$ becomes a modules over $\mathbb{Z}_p[\psi][\Gamma]$ where $\mathbb{Z}_p[\psi]$ denotes the ring generated by the values of ψ over \mathbb{Z}_p . As usual, we regard any

Manuscrit reçu le 27 octobre 2022, révisé le 16 janvier 2023, accepté le 26 janvier 2023. 2020 Mathematics Subject Classification. 11R23.

Mots-clefs. Iwasawa theory, cyclotomic units, p-adic L-functions.

 $\mathbb{Z}_p[\psi]\llbracket\Gamma\rrbracket$ -module as a module over $\Lambda = \mathbb{Z}_p[\psi]\llbracket T \rrbracket$, by fixing a topological generator of Γ . When $p \mid [k : \mathbb{Q}]$, one cannot define a ψ -component as a direct summand. However we can define two Λ -modules, the ψ -part $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ and the ψ -quotient $(\mathcal{U}/\mathcal{C})_{\psi}$. If $p \nmid [k : \mathbb{Q}]$, both $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ and $(\mathcal{U}/\mathcal{C})_{\psi}$ coincide with $e_{\psi}(\mathcal{U}/\mathcal{C})$ and, generally, after tensoring with \mathbb{Q}_p , these coincide with $e_{\psi}(\mathcal{U}/\mathcal{C}) \otimes \mathbb{Q}_p$.

We recall the former results on the structure of the Λ -modules $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ and $(\mathcal{U}/\mathcal{C})_{\psi}$. For any prime p and any k with $p \nmid [k : \mathbb{Q}]$, the structure of the Λ -module $e_{\psi}(\mathcal{U}/\mathcal{C}) = \mathcal{U}^{\psi}/\mathcal{C}^{\psi} = (\mathcal{U}/\mathcal{C})_{\psi}$ was determined by Iwasawa [9] and Gillard [5], which is described in terms of the power series $g_{\psi}(T)$ of Λ associated to the Kubota–Leopoldt p-adic L-function. For odd prime p and any k without assumption $p \nmid [k : \mathbb{Q}]$, the author [12] determined the structure of the Λ -modules $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ and $(\mathcal{U}/\mathcal{C})_{\psi}$. She showed that Coleman's homomorphism induces two Λ -homomorphisms

$$\Psi^{\psi}: \mathcal{U}^{\psi}/\mathcal{C}^{\psi} \longrightarrow \Lambda/(g_{\psi}(T)/2), \qquad \Psi_{\psi}: (\mathcal{U}/\mathcal{C})_{\psi} \longrightarrow \Lambda/(g_{\psi}(T)/2)$$

and determined the kernels and the cokernels of Ψ^{ψ} and Ψ_{ψ} respectively. (In [12], Ψ^{ψ} and Ψ_{ψ} was denoted by $\operatorname{Col}^{\psi}$ and $\operatorname{Col}_{\psi}$ respectively.) In particular, she showed that

$$\operatorname{char}_{\Lambda}(\mathcal{U}^{\psi}/\mathcal{C}^{\psi}) = (g_{\psi}(T)/2), \qquad \operatorname{char}_{\Lambda}((\mathcal{U}/\mathcal{C})_{\psi}) = (g_{\psi}(T)/2)$$

where $\operatorname{char}_{\Lambda}(M)$ denotes the characteristic ideal of a Λ -module M. We note that $(g_{\psi}(T)/2) = (g_{\psi}(T))$ holds as an ideal of Λ since p is odd. For the μ -invariants of $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ and $(\mathcal{U}/\mathcal{C})_{\psi}$, we can deduce

$$\mu(\mathcal{U}^{\psi}/\mathcal{C}^{\psi}) = 0, \qquad \mu((\mathcal{U}/\mathcal{C})_{\psi}) = 0$$

from our results and the Ferrero–Washington theorem [3, 4]. Under the assumption $p \nmid [k : \mathbb{Q}]$, the main results of [12] coincide with the results of Iwasawa and Gillard for odd prime p. For any prime p and any k without the assumption $p \nmid [k : \mathbb{Q}]$, Greither [8] determined the structure of the $\Lambda \otimes \mathbb{Q}_p$ -module $e_{\psi}((\mathcal{U}/\mathcal{C}) \otimes \mathbb{Q}_p) = (\mathcal{U}^{\psi}/\mathcal{C}^{\psi}) \otimes \mathbb{Q}_p = (\mathcal{U}/\mathcal{C})_{\psi} \otimes \mathbb{Q}_p$. Only in the case where p = 2 and $2 \mid [k : \mathbb{Q}]$, the structure of the Λ -modules $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ and $(\mathcal{U}/\mathcal{C})_{\psi}$ have not been determined yet. In this paper, we determine those structure in the remaining case, that is, p = 2 and $2 \mid [k : \mathbb{Q}]$.

Let p=2 and k be any abelian field of the first kind including the case where $2 \mid [k:\mathbb{Q}]$. We study both cases where k is real and imaginary and let ψ be a non-trivial even character of $Gal(k/\mathbb{Q})$.

In the main results of this paper, Theorems 3.1, 3.2 and 3.4, we define two Λ -homomorphisms

$$\Psi^{\psi}: \mathcal{U}^{\psi}/\mathcal{C}^{\psi} \longrightarrow \Lambda/(g_{\psi}(T)/2), \qquad \Psi_{\psi}: (\mathcal{U}/\mathcal{C})_{\psi} \longrightarrow \Lambda/(g_{\psi}(T)/2)$$

and determine the kernels and the cokernels of Ψ^{ψ} and Ψ_{ψ} respectively for p=2. We show that the kernel of Ψ_{ψ} has the μ -invariant 1 when k is

imaginary. In particular, we can deduce the following

$$\operatorname{char}_{\Lambda}(\mathcal{U}^{\psi}/\mathcal{C}^{\psi}) = (g_{\psi}(T)/2)$$

and

$$\operatorname{char}_{\Lambda}((\mathcal{U}/\mathcal{C})_{\psi}) = \begin{cases} (g_{\psi}(T)/2) & \text{if } k \text{ is real,} \\ (g_{\psi}(T)) & \text{if } k \text{ is imaginary.} \end{cases}$$

Therefore, by using the Ferrero–Washington theorem [3, 4], we obtain the following

$$\mu(\mathcal{U}^{\psi}/\mathcal{C}^{\psi}) = 0$$

and

$$\mu((\mathcal{U}/\mathcal{C})_{\psi}) = \begin{cases} 0 & \text{if } k \text{ is real,} \\ 1 & \text{if } k \text{ is imaginary.} \end{cases}$$

Our results in the cases where $2 \nmid [k : \mathbb{Q}]$ (and p = 2) coincide with the results of Iwasawa and Gillard. If k is imaginary, that is, the infinite places ramified in k, then $[k : \mathbb{Q}]$ is divisible by p = 2. Therefore Iwasawa and Gillard did not treat the cases where k is imaginary. We show that the structure of $(\mathcal{U}/\mathcal{C})_{\psi}$ depends on whether 2 is ramified in k or not. Actually, if p = 2 is ramified in k, the kernel of Ψ_{ψ} has a finite Λ -submodule $T_{k,\psi}$ defined in Section 3. When p is odd, whether p is ramified in k does not affect the structure of $(\mathcal{U}/\mathcal{C})_{\psi}$ and the Λ -module $T_{k,\psi}$ does not appear in the kernel of Ψ_{ψ} . We remark that the ramification index of p in k is a divisor of p or p-1 if p=2 or not since k is of the first kind. We further remark that Iwasawa and Gillard did not treat the cases where 2 is ramified in k.

In this paper, we study a relation between the Iwasawa main conjecture and our main theorems. Let \mathcal{M} be the maximal abelian pro 2-extension of k_{∞} unramified outside all primes over 2 and put

$$\mathfrak{X} = \operatorname{Gal}(\mathcal{M}/k_{\infty}).$$

Then Λ -modules \mathfrak{X}^{ψ} and \mathfrak{X}_{ψ} are defined. By our main theorems, we can show that

$$\mu(\mathfrak{X}^{\psi}) = \mu(\mathcal{U}^{\psi}/\mathcal{C}^{\psi}), \quad \mu(\mathfrak{X}_{\psi}) = \mu((\mathcal{U}/\mathcal{C})_{\psi})$$

in both cases where k is real and imaginary. Therefore, by the Iwasawa main conjecture proved by Wiles [14] and our results, we obtain

$$\operatorname{char}_{\Lambda}(\mathfrak{X}^{\psi}) = \operatorname{char}_{\Lambda}(\mathcal{U}^{\psi}/\mathcal{C}^{\psi}), \quad \operatorname{char}_{\Lambda}(\mathfrak{X}_{\psi}) = \operatorname{char}_{\Lambda}((\mathcal{U}/\mathcal{C})_{\psi})$$

including the μ -invariants.

The content of this paper is as follows: In Section 2, we recall the definition of the ψ -part and the ψ -quotient and their basic properties. In Section 3, we state the main results. In Section 4, we define Λ -homomorphisms $\Psi^{\psi}: \mathcal{U}^{\psi} \to \Lambda$ and $\Psi_{\psi}: \mathcal{U}_{\psi} \to \Lambda$ and determine their kernels and cokernels. In Section 5, we determine generators of the ψ -part and the ψ -quotient of the cyclotomic units group \mathcal{C} . In Section 6, we calculate the images of the

generators of the ψ -part and the ψ -quotient of \mathcal{C} via Ψ^{ψ} and Ψ_{ψ} respectively. This completes the proof of the main results. Finally, in Section 7 we mention a relation between the Iwasawa main conjecture and the main theorems.

Acknowledgments. I would like to thank Yositaka Hachimori and Kazuo Matsuno for helpful comments and for encouragements.

2. χ -parts and χ -quotients

In this section, let p be any prime number, Δ any finite abelian group and $\chi: \Delta \to \overline{\mathbb{Q}_p}^{\times}$ any character. We define χ -parts and χ -quotients of $\mathbb{Z}_p[\Delta]$ -modules and recall some basic facts. For further properties, see [8, 11, 12].

We denote by $\mathbb{Z}_p[\chi]$ the ring generated by the values of χ over \mathbb{Z}_p and by $\mathbb{Z}_p[\chi]$ a free $\mathbb{Z}_p[\chi]$ -module of rank one on which Δ acts via χ . For a $\mathbb{Z}_p[\Delta]$ -module M, we define the following $\mathbb{Z}_p[\chi]$ -modules:

$$M^{\chi} = \operatorname{Hom}_{\mathbb{Z}_p[\Delta]}(\underline{\mathbb{Z}}_p[\chi], M), \ M_{\chi} = M \otimes_{\mathbb{Z}_p[\Delta]} \underline{\mathbb{Z}}_p[\chi],$$

which we call the χ -part and the χ -quotient of M respectively.

Let I_{χ} denote the ideal of $\mathbb{Z}_p[\chi][\Delta]$ generated by all elements of the form $\delta - \chi(\delta), \delta \in \Delta$. We have isomorphisms of $\mathbb{Z}_p[\chi]$ -modules

$$M^{\chi} \cong \{ m \in M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi] \mid \delta m = \chi(\delta)m, \forall \ \delta \in \Delta \}$$

and

$$M_{\chi} \cong (M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi])/I_{\chi}(M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]).$$

Then M^{χ} (resp. M_{χ}) is isomorphic to the largest submodule (resp. quotient module) of $M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]$ on which Δ acts via χ .

Let $\xi_{\Delta,\chi} = \sum_{\delta \in \Delta} \chi(\delta) \delta^{-1} \in \mathbb{Z}_p[\chi][\Delta]$. Multiplication of $\xi_{\Delta,\chi}$ defines an endomorphism of $M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]$, which induces a $\mathbb{Z}_p[\chi]$ -homomorphism

$$\xi_{\Delta,\chi}^*: M_\chi \longrightarrow M^\chi.$$

We define a quotient module \widetilde{M}^{χ} of M^{χ} and a submodule \widetilde{M}_{χ} of M_{χ} by

$$\widetilde{M}^{\chi} \cong M^{\chi} / \operatorname{Im}(\xi_{\Delta, \chi}) = \operatorname{coker}(\xi_{\Delta, \chi}^*)$$

and

$$\widetilde{M}_{\chi} \cong \ker(\xi_{\Delta,\chi})/I_{\chi}(M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p[\chi]) = \ker(\xi_{\Delta,\chi}^*).$$

The following lemmas can be proved easily.

Lemma 2.1. Assume that Δ is a cyclic group and

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

is an exact sequence of $\mathbb{Z}_p[\Delta]$ -modules. We have an exact sequence

$$0 \longrightarrow M_1^{\chi} \longrightarrow M_2^{\chi} \longrightarrow M_3^{\chi} \longrightarrow M_{1,\chi} \longrightarrow M_{2,\chi} \longrightarrow M_{3,\chi} \longrightarrow 0.$$

Furthermore

$$0 \longrightarrow M_1^\chi \longrightarrow M_2^\chi \longrightarrow M_3^\chi \longrightarrow \widetilde{M}_{1,\chi} \longrightarrow \widetilde{M}_{2,\chi} \longrightarrow \widetilde{M}_{3,\chi}$$

and

$$\widetilde{M}_1^{\chi} \longrightarrow \widetilde{M}_2^{\chi} \longrightarrow \widetilde{M}_3^{\chi} \longrightarrow M_{1,\chi} \longrightarrow M_{2,\chi} \longrightarrow M_{3,\chi} \longrightarrow 0$$

are also exact.

Lemma 2.2 ([11, Lemma II.2]). Assume χ to be a faithful character of a cyclic group Δ of p-power order. We denote by C the subgroup of the order p in Δ , and N_C its norm in $\mathbb{Z}_p[\Delta]$. For any $\mathbb{Z}_p[\Delta]$ -module M, there are $\mathbb{Z}_p[\Delta]$ -isomorphisms:

$$M^{\chi} \cong \ker(N_C : M \longrightarrow M)$$
 and $M_{\chi} \cong \operatorname{coker}(N_C : M \longrightarrow M)$.

Furthermore, we have $\mathbb{Z}_p[\Delta]$ -isomorphisms:

$$\widetilde{M}^{\chi} \cong \widehat{H}^{-1}(C, M)$$
 and $\widetilde{M}_{\chi} \cong \widehat{H}^{0}(C, M)$.

Corollary 2.3. Under the same assumption as in Lemma 2.2, if

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

is an exact sequence of $\mathbb{Z}_p[\Delta]$ -modules, then

$$0 \longrightarrow M_1^{\chi} \longrightarrow M_2^{\chi} \longrightarrow M_3^{\chi} \longrightarrow \widehat{H}^0(C, M_1) \longrightarrow \widehat{H}^0(C, M_2) \longrightarrow \widehat{H}^0(C, M_3)$$
and

$$\hat{H}^{-1}(C, M_1) \to \hat{H}^{-1}(C, M_2) \to \hat{H}^{-1}(C, M_3) \to M_{1,\chi} \to M_{2,\chi} \to M_{3,\chi} \to 0$$
 are exact.

3. The main results

For natural number t, let ζ_t be a primitive t-th root of unity with the property that $\zeta_{st}^s = \zeta_t$ for all $s \geq 1$, and we denote by μ_t the group of t-th roots of unity. Put $\mu_{2^{\infty}} = \bigcup \mu_{2^n}$. We shall often denote $\mathbb{Q}(\zeta_t)$ by $\mathbb{Q}(t)$.

roots of unity. Put $\mu_{2^{\infty}} = \bigcup \mu_{2^n}$. We shall often denote $\mathbb{Q}(\zeta_t)$ by $\mathbb{Q}(t)$. Put $\mathbb{Q}_n = \mathbb{Q}(\zeta_{2^{n+2}} + \zeta_{2^{n+2}}^{-1})$ for $n \geq 0$ and $\mathbb{Q}_{\infty} = \bigcup_n \mathbb{Q}_n$. Then \mathbb{Q}_{∞} is the cyclotomic \mathbb{Z}_2 -extension of \mathbb{Q} . Let k be a finite abelian extension of \mathbb{Q} of the first kind, that is, the conductor of k is not divisible by 8. We study both cases where k is real and imaginary. Put $k_n = k\mathbb{Q}_n$ for $0 \leq n \leq \infty$, hence k_{∞} is the cyclotomic \mathbb{Z}_2 -extension of k with n-th layer k_n . We can see that for any finite abelian extension k' of \mathbb{Q} , there exists an abelian field k of the first kind such that $k'_{\infty} = k'\mathbb{Q}_{\infty} = k_{\infty}$.

Let \wp be a prime ideal of k lying above 2, and \wp_n the unique prime ideal of k_n lying above \wp . We denote $U_{k_n,\wp}$ the principal units in the completion $k_{n,\wp}$ of k_n at \wp_n . Put

$$\mathcal{U}_n = \mathcal{U}_{k_n} = \prod_{\wp \mid 2} U_{k_n,\wp}$$

where \wp runs over all prime ideals of k lying above 2, which is called the group of semi-local units of k_n at 2. Then \mathcal{U}_{k_n} is a $\mathbb{Z}_2[\operatorname{Gal}(k_n/\mathbb{Q})]$ -module. Let C_{k_n} be a group of cyclotomic units of k_n defined in Section 5. We identify C_{k_n} with its image under the diagonal embedding $k_n^{\times} \to \prod k_{n,\wp}^{\times} = (k_n \otimes \mathbb{Q}_2)^{\times}$. Let \mathcal{C}_{k_n} be the closure of the intersection $\mathcal{U}_{k_n} \cap C_{k_n}$ in \mathcal{U}_{k_n} . Then \mathcal{C}_{k_n} is a closed $\mathbb{Z}_2[\operatorname{Gal}(k_n/\mathbb{Q})]$ -submodule of \mathcal{U}_{k_n} . Put

$$\mathcal{U} = \mathcal{U}_{k_{\infty}} = \underline{\lim} \, \mathcal{U}_{k_n}, \quad \mathcal{C} = \mathcal{C}_{k_{\infty}} = \underline{\lim} \, \mathcal{C}_{k_n},$$

where the projective limits are taken with respect to the relative norms. Put $G = \operatorname{Gal}(k/\mathbb{Q})$ and $\Gamma = \operatorname{Gal}(k_{\infty}/k)$. Since we assume that k is of the first kind, we have isomorphisms $G \cong \operatorname{Gal}(k_n/\mathbb{Q}_n)$ $(0 \le n \le \infty)$, $\Gamma \cong \operatorname{Gal}(\mathbb{Q}_{\infty}/\mathbb{Q})$ and $\operatorname{Gal}(k_{\infty}/\mathbb{Q}) \cong G \times \Gamma$. Therefore \mathcal{U} and \mathcal{C} are modules over the completed group ring $\mathbb{Z}_2[G][\![\Gamma]\!]$.

Let ψ be a non-trivial, even character of G whose values are in $\overline{\mathbb{Q}_2}^{\times}$. We define $\mathbb{Z}_2[\psi] \llbracket \Gamma \rrbracket$ -modules $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ and $(\mathcal{U}/\mathcal{C})_{\psi}$ as in Section 2. Fixing a topological generator γ of Γ , we identify, as usual, the completed group ring $\mathbb{Z}_2[\psi] \llbracket \Gamma \rrbracket$ with the formal power series ring $\Lambda = \mathbb{Z}_2[\psi] \llbracket T \rrbracket$ by $\gamma = 1 + T$. We will investigate the structures of the Λ -modules $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ and $(\mathcal{U}/\mathcal{C})_{\psi}$.

We regard ψ as a primitive Dirichlet character. Let $L_2(\psi, s)$ denote the Kubota–Leopoldt 2-adic L-function associated to ψ . We write the cyclotomic character by κ : $\operatorname{Gal}(\mathbb{Q}(\boldsymbol{\mu}_{2^{\infty}})/\mathbb{Q}) \to \mathbb{Z}_2^{\times}$ and the Teichmüller character by ω . We often regard ω as a character of $\operatorname{Gal}(\mathbb{Q}(\boldsymbol{\mu}_{2^{n+2}})/\mathbb{Q}_n)$. By the isomorphism $\Gamma \cong \operatorname{Gal}(\mathbb{Q}(\boldsymbol{\mu}_{2^{\infty}})/\mathbb{Q}(\zeta_4))$, we can regard κ as a character of Γ . It is known that there exists a unique power series $g_{\psi}(T)$ in 2Λ such that

$$g_{\psi}(\kappa(\gamma)^s - 1) = L_2(\psi, 1 - s)$$

for all $s \in \mathbb{Z}_2$. Let π be a uniformizing parameter for $\mathbb{Q}_2(\psi)$. For a power series $f(T) \neq 0$ in Λ , we can uniquely write

$$f(T) = \pi^{\mu'(f(T))} P(T) U(T)$$

where $\mu'(f(T))$ is a non-negative integer, P(T) is a distinguished polynomial and U(T) is a unit in Λ . We put $\mu(f(T)) = \mu'(f(T))/\mu'(2)$, which we call the μ -invariant of f(T). By the Ferrero–Washington Theorem [3, 4], we know that

$$\mu(g_{\psi}(T)) = 1$$
 or eauivalently $\mu(g_{\psi}(T)/2) = 0$.

For every Λ -module M, we write $\operatorname{char}_{\Lambda}(M)$ for the characteristic ideal of M and put $\mu(M) = \mu(\operatorname{char}_{\Lambda}(M))$, the μ -invariant of M. Put $\dot{T} = \kappa(\gamma)(1+T)^{-1} - 1 \in \Lambda$.

In Section 4, we will define Λ -homomorphisms $\Psi_{k_{\infty}}^{\psi}: \mathcal{U}_{k_{\infty}}^{\psi} \to \Lambda$ and $\Psi_{k_{\infty},\psi}: \mathcal{U}_{k_{\infty},\psi} \to \Lambda$. In our main theorem, we describe the structure of Λ -module $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ (resp. $(\mathcal{U}/\mathcal{C})_{\psi}$) by using $\Psi_{k_{\infty}}^{\psi}$ (resp. $\Psi_{k_{\infty},\psi}$) in terms of

2-adic L-function $g_{\psi}(T)$. Our main theorem about the structure of the Λ -module $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ as follows:

Theorem 3.1.

(i) If $\psi\omega^{-1}(2) \neq 1$, the Λ -homomorphism $\Psi^{\psi}_{k_{\infty}}$ gives an isomorphism:

$$\mathcal{U}^{\psi}/\mathcal{C}^{\psi} \cong \Lambda/(g_{\psi}(T)/2).$$

(ii) If $\psi\omega^{-1}(2) = 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow \Lambda/(\dot{T}) \longrightarrow \mathcal{U}^{\psi}/\mathcal{C}^{\psi} \xrightarrow{\Psi_{k_{\infty}}^{\psi}} \Lambda/(g_{\psi}(T)/2\dot{T}) \longrightarrow 0.$$

In particular, we have

$$\operatorname{char}_{\Lambda}(\mathcal{U}^{\psi}/\mathcal{C}^{\psi}) = (g_{\psi}(T)/2), \quad \mu(\mathcal{U}^{\psi}/\mathcal{C}^{\psi}) = 0.$$

As in the case where p is odd prime, we prepare some notation which we need to state our results about the structure of $(\mathcal{U}/\mathcal{C})_{\psi}$. Let m (resp. f) be the odd part of the conductor of k (resp. ψ). Clearly $f \mid m$ and, by the assumption that k is of the first kind, the conductor of k (resp. ψ) is m or 4m (resp. f or 4f). Furthermore, since ψ is non-trivial and even, we see that $f \neq 1$ and also $m \neq 1$. We define a finite set \mathcal{L} of prime numbers as follows:

$$\mathcal{L} = \mathcal{L}_{k,\psi} = \{l : \text{prime number } | l | m, l \nmid f\}.$$

For a subset I of \mathcal{L} , we put $m_I = f \prod_{l \in I} l$ and

$$d_I = [\mathbb{Q}(\zeta_{4m_{\mathcal{L}}}) \cap k(\zeta_4) : \mathbb{Q}(\zeta_{4m_I}) \cap k(\zeta_4)].$$

If k is the cyclic extension of \mathbb{Q} associated to ψ , then $\mathcal{L} = \emptyset$. For $x \in \mathbb{Z}_2^{\times}$, we denote by t_x the unique element in \mathbb{Z}_2 such that $x = \omega(x)\kappa(\gamma)^{t_x}$. We define an ideal of finite index in Λ as follows:

$$\mathfrak{A} = \mathfrak{A}_{k,\psi} = \left\langle d_I \prod_{l \in I} (1 - \psi(l)(1 + T)^{t_l}) \middle| I \subset \mathcal{L} \right\rangle.$$

The quotient Λ/\mathfrak{A} is finite since the generator for $I=\varnothing$ is a constant, but for $I=\mathcal{L}$ is not divisible by 2. We note that $\mathfrak{A}=\Lambda$ if $\mathcal{L}=\varnothing$. We put

$$T_{k,\psi} = \Lambda/(\dot{T}, e_{k,2}, \psi(2) + \psi\omega^{-1}(2) - 1)$$

where $e_{k,2}$ is the ramification index of 2 in k. Since k is of the first kind, $e_{k,2}$ is 1 or 2 and either $\psi(2)=0$ or $\psi\omega^{-1}(2)=0$ holds. In particular if 2 is unramified in k, then $T_{k,\psi}$ is trivial. The structure of Λ -module $(\mathcal{U}/\mathcal{C})_{\psi}$ depends on k being real or imaginary. Our main theorems about the structure of the Λ -module $(\mathcal{U}/\mathcal{C})_{\psi}$ are as follows:

Theorem 3.2. Assume that k is a real abelian field. Then there is an ideal \mathfrak{A}' of Λ satisfying that $\mathfrak{A} \supset \mathfrak{A}' \supset (\dot{T},2)\mathfrak{A}$ and the natural surjection $\Lambda \to T_{k,\psi}$ induces a surjection $s: \Lambda/\mathfrak{A}'(g_{\psi}(T)/2) \to T_{k,\psi}$. Furthermore, the following hold:

(i) If $\psi\omega^{-1}(2) \neq 1$, we have an exact sequence of Λ -modules $0 \longrightarrow T_{k,\psi} \longrightarrow (\mathcal{U}/\mathcal{C})_{\psi} \xrightarrow{\Psi_{k\infty,\psi}} \Lambda/\mathfrak{A}'(g_{\psi}(T)/2) \xrightarrow{s} T_{k,\psi} \longrightarrow 0.$

(ii) If $\psi\omega^{-1}(2) = 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow \Lambda/(\dot{T}) \oplus T_{k,\psi} \longrightarrow (\mathcal{U}/\mathcal{C})_{\psi} \xrightarrow{\Psi_{k_{\infty},\psi}} \Lambda/\mathfrak{A}'(g_{\psi}(T)/2\dot{T}) \longrightarrow 0.$$

In particular, we have

$$\operatorname{char}_{\Lambda}((\mathcal{U}/\mathcal{C})_{\psi}) = (g_{\psi}(T)/2), \quad \mu((\mathcal{U}/\mathcal{C})_{\psi}) = 0.$$

Remark 3.3. We will give a sufficient condition for $\mathfrak{A}' = \mathfrak{A}$ in Lemma 5.5 and Remark 6.1. In particular, if 2 is unramified in k, we can show that $\mathfrak{A}' = \mathfrak{A}$. See also Lemma 5.1.

Theorem 3.4. Assume that k is an imaginary abelian field with maximal subfield k^+ . Then there is an ideal \mathfrak{A}'' of Λ such that

$$\mathfrak{A}_{k^+,\psi}\supset\mathfrak{A}''\supset\mathfrak{A}_{k,\psi}+(\dot{T},2)\mathfrak{A}_{k^+,\psi}$$

and the natural surjection $\Lambda \to T_{k,\psi}$ induces a surjection $s: \Lambda/\mathfrak{A}''g_{\psi}(T) \to T_{k,\psi}$ and the following hold:

(i) If $\psi\omega^{-1}(2) \neq 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow T_{k,\psi} \longrightarrow (\mathcal{U}/\mathcal{C})_{\psi} \xrightarrow{\Psi_{k\infty,\psi}} \Lambda/\mathfrak{A}''g_{\psi}(T) \xrightarrow{s} T_{k,\psi} \longrightarrow 0.$$

(ii) If $\psi\omega^{-1}(2) = 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow \Lambda/(\dot{T}) \oplus T_{k,\psi} \longrightarrow (\mathcal{U}/\mathcal{C})_{\psi} \xrightarrow{\Psi_{k_{\infty},\psi}} \Lambda/\mathfrak{A}''(g_{\psi}(T)/\dot{T}) \longrightarrow 0.$$

In particular, we have

$$\operatorname{char}_{\Lambda}((\mathcal{U}/\mathcal{C})_{\psi}) = (g_{\psi}(T)), \quad \mu((\mathcal{U}/\mathcal{C})_{\psi}) = 1.$$

For both cases where k is real or imaginary, we have

$$\operatorname{char}_{\Lambda}((\mathcal{U}/\mathcal{C})_{\psi}) = ([k:k^{+}]g_{\psi}(T)/2)$$

where k^+ is the maximal real subfield of k. Composing $\Psi_{k_{\infty},\psi}$ in Theorem 3.2 (resp. Theorem 3.4) with the canonical surjection

$$\Lambda/\mathfrak{A}'(g_{\psi}(T)/2) \longrightarrow \Lambda/(g_{\psi}(T)/2) \text{ (resp.}\Lambda/\mathfrak{A}''g_{\psi}(T) \longrightarrow \Lambda/(g_{\psi}(T)/2)),$$

we get a Λ -homomorphism

$$(\mathcal{U}/\mathcal{C})_{\psi} \longrightarrow \Lambda/(g_{\psi}(T)/2),$$

which we mentioned in the introduction. Theorem 3.2 and Theorem 3.4 determine the kernels and the cokernels of those homomorphisms. In particular, the μ -invariant of the kernel is 0 or 1 according to k is real or imaginary.

Let be $\mathcal{C}' = \mathcal{C}'_{k_{\infty}}$ the projective limit of cyclotomic unit groups of k_n in the sense of Sinnott defined in Section 5. We will also determine the structure of $(\mathcal{U}/\mathcal{C}')_{\psi}$ as follows:

Theorem 3.5. Let k be an abelian field of the first kind. Then the natural surjection $\Lambda \to T_{k,\psi}$ induces a surjection $s: \Lambda/\mathfrak{A}g_{\psi}(T) \to T_{k,\psi}$ and the following hold:

(i) If $\psi\omega^{-1}(2) \neq 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow T_{k,\psi} \longrightarrow (\mathcal{U}/\mathcal{C}')_{\psi} \xrightarrow{\Psi_{k_{\infty},\psi}} \Lambda/\mathfrak{A}g_{\psi}(T) \xrightarrow{s} T_{k,\psi} \longrightarrow 0.$$

(ii) If $\psi\omega^{-1}(2) = 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow \Lambda/(\dot{T}) \oplus T_{k,\psi} \longrightarrow (\mathcal{U}/\mathcal{C}')_{\psi} \xrightarrow{\Psi_{k_{\infty},\psi}} \Lambda/\mathfrak{A}(g_{\psi}(T)/\dot{T}) \longrightarrow 0.$$

In particular, we have

$$\operatorname{char}_{\Lambda}((\mathcal{U}/\mathcal{C}')_{\psi}) = (g_{\psi}(T)), \quad \mu((\mathcal{U}/\mathcal{C}')_{\psi}) = 1.$$

In [12], we proved the following for odd prime p.

Theorem 3.6 ([12, Theorem 3.3]). Let p be an odd prime number. If $\psi\omega^{-1}(p) = 1$, there exists an exact sequence of Λ -modules

$$0 \longrightarrow \Lambda/(\dot{T}) \longrightarrow (\mathcal{U}/\mathcal{C})_{\psi} \longrightarrow (\Lambda \oplus \Lambda/(d,\dot{T}))/\mathfrak{A}x_{\psi} \longrightarrow 0.$$

Here d is the order of the decomposition group of $\operatorname{Gal}(k/\mathbb{Q})$ and x_{ψ} the element $(g_{\psi}(T)/\dot{T}, -B_{1,\psi\omega^{-1}})$ of $\Lambda \oplus \Lambda/(d,\dot{T})$.

As the same method in the proof of Theorem 3.5, we can prove a modified version of this theorem as follows.

Theorem 3.7. Let p be an odd prime number. If $\psi\omega^{-1}(p) = 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow \Lambda/(\dot{T}) \longrightarrow (\mathcal{U}/\mathcal{C})_{\psi} \xrightarrow{\Psi_{k_{\infty},\psi}} \Lambda/\mathfrak{A}(g_{\psi}(T)/\dot{T}) \longrightarrow 0.$$

4. Semi-local units

Recall that k is a finite abelian extension of $\mathbb Q$ of the first kind and m is the odd part of the conductor of k, hence the conductor of k is m or 4m. Put $F = \mathbb Q(\zeta_m) \cap k(\zeta_4)$, which is an abelian extension of $\mathbb Q$ unramified at 2. Since the conductor of $k(\zeta_4)$ is 4m, we have $k(\zeta_4)\mathbb Q(\zeta_m) = \mathbb Q(\zeta_{4m})$, so $[k(\zeta_4):F] = [\mathbb Q(\zeta_{4m}):\mathbb Q(\zeta_m)] = 2$. We see that $k(\zeta_4) \supset F(\zeta_4)$ and $[F(\zeta_4):F] = 2$, hence $F(\zeta_4) = k(\zeta_4)$. If the conductor of k is m, that is, k is unramified at 2, we see that $k(\zeta_4) \supset F \supset k$ and $[k(\zeta_4):k] = 2$, hence k = F. Put $K_n = F(\mu_{2^{n+2}}) = k(\mu_{2^{n+2}})$ for $n \geq 0$ and $K_\infty = F(\mu_{2^\infty}) = k(\mu_{2^\infty})$ Hence K_∞/K_0 is the cyclotomic $\mathbb Z_2$ -extension. Put

$$\Delta = \operatorname{Gal}(F/\mathbb{Q}), \quad G_0 = \operatorname{Gal}(K_0/F), \quad G_\infty = \operatorname{Gal}(K_\infty/F).$$

Therefore we have

$$\operatorname{Gal}(K_{\infty}/\mathbb{Q}) \cong \Delta \times G_{\infty}, \ G_{\infty} \cong G_0 \times \Gamma.$$

Recall that ψ is a non-trivial even character of $G = \operatorname{Gal}(k/\mathbb{Q})$. The Teichmüller character ω is the unique non-trivial character of G_0 . We will regard ψ as a character of $\operatorname{Gal}(K_0/\mathbb{Q}) \cong \Delta \times G_0$ and let χ be the restriction of ψ to Δ . We can write

$$\psi = \chi \omega^i$$

with i=0 or 1. Let D be the decomposition group of 2 in Δ and $\sigma \in \Delta$ the Frobenius element of 2, thus $D=\langle \sigma \rangle$. For any prime ideal \wp of F lying above 2, let F_{\wp} denote the completion of F at \wp . Let \mathcal{O}_F (resp. $\mathcal{O}_{F_{\wp}}$) denote the integer ring of F (resp. F_{\wp}).

$$\widehat{\mathcal{O}}_F := \prod_{\wp \mid 2} \mathcal{O}_{F_\wp} \cong \mathcal{O}_F \otimes_{\mathbb{Z}} \mathbb{Z}_2,$$

where \wp runs over all prime ideals F lying above 2.

We recall the results of Coleman [1, 2]. For details, see [8, §7] and [13, §13.7–8]. We denote $\mathbb{Z}_2(1) = \varprojlim \mu_{2^{n+2}}$ where the projective limit is taken with respect to the map $\mu_{2^{n+2}} \to \mu_{2^{n+1}}$ defined by $\zeta \mapsto \zeta^2$ for $\zeta \in \mu_{2^{n+2}}$. We fix a generator $(\zeta_{2^{n+2}})_{n\geq 0}$ of $\mathbb{Z}_2(1)$, so $\zeta_{2^{n+2}}^2 = \zeta_{2^{n+1}}$ for $n \geq 1$. For a $\mathbb{Z}_2[G_\infty]$ -module M, we put $M(1) = M \otimes_{\mathbb{Z}_2} \mathbb{Z}_2(1)$. For $u = (u_n) \in \mathcal{U}_{K_\infty} = \varprojlim \mathcal{U}_{K_n}$, there exists a unique power series $f_u(X) \in \widehat{\mathcal{O}}_F[X]$ satisfying

$$f_u(1-\zeta_{2^{n+2}})=(u_n)^{\sigma^n},$$

which is called Coleman's power series associated to u. Let

$$D = (1 - X) \frac{\mathrm{d}}{\mathrm{d}X}$$

be the derivative operator on $\widehat{\mathcal{O}}_F[\![X]\!]$. Define the endomorphism φ of $\widehat{\mathcal{O}}_F[\![X]\!]$ by

$$(\varphi f)(X) = \sigma(f(1 - (1 - X)^2))$$

where σ acts on $\widehat{\mathcal{O}}_F[\![X]\!]$ via the coefficients. We can extend a power of the cyclotomic character $\kappa^k: G_\infty \to \mathbb{Z}_2^\times$ to a ring homomorphism $\widehat{\mathcal{O}}_F[\![G_\infty]\!] \to \widehat{\mathcal{O}}_F$ linearly for $k \in \mathbb{N}$. For $u \in \mathcal{U}_{K_\infty}$, there exists a unique element $\Psi_{K_\infty}(u)$ in $\widehat{\mathcal{O}}_F[\![G_\infty]\!]$ satisfying

(4.1)
$$D^{k}\left(1-\frac{\varphi}{2}\right)\log f_{u}(X)\Big|_{X=0} = (-\kappa)^{k}(\Psi_{K_{\infty}}(u)),$$

which defines a $\mathbb{Z}_2[\Delta]\llbracket G_\infty \rrbracket$ -homomorphism $\Psi_{K_\infty}: \mathcal{U}_{K_\infty} \to \widehat{\mathcal{O}}_F\llbracket G_\infty \rrbracket. U_{K_n,\wp}$ contains $\mu_{2^{n+2}}$ and $\varprojlim U_{K_n,\wp}$ contains $\varprojlim \mu_{2^{n+2}}$ where the projective limit is taken with respect to the norm map $N_{n,n-1}$ from $U_{K_n,\wp}$ to $U_{K_{n-1},\wp}$. We

see that $N_{n,n-1}(-\zeta_{2^{n+2}}) = (-\zeta_{2^{n+2}})(\zeta_{2^{n+2}}) = -\zeta_{2^{n+2}}^2 = -\zeta_{2^{n+1}}$. Then the following diagram is commutative

$$egin{aligned} oldsymbol{\mu}_{2^{n+2}} & \stackrel{f_n}{\longrightarrow} oldsymbol{\mu}_{2^{n+2}} \ \downarrow^2 & \stackrel{N_{n,n-1}}{\longrightarrow} oldsymbol{\mu}_{2^{n+1}} \ oldsymbol{\mu}_{2^{n+1}} & \stackrel{f_{n-1}}{\longrightarrow} oldsymbol{\mu}_{2^{n+1}} \end{aligned}$$

where $f_n(\zeta_{2^{n+2}}^a) = (-\zeta_{2^{n+2}})^a$ for $a \in \mathbb{Z}$. Hence the corresponding

$$(\zeta_{2^{n+2}})_{n\geq 0}\longmapsto (-\zeta_{2^{n+2}})_{n\geq 0}$$

defines an injection $\mathbb{Z}_2(1) \to \lim U_{K_n,\wp}$, which induces a homomorphism

$$\iota: \mathbb{Z}_2[\Delta/D](1) = \prod_{\wp|2} \mathbb{Z}_2(1) \longrightarrow \prod_{\wp|2} \varprojlim U_{K_n,\wp} = \mathcal{U}_{K_\infty}$$

of $\mathbb{Z}_2[\Delta][\![G_\infty]\!]$ -modules. The cyclotomic character κ induces a $\mathbb{Z}_2[\Delta][\![G_\infty]\!]$ -homomorphism $-\kappa: \widehat{\mathcal{O}}_F[\![G_\infty]\!] \to (\widehat{\mathcal{O}}_F/(\sigma-1)\widehat{\mathcal{O}}_F)(1)$. The following is known (cf. [2, Theorem 4] and [8, Theorem 2.8, Proposition 2.10]):

Theorem 4.1 (Coleman). Let F be a finite abelian extension of \mathbb{Q} unramified at 2 and put $K_{\infty} = F(\boldsymbol{\mu}_{2^{\infty}})$. There is an exact sequence of $\mathbb{Z}_2[\Delta][\![G_{\infty}]\!]$ -modules

$$0 \longrightarrow \mathbb{Z}_2[\Delta/D](1) \xrightarrow{\iota} \mathcal{U}_{K_{\infty}} \xrightarrow{\Psi_{K_{\infty}}} \widehat{\mathcal{O}}_F[\![G_{\infty}]\!] \xrightarrow{-\kappa} (\widehat{\mathcal{O}}_F/(\sigma-1)\widehat{\mathcal{O}}_F)(1) \longrightarrow 0.$$

For $y \in \widehat{\mathcal{O}}_F$, we denote by $y_{F,\chi}$ or y_{χ} its image under the natural surjection $\widehat{\mathcal{O}}_F \twoheadrightarrow \widehat{\mathcal{O}}_{F,\chi}$. We shall often consider an element of y of $\widehat{\mathcal{O}}_F$ as an element of $\widehat{\mathcal{O}}_F \otimes_{\mathbb{Z}_2} \mathbb{Z}_2[\chi]$. Since 2 is unramified in F/\mathbb{Q} , we have $\widehat{\mathcal{O}}_F \cong \mathbb{Z}_2[\Delta]$ as $\mathbb{Z}_2[\Delta]$ -modules. Therefore $\widehat{\mathcal{O}}_F^{\chi} \cong \mathbb{Z}_2[\chi]$ and $\widehat{\mathcal{O}}_{F,\chi} \cong \mathbb{Z}_2[\chi]$. We fix these isomorphisms as follows:

Lemma 4.2.

- (a) The additive group $\widehat{\mathcal{O}}_F^{\chi}$ is a free $\mathbb{Z}_2[\chi]$ -module of rank one generated by $z^{\chi} = \xi_{\chi}(\operatorname{Tr}_{\mathbb{Q}(f)/\mathbb{Q}(f)\cap F}(\zeta_f))$ where $\xi_{\chi} = \sum_{\delta} \chi(\delta)\delta^{-1}$, δ running over all elements in $\operatorname{Gal}(\mathbb{Q}(f)\cap F/\mathbb{Q})$. Further, for all $a\in\mathbb{N}$, we have $\xi_{\chi}(\operatorname{Tr}_{\mathbb{Q}(f)/\mathbb{Q}(f)\cap F}(\zeta_f^a)) = \chi(a)z^{\chi}$.
- (b) The additive group $\widehat{\mathcal{O}}_{F,\chi}$ is a free $\mathbb{Z}_2[\chi]$ -module of rank one generated by $z_{F,\chi} = [\mathbb{Q}(m) : \mathbb{Q}(m_{\mathcal{L}})]^{-1}(\prod_{l \in \mathcal{L}} -\chi(l))(\operatorname{Tr}_{\mathbb{Q}(m)/F}(\zeta_{m_{\mathcal{L}}}))_{F,\chi}$. Further, if the conductor of F is f, we have $(\operatorname{Tr}_{\mathbb{Q}(f)/F}(\zeta_f^a))_{F,\chi} = \chi(a)z_{F,\chi}$ for all $a \in \mathbb{N}$.

Proof. The statement (a) is exactly [12, Lemma 5.1 (a)] for p=2, which can be proved similarly. Although (b) can be induced by [12, Lemma 5.1 (b)] for p=2, we prove this directly. Since $\widehat{\mathcal{O}}_F \cong \mathbb{Z}_2[\Delta]$, the map $\xi_{\Delta,\chi}^* : \widehat{\mathcal{O}}_{F,\chi} \to \widehat{\mathcal{O}}_F^{\chi}$ gives an isomorphism where $\xi_{\Delta,\chi} = \sum_{\delta \in \Delta} \chi(\delta) \delta^{-1} \in \mathbb{Z}_p[\chi][\Delta]$ and $\xi_{\Delta,\chi}^*$ is

the $\mathbb{Z}_2[\chi]$ -homomorphism induced by $\xi_{\Delta,\chi}$ (see Section 2). Since $\xi_{\Delta,\chi} = \xi_{\chi} \operatorname{Tr}_{F/\mathbb{Q}(f)\cap F}$, we have

$$\begin{aligned} \xi_{\Delta,\chi}^*(z_{F,\chi}) &= \xi_{\Delta,\chi} \left(\left[\mathbb{Q}(m) : \mathbb{Q}(m_{\mathcal{L}}) \right]^{-1} \left(\prod_{l \in \mathcal{L}} -\chi(l) \right) \operatorname{Tr}_{\mathbb{Q}(m)/F}(\zeta_{m_{\mathcal{L}}}) \right) \\ &= \left[\mathbb{Q}(m) : \mathbb{Q}(m_{\mathcal{L}}) \right]^{-1} \left(\prod_{l \in \mathcal{L}} -\chi(l) \right) \xi_{\chi}(\operatorname{Tr}_{\mathbb{Q}(m)/\mathbb{Q}(f)\cap F}(\zeta_{m_{\mathcal{L}}})) \\ &= \left[\mathbb{Q}(m) : \mathbb{Q}(m_{\mathcal{L}}) \right]^{-1} \left(\prod_{l \in \mathcal{L}} -\chi(l) \right) \xi_{\chi}(\operatorname{Tr}_{\mathbb{Q}(m_{\mathcal{L}})/\mathbb{Q}(f)\cap F}(\operatorname{Tr}_{\mathbb{Q}(m)/\mathbb{Q}(m_{\mathcal{L}})}(\zeta_{m_{\mathcal{L}}}))) \\ &= \left(\prod_{l \in \mathcal{L}} -\chi(l) \right) \xi_{\chi}(\operatorname{Tr}_{\mathbb{Q}(m_{\mathcal{L}})/\mathbb{Q}(f)\cap F}(\zeta_{m_{\mathcal{L}}})) \\ &= \left(\prod_{l \in \mathcal{L}} -\chi(l) \right) \xi_{\chi}(\operatorname{Tr}_{\mathbb{Q}(f)/\mathbb{Q}(f)\cap F} \operatorname{Tr}_{\mathbb{Q}(m_{\mathcal{L}})/\mathbb{Q}(f)}(\zeta_{m_{\mathcal{L}}})) \\ &= \left(\prod_{l \in \mathcal{L}} -\chi(l) \right) \xi_{\chi}\left(\operatorname{Tr}_{\mathbb{Q}(f)/\mathbb{Q}(f)\cap F} \left(\prod_{l \in \mathcal{L}} -\sigma_{l}^{-1} \right) (\zeta_{f}) \right) \\ &= \xi_{\chi}(\operatorname{Tr}_{\mathbb{Q}(f)/\mathbb{Q}(f)\cap F}(\zeta_{f})) = z^{\chi}. \end{aligned}$$

Here σ_l is the Frobenius element of l in $Gal(\mathbb{Q}(f)/\mathbb{Q})$. Therefore (b) follows from (a).

Remark 4.3. Lemma 4.2 holds also for odd prime p.

We can extend the character $\omega^i: G_0 \to \mathbb{Z}_2^{\times}$ to ring homomorphisms $\omega^i: \widehat{\mathcal{O}}_F^{\chi}[G_0][\![\Gamma]\!] \to \widehat{\mathcal{O}}_F^{\chi}[\![\Gamma]\!]$ and $\omega^i: \widehat{\mathcal{O}}_{F,\chi}[G_0][\![\Gamma]\!] \to \widehat{\mathcal{O}}_{F,\chi}[\![\Gamma]\!]$ linearly. For $y \in \widehat{\mathcal{O}}_F[G_0][\![\Gamma]\!]$, we also denote by $y_{F,\chi}$ or y_{χ} its image under the natural surjection $\widehat{\mathcal{O}}_F[G_0][\![\Gamma]\!] \twoheadrightarrow \widehat{\mathcal{O}}_{F,\chi}[G_0][\![\Gamma]\!]$.

Proposition 4.4. We write $\psi = \chi \omega^i$ as above.

(a) We can define Λ -homomorphism $\Psi^{\psi}_{k_{\infty}}: \mathcal{U}^{\psi}_{k_{\infty}} \to \Lambda$ by

$$\Psi_{k_{\infty}}^{\psi}(u^{\psi})z^{\chi} = \frac{1}{2}\omega^{i}(\Psi_{K_{\infty}}(u^{\psi}))$$

for $u^{\psi} \in \mathcal{U}_{k_{\infty}}^{\psi}$ where we regard u^{ψ} as an element of $\mathcal{U}_{K_{\infty}}$.

(b) Put $K_{\infty} = k_{\infty}(\zeta_4) = k(\boldsymbol{\mu}_{2^{\infty}})$. We can define Λ -homomorphism $\Psi_{k_{\infty},\psi}: \mathcal{U}_{k_{\infty},\psi} \to \Lambda$ by

$$\Psi_{k_{\infty},\psi}(u)z_{F,\chi} = \frac{1}{[K_{\infty}:k_{\infty}]}\omega^{i}(\Psi_{K_{\infty}}(\widetilde{u})_{F,\chi})$$

for $u \in \mathcal{U}_{k_{\infty},\psi}$ where \widetilde{u} denotes a representative of u in $\mathcal{U}_{k_{\infty}}$ and we regard \widetilde{u} as an element of $\mathcal{U}_{K_{\infty}}$.

Proof. We simply write Ψ for $\Psi_{K_{\infty}}$. Put $K_0 = F(\zeta_4) = k(\zeta_4)$ and let τ be a generator of $G_0 = \text{Gal}(K_0/F)$.

Since $\Psi(u^{\psi}) \in (\widehat{\mathcal{O}}_F[G_0]\llbracket\Gamma\rrbracket)^{\psi} = (\widehat{\mathcal{O}}_F^{\chi}[G_0]\llbracket\Gamma\rrbracket)^{\omega^i} = (1 + \tau\omega^i(\tau))\widehat{\mathcal{O}}_F^{\chi}\llbracket\Gamma\rrbracket$, we have $\omega^i(\Psi(u^{\psi})) \in 2\widehat{\mathcal{O}}_F^{\chi}\llbracket\Gamma\rrbracket$. By Lemma 4.2(a), there exists an element $\Psi_{k_{\infty}}^{\psi}(u^{\psi}) \in \mathbb{Z}_2[\chi]\llbracket\Gamma\rrbracket = \Lambda$ such that $\Psi_{k_{\infty}}^{\psi}(u^{\psi})z^{\chi} = \frac{1}{2}\omega^i(\Psi(u^{\psi}))$, which proves (a).

Assume that $k_{\infty} \neq K_{\infty}$ i.e. $\zeta_4 \notin k$. Let g denote a generator of $\operatorname{Gal}(K_0/k)$. The restriction $(\tau g)|_{\mathbb{Q}(\zeta_4)}$ of $\tau g \in \operatorname{Gal}(K_0/\mathbb{Q})$ to $\mathbb{Q}(\zeta_4)$ is trivial, since $\tau g(\zeta_4) = \tau(g(\zeta_4)) = \tau(-\zeta_4) = \zeta_4$. For $y \in \widehat{\mathcal{O}}_F[G_0] \llbracket \Gamma \rrbracket$ and $h \in \operatorname{Gal}(K_0/\mathbb{Q}) = G_0 \times \Delta$, we see that $h(y_{\chi}) = (hy)_{\chi} = h|_{\mathbb{Q}(\zeta_4)}\chi(h)y_{\chi}$. Therefore we have

$$\begin{split} \tau(\Psi(\widetilde{u})_{\chi}) &= (\tau \Psi(\widetilde{u}))_{\chi} = \Psi(\widetilde{u}^{\tau})_{\chi} = \Psi(\widetilde{u}^{\tau g})_{\chi} = ((\tau g)\Psi(\widetilde{u}))_{\chi} \\ &= (\tau g)|_{\mathbb{Q}(\zeta_4)}\chi(\tau g)\Psi(\widetilde{u})_{\chi} = \chi(\tau g)\Psi(\widetilde{u})_{\chi} \end{split}$$

since $\widetilde{u} \in \mathcal{U}_{k_{\infty}}$. On the other hand, regarding χ , ω^{i} and ψ as characters of $\operatorname{Gal}(K_{0}/\mathbb{Q})$, we have

$$\chi(\tau g) = \chi(\tau g)\omega^i(\tau g) = \psi(\tau g) = \psi(\tau)\psi(g) = \psi(\tau) = \chi(\tau)\omega^i(\tau) = \omega^i(\tau).$$

Then we have

$$\tau(\Psi(\widetilde{u})_{\chi}) = \omega^{i}(\tau)(\Psi(\widetilde{u})_{\chi})$$

and $\Psi(\widetilde{u})_{\chi} \in \widehat{\mathcal{O}}_{F,\chi}[G_0]\llbracket\Gamma\rrbracket$ is in $(\widehat{\mathcal{O}}_{F,\chi}[G_0]\llbracket\Gamma\rrbracket)^{\omega^i} = (1 + \tau\omega^i(\tau))\widehat{\mathcal{O}}_{F,\chi}\llbracket\Gamma\rrbracket$. Hence $\omega^i(\Psi(\widetilde{u})_{\chi}) \in 2\widehat{\mathcal{O}}_{F,\chi}\llbracket\Gamma\rrbracket = [K_{\infty}:k_{\infty}]\widehat{\mathcal{O}}_{F,\chi}\llbracket\Gamma\rrbracket$. By Lemma 4.2(b), there exists an element $\Psi_{k_{\infty},\psi}(u) \in \mathbb{Z}_2[\chi]\llbracket\Gamma\rrbracket = \Lambda$ such that $\Psi_{k_{\infty},\psi}(u)z_{F,\chi} = \frac{1}{[K_{\infty}:k_{\infty}]}\omega^i(\Psi(\widetilde{u})_{\chi})$, which proves (b) if $k_{\infty} \neq K_{\infty}$. The statement (b) in the case where $k_{\infty} = K_{\infty}$ is clear.

If p is odd, $[k_{\infty}(\zeta_p):k_{\infty}]$ is a divisor of p-1 and $\mathbb{Z}_p[G_0] = \bigoplus_{i=0}^{p-2} e_i \mathbb{Z}_p[G_0] \cong \bigoplus_{i=0}^{p-2} \mathbb{Z}_p$ where $e_i \in \mathbb{Z}_p[G_0]$ is the idempotent of ω^i , we can also prove the following similarly:

Proposition 4.5. Assume p is an odd prime. We write $\psi = \chi \omega^i$ where $0 \le i \le p-2$ and the conductor of χ is prime to p.

(a) We can define Λ -homomorphism $\Psi_{k_{\infty}}^{\psi}: \mathcal{U}_{k_{\infty}}^{\psi} \to \Lambda$ by

$$\Psi_k^{\psi} (u^{\psi}) z^{\chi} = \omega^i (\Psi_{K_{\infty}}(u^{\psi}))$$

for $u^{\psi} \in \mathcal{U}_{k_{\infty}}^{\psi}$ where we regard u^{ψ} as an element of $\mathcal{U}_{K_{\infty}}$.

(b) We can define Λ -homomorphism $\Psi_{k_{\infty},\psi}: \mathcal{U}_{k_{\infty},\psi} \to \Lambda$ by

$$\Psi_{k_{\infty},\psi}(u)z_{F,\chi} = \omega^{i}(\Psi_{K_{\infty}}(\widetilde{u})_{F,\chi})$$

for $u \in \mathcal{U}_{k_{\infty},\psi}$ where \widetilde{u} denotes a representative of u in $\mathcal{U}_{k_{\infty}}$ and we regard \widetilde{u} as an element of $\mathcal{U}_{K_{\infty}}$.

We return the case p=2. By the formula (4.1) and Proposition 4.4, we have

$$(4.2) \qquad (-\kappa)^k (\Psi_{k_{\infty}}^{\psi}(u^{\psi})) z^{\chi} = \frac{1}{2} D^k \left(1 - \frac{\varphi}{2} \right) \log(f_{u^{\psi}}(X)) \bigg|_{X=0},$$

$$(4.3) \left(-\kappa \right)^k (\Psi_{k_{\infty}, \psi}(u)) z_{F, \chi} = \frac{1}{[K_{\infty} : k_{\infty}]} \left(D^k \left(1 - \frac{\varphi}{2} \right) \log f_{\tilde{u}}(X) \Big|_{X=0} \right)_{F, \chi}$$

for $k \equiv i \mod 2$.

We often write $\Psi = \Psi_{K_{\infty}}$, $\Psi^{\psi} = \Psi^{\psi}_{k_{\infty}}$ and $\Psi_{\psi} = \Psi_{k_{\infty},\psi}$ simply. We will prove the following propositions.

Proposition 4.6.

(i) If $\psi \omega^{-1}(2) \neq 1$,

$$\Psi^{\psi}_{k_{\infty}}: \mathcal{U}^{\psi}_{k_{\infty}} \stackrel{\sim}{\longrightarrow} \Lambda$$

is an isomorphism.

(ii) If $\psi\omega^{-1}(2) = 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow \Lambda/(\dot{T}) \longrightarrow \mathcal{U}_{k_{\infty}}^{\psi} \xrightarrow{\Psi_{k_{\infty}}^{\psi}} \dot{T}\Lambda \longrightarrow 0$$

where the first map induced by ι .

Proposition 4.7. Let $T_{k,\psi}$ be $\Lambda/(\dot{T}, e_{k,2}, \psi(2) + \psi\omega^{-1}(2) - 1)$ where $e_{k,2}$ is the ramification index of 2 in k.

(i) If $\psi\omega^{-1}(2) \neq 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow T_{k,\psi} \longrightarrow \mathcal{U}_{k_{\infty},\psi} \xrightarrow{\Psi_{k_{\infty},\psi}} \Lambda \longrightarrow T_{k,\psi} \longrightarrow 0,$$

where the first map induced by ι and the last map is a natural surjection.

(ii) If $\psi\omega^{-1}(2) = 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow \Lambda/(\dot{T}) \oplus T_{k,\psi} \longrightarrow \mathcal{U}_{k_{\infty},\psi} \xrightarrow{\Psi_{k_{\infty},\psi}} \dot{T}\Lambda \longrightarrow 0$$

where the first map induced by ι .

Proofs of Propositions 4.6 and 4.7. Recall that $F = \mathbb{Q}(\zeta_m) \cap k(\zeta_4)$ where m is the odd part of the conductor of k and $K_n = F(\boldsymbol{\mu}_{2^{n+2}}) = k(\boldsymbol{\mu}_{2^{n+2}})$ for $0 \le n \le \infty$. Let τ be a generator of $G_0 = \operatorname{Gal}(K_0/F)$.

The case $k_{\infty} = K_{\infty}$. Suppose that $k_{\infty} = K_{\infty}$, equivalently $\zeta_4 \in k$ or $k = F(\zeta_4)$. By Theorem 4.1, we have a Λ -homomorphism $\Psi^* : \mathcal{U}_{K_{\infty}}^{\psi} \to (\widehat{\mathcal{O}}_F[\![G_{\infty}]\!])^{\psi}$ by restricting Ψ to $\mathcal{U}_{K_{\infty}}^{\psi}$. By Lemma 4.2, we have

$$(\widehat{\mathcal{O}}_F\llbracket G_\infty\rrbracket)^\psi = (\widehat{\mathcal{O}}_F^\chi[G_0])^{\omega^i}\llbracket \Gamma\rrbracket = \Lambda(1+\tau\omega^i(\tau))z^\chi.$$

Then the Λ -homomorphism $\Psi^{\psi}_{K_{\infty}}: \mathcal{U}^{\psi}_{K_{\infty}} \to \Lambda$ in Proposition 4.4 coincides with the composition map of $\Psi^*: \mathcal{U}^{\psi}_{K_{\infty}} \to (\widehat{\mathcal{O}}_F[\![G_{\infty}]\!])^{\psi}$ and the isomorphism

 $(\widehat{\mathcal{O}}_F\llbracket G_\infty \rrbracket)^\psi \xrightarrow{\sim} \Lambda$ given by $(1+\tau\omega^i(\tau))z^\chi \to 1$. Hence, to prove Proposition 4.6, we have to decide the kernel and the cokernel of Ψ^* . The homomorphism Ψ in Theorem 4.1 induces a Λ -homomorphism $\Psi_*: \mathcal{U}_{K_\infty,\psi} \to (\widehat{\mathcal{O}}_F\llbracket G_\infty \rrbracket)_\psi$ naturally and the surjection map $\omega^i: \widehat{\mathcal{O}}_{F,\chi}[G_0] \to \widehat{\mathcal{O}}_{F,\chi}$ induces an isomorphism $(\widehat{\mathcal{O}}_{F,\chi}[G_0])_{\omega^i} \xrightarrow{\sim} \widehat{\mathcal{O}}_{F,\chi}$. By Lemma 4.2, we have $\widehat{\mathcal{O}}_{F,\chi}\llbracket \Gamma \rrbracket = \Lambda z_{F,\chi}$. Then the Λ -homomorphism $\Psi_{K_\infty,\psi}: \mathcal{U}_{K_\infty,\psi} \to \Lambda$ in Proposition 4.4 coincides with the composition map of $\Psi_*: \mathcal{U}_{K_\infty,\psi} \to (\widehat{\mathcal{O}}_F\llbracket G_\infty \rrbracket)_\psi$, the isomorphism $(\widehat{\mathcal{O}}_F\llbracket G_\infty \rrbracket)_\psi \xrightarrow{\sim} \widehat{\mathcal{O}}_{F,\chi}\llbracket \Gamma \rrbracket$ induced by ω^i and the isomorphism $\widehat{\mathcal{O}}_{F,\chi}\llbracket \Gamma \rrbracket \xrightarrow{\sim} \Lambda$ given by $z_{F,\chi} \mapsto 1$. Hence, to prove Proposition 4.7, we have to decide the kernel and the cokernel of Ψ_* .

Let H be the kernel of $\chi: \Delta \to \overline{\mathbb{Q}_2}^{\times}$ and M the fixed field of H. Put $L_n = M(\mu_{2^{n+2}})$ for $n \geq 0$ and $L_{\infty} = M(\mu_{2^{\infty}})$. Then we have $\mathcal{U}_{K_{\infty}}^{\psi} = (\mathcal{U}_{K_{\infty}}^{H})^{\psi} = \mathcal{U}_{L_{\infty}}^{\psi}$ and $\widehat{\mathcal{O}}_{F}^{\chi} = (\widehat{\mathcal{O}}_{F}^{H})^{\chi} = \widehat{\mathcal{O}}_{M}^{\chi}$. Furthermore the generators of $\widehat{\mathcal{O}}_{F}^{\chi}$ and $\widehat{\mathcal{O}}_{M}^{\chi}$ in Lemma 4.2 coincide. Therefore we have $\Psi_{L_{\infty}}^{\psi} = \Psi_{K_{\infty}}^{\psi}$. Hence, to prove Proposition 4.6, we may assume that $K_{\infty} = L_{\infty}$, i.e. χ is a faithful character of Δ .

To prove Proposition 4.7, we consider the case where χ is not faithful, i.e. H is not trivial. The kernel and the cokernel of a map $\mathcal{U}_{K_n,H} \to \mathcal{U}_{L_n}$ induced by the norm map $N_H: K_n \to L_n$ are $\widehat{H}^{-1}(H,\mathcal{U}_{K_n})$ and $\widehat{H}^0(H,\mathcal{U}_{K_n})$ respectively. Since K_n/L_n is unramified extension at the prime ideals above 2, we have $\widehat{H}^{-1}(H,\mathcal{U}_{K_n}) = \widehat{H}^0(H,\mathcal{U}_{K_n}) = 0$. Hence we have $\mathcal{U}_{K_n,H} \xrightarrow{\sim} \mathcal{U}_{L_n}$. By using $\mathcal{U}_{K_n,\psi} = (\mathcal{U}_{K_n,H})_{\psi}$, we have an isomorphism $N_H^*: \mathcal{U}_{K_\infty,\psi} \xrightarrow{\sim} \mathcal{U}_{L_\infty,\psi}$. Similarly the trace map $\mathrm{Tr}_H: F \to M$ induces an isomorphism $\widehat{\mathcal{O}}_{F,H} \xrightarrow{\sim} \widehat{\mathcal{O}}_M$ since $\widehat{H}^{-1}(H,\widehat{\mathcal{O}}_F) = \widehat{H}^0(H,\widehat{\mathcal{O}}_F) = 0$. Then we have an isomorphism $\mathrm{Tr}_H^*: \widehat{\mathcal{O}}_{F,\chi} \xrightarrow{\sim} \widehat{\mathcal{O}}_{M,\chi}$ and we see that $\mathrm{Tr}_H(y)_{M,\chi} = \mathrm{Tr}_H^*(y_{F,\chi})$ for $y \in \widehat{\mathcal{O}}_F$. Recall that

$$\mathcal{L}_{k,\psi} = \{l : \text{prime number} \mid l \mid m, l \nmid f\}$$

where m (resp. f) is the odd part of the conductor of k (resp. ψ). Since the conductor of M is f, we have $\mathcal{L}_{M(\zeta_4),\psi} = \emptyset$. The generators of the additive groups $\widehat{\mathcal{O}}_{F,\chi}$ and $\widehat{\mathcal{O}}_{M,\chi}$ in Lemma 4.2 are

$$z_{F,\chi} = [\mathbb{Q}(m) : \mathbb{Q}(m_{\mathcal{L}})]^{-1} \left(\prod_{l \in \mathcal{L}} -\chi(l) \right) (\operatorname{Tr}_{\mathbb{Q}(m)/F}(\zeta_{m_{\mathcal{L}}}))_{F,\chi}.$$

and

$$z_{M,\chi} = (\operatorname{Tr}_{\mathbb{Q}(f)/M}(\zeta_f))_{M,\chi}$$

respectively. Here we put $\mathcal{L} = \mathcal{L}_{k,\psi}$. We can see that

$$\operatorname{Tr}_{H}(\operatorname{Tr}_{\mathbb{Q}(m)/F}(\zeta_{m_{\mathcal{L}}})) = \operatorname{Tr}_{\mathbb{Q}(m)/M}(\zeta_{m_{\mathcal{L}}})$$

$$= [\mathbb{Q}(m) : \mathbb{Q}(m_{\mathcal{L}})] \operatorname{Tr}_{\mathbb{Q}(f)/M}(\operatorname{Tr}_{\mathbb{Q}(m_{\mathcal{L}})/\mathbb{Q}(f)}(\zeta_{m_{\mathcal{L}}}))$$

$$= [\mathbb{Q}(m) : \mathbb{Q}(m_{\mathcal{L}})] \operatorname{Tr}_{\mathbb{Q}(f)/M}\left(\left(\prod_{l \in \mathcal{L}} -\sigma_{l}^{-1}\right)(\zeta_{f})\right)$$

where σ_l is a Frobenius of l in $\operatorname{Gal}(\mathbb{Q}(\zeta_f)/\mathbb{Q})$, so we have

$$\operatorname{Tr}_{H}^{*}(z_{F,\chi}) = [\mathbb{Q}(m) : \mathbb{Q}(m_{\mathcal{L}})]^{-1} \left(\prod_{l \in \mathcal{L}} -\chi(l) \right) (\operatorname{Tr}_{H}(\operatorname{Tr}_{\mathbb{Q}(m)/F}(\zeta_{m_{\mathcal{L}}})))_{M,\chi}$$
$$= (\operatorname{Tr}_{\mathbb{Q}(f)/M}(\zeta_{f}))_{M,\chi} = z_{M,\chi}.$$

Then, for $u \in \mathcal{U}_{K_{\infty},\psi}$, we have

$$\Psi_{K_{\infty},\psi}(u)z_{M,\chi} = \Psi_{K_{\infty},\psi}(u)\operatorname{Tr}_{H}^{*}(z_{F,\chi}) = \operatorname{Tr}_{H}^{*}(\Psi_{K_{\infty},\psi}(u)z_{F,\chi})$$

$$= \operatorname{Tr}_{H}^{*}(\omega^{i}(\Psi(\widetilde{u})_{F,\chi})) = \omega^{i}(\operatorname{Tr}_{H}^{*}(\Psi(\widetilde{u})_{F,\chi}))$$

$$= \omega^{i}(\operatorname{Tr}_{H}(\Psi(\widetilde{u}))_{M,\chi}) = \omega^{i}(\Psi(N_{H}(\widetilde{u}))_{M,\chi})$$

$$= \omega^{i}(\Psi(\widetilde{N_{H}^{*}(u)})_{M,\chi}) = \Psi_{L_{\infty},\psi}(N_{H}^{*}(u_{\psi}))z_{M,\chi},$$

and therefore

(4.4)
$$\Psi_{K_{\infty},\psi}(u) = \Psi_{L_{\infty},\psi}(N_H^*(u)).$$

Hence, to prove Proposition 4.7, we may assume $K_{\infty} = L_{\infty}$.

In the rest of the proof in the case $k_{\infty} = K_{\infty}$, we assume that χ is a faithful character of Δ , that is, F = M, the fixed field of χ and $K_{\infty} = L_{\infty} = M(\mu_{2^{\infty}})$.

We fix a prime ideal \wp of F over 2, and put $U = U_{K_{\infty},\wp} = \varprojlim U_{K_n,\wp}$. Then U is a $\mathbb{Z}_2[D] \llbracket G_{\infty} \rrbracket$ -module and we have $\mathbb{Z}_2[\Delta] \llbracket G_{\infty} \rrbracket$ -isomorphisms

$$\mathcal{U} \cong U \otimes_{\mathbb{Z}_2[D]} \mathbb{Z}_2[\Delta] \cong \operatorname{Hom}_{\mathbb{Z}_2[D]}(\mathbb{Z}_2[\Delta], U),$$

where D is the decomposition group of 2 in Δ . We put $\chi_D = \chi_{|D}$ and $\psi_D = \chi_D \omega^i$. Then we can define $\mathbb{Z}_2[\psi_D][\![\Gamma]\!]$ -modules U^{ψ_D} and U_{ψ_D} , and the above isomorphisms induce Λ -isomorphisms

$$(4.5) \mathcal{U}^{\psi} \cong U^{\psi_D} \otimes_{\mathbb{Z}_2[\psi_D]} \mathbb{Z}_2[\psi] \text{ and } \mathcal{U}_{\psi} \cong U_{\psi_D} \otimes_{\mathbb{Z}_2[\psi_D]} \mathbb{Z}_2[\psi].$$

Theorem 4.1 is equivalent to the assertion that there is an exact sequence of $\mathbb{Z}_2[D][\![G_\infty]\!]$ -modules

$$(4.6) \quad 0 \longrightarrow \mathbb{Z}_2(1) \xrightarrow{\iota} U \xrightarrow{\Psi} \mathcal{O}_{F_{\wp}} \llbracket G_{\infty} \rrbracket \xrightarrow{-\kappa} (\mathcal{O}_{F_{\wp}}/(\sigma - 1)\mathcal{O}_{F_{\wp}})(1) \longrightarrow 0.$$

We will consider the kernel and the cokernel of the homomorphisms Ψ^* : $U^{\psi_D} \to (\mathcal{O}_{F_{\wp}}\llbracket G_{\infty} \rrbracket)^{\psi_D}$ and $\Psi_* : U_{\psi_D} \to (\mathcal{O}_{F_{\wp}}\llbracket G_{\infty} \rrbracket)_{\psi_D}$ induced by the map Ψ in (4.6). We put $V = \ker(-\kappa : \mathcal{O}_{F_{\wp}}\llbracket G_{\infty} \rrbracket) \to (\mathcal{O}_{F_{\wp}}/(\sigma - 1)\mathcal{O}_{F_{\wp}})(1)$.

First we assume $\chi(2) \not\in \boldsymbol{\mu}_{2^{\infty}}$ i.e. the order of χ_D is not 2-power. Then $\mathbb{Z}_2(1)^{\chi_D} = \mathbb{Z}_2(1)_{\chi_D} = 1$. By the exact sequence (4.6) and Lemma 2.1, we obtain $\Psi^*: U^{\psi_D} \xrightarrow{\sim} (\mathcal{O}_{F_{\wp}} \llbracket G_{\infty} \rrbracket)^{\psi_D}$ and $\Psi_*: U_{\psi_D} \xrightarrow{\sim} (\mathcal{O}_{F_{\wp}} \llbracket G_{\infty} \rrbracket)_{\psi_D}$. In this case, $\psi(2) + \psi\omega^{-1}(2) - 1 = \chi(2) - 1$ is unit in $\mathbb{Z}_2[\psi]$, so $T_{k,\psi}$ is trivial. Hence the assertion follows from (4.5).

Next, we assume $\chi(2) \in \mu_{2^{\infty}}$ and $\chi(2) \neq 1$ i.e. χ_D is non-trivial and of 2-power order. In this case, $\mathbb{Z}_2(1)^{\chi_D} = 1$ and $\mathbb{Z}_2(1)_{\chi_D} = \mu_2$. Let C be the subgroup of order 2 in D. Since F_{\wp}/\mathbb{Q}_2 is an unramified extension, we have $\widehat{H}^0(C,U) = 1$. Then, by the exact sequence (4.6) and Corollary 2.3, we have an exact sequence

$$0 \longrightarrow U^{\chi_D} \longrightarrow V^{\chi_D} \longrightarrow \mu_2 \longrightarrow 0.$$

Furthermore, by Lemma 2.1, we have $U_{\chi_D} \cong V_{\chi_D}$. On the other hand, by the exact sequence (4.6) and Lemma 2.1, we have $V^{\chi_D} = \mathcal{O}_{F_\wp}^{\chi_D} \llbracket G_\infty \rrbracket$ and an exact sequence

$$0 \longrightarrow V_{\chi_D} \longrightarrow \mathcal{O}_{F_{\wp},\chi_D} \llbracket G_{\infty} \rrbracket \longrightarrow \mu_2 \longrightarrow 0.$$

Therefore, we have exact sequences

$$(4.7) 0 \longrightarrow U^{\chi_D} \longrightarrow \mathcal{O}_{F_{\wp}}^{\chi_D} \llbracket G_{\infty} \rrbracket \longrightarrow \mu_2 \longrightarrow 0,$$

$$(4.8) 0 \longrightarrow U_{\chi_D} \longrightarrow \mathcal{O}_{F_{\wp},\chi_D} \llbracket G_{\infty} \rrbracket \longrightarrow \mu_2 \longrightarrow 0.$$

By these exact sequences, we have $\hat{H}^{j}(G_0, U^{\chi_D}) = \hat{H}^{j}(G_0, U_{\chi_D}) = \mu_2$ for j = -1, 0. Taking ω^i -parts of the exact sequence (4.7) and using Lemma 2.1, we have an exact sequence

$$0 \longrightarrow U^{\psi_D} \longrightarrow (\mathcal{O}_{F_\wp}[\![G_\infty]\!])^{\psi_D} \longrightarrow \mu_2 \longrightarrow \mu_2 \longrightarrow 0.$$

Hence we have an isomorphism $\Psi^*: U^{\psi_D} \xrightarrow{\sim} (\mathcal{O}_{F_{\wp}}[\![G_{\infty}]\!])^{\psi_D}$ and, in this case, Proposition 4.6 follows from (4.5). Also taking ω^i -quotients of the exact sequence (4.8) and using Lemma 2.1, we have an exact sequence

$$0 \longrightarrow \boldsymbol{\mu}_2 \longrightarrow U_{\psi_D} \xrightarrow{\Psi_*} (\mathcal{O}_{F_{\wp}} \llbracket G_{\infty} \rrbracket)_{\psi_D} \longrightarrow \boldsymbol{\mu}_2 \longrightarrow 0.$$

We recall

$$T_{k,\psi} = \Lambda/(\dot{T}, e_{k,2}, \psi(2) + \psi\omega^{-1}(2) - 1) = \Lambda/(\dot{T}, e_{k,2}, \chi(2) - 1)$$

where $e_{k,2}$ is the ramification index of 2 in k. Since assuming $\zeta_4 \in k$, we have $e_{k,2} = 2$. In the case where $\chi(2) \in \mu_{2^{\infty}}$ and $\chi(2) \neq 1$, we see that $\chi(2) - 1$ divides $e_{k,2}$ and

$$\mu_2 \otimes_{\mathbb{Z}_2[\psi_D]} \mathbb{Z}_2[\psi] = (\mathbb{Z}_2[\psi_D]/(\chi(2)-1)) \otimes_{\mathbb{Z}_2[\psi_D]} \mathbb{Z}_2[\psi] = T_{k,\psi}.$$

Hence, in this case, Proposition 4.7 follows from (4.5).

In the case where $\chi(2)=1$, i.e. χ_D is trivial, we have $F_{\wp}=\mathbb{Q}_2$ and D=1, so $U^{\psi_D}=U^{\omega^i}$ and $U_{\psi_D}=U_{\omega^i}$. In this case, we note that $\mathbb{Z}_2[\psi_D]=\mathbb{Z}_2$ and

(4.9)
$$\mu_2 \otimes_{\mathbb{Z}_2[\psi_D]} \mathbb{Z}_2[\psi] = \mathbb{Z}_2[\psi]/(2) = \Lambda/(\dot{T}, e_{k,2}, \chi(2) - 1) = T_{k,\psi}.$$

Here $e_{k,2} = 2$ since we assume that $\zeta_4 \in k$.

We first assume that $\chi(2) = 1$ and $\psi = \chi \omega^0 = \chi$. By the exact sequence (4.6) and Lemma 2.1, we have an exact sequence

$$0 \longrightarrow U^{\omega^0} \xrightarrow{\Psi^*} V^{\omega^0} \longrightarrow \pmb{\mu}_2 \longrightarrow U_{\omega^0} \xrightarrow{\Psi_*} V_{\omega^0} \longrightarrow 0.$$

Also we have $V^{\omega^0} = (\mathbb{Z}_2\llbracket G_\infty \rrbracket)^{\omega^0}$ and an exact sequence

$$0 \longrightarrow V_{\omega^0} \longrightarrow (\mathbb{Z}_2\llbracket G_\infty \rrbracket)_{\omega^0} \longrightarrow \boldsymbol{\mu}_2 \longrightarrow 0.$$

In [5], Gillard proved that $U_{\mathbb{Q}_{2,\infty}} \cong \mathbb{Z}_2\llbracket\Gamma\rrbracket$, where $\mathbb{Q}_{2,\infty}$ is the cyclotomic \mathbb{Z}_2 -extension of \mathbb{Q}_2 . Since $U^{\omega^0} = U^{G_0} = U_{\mathbb{Q}_{2,\infty}}$, we have an isomorphism $\Psi^* : U^{\omega^0} \xrightarrow{\sim} (\mathbb{Z}_2\llbracket G_\infty \rrbracket)^{\omega^0}$, and hence

$$0 \longrightarrow \boldsymbol{\mu}_2 \longrightarrow U_{\omega^0} \xrightarrow{\Psi_*} (\mathbb{Z}_2[\![G_\infty]\!])_{\omega^0} \longrightarrow \boldsymbol{\mu}_2 \longrightarrow 0$$

is exact. Hence, in this case, Propositions 4.6 and 4.7 follows from (4.5) and (4.9).

We finally assume that $\chi(2) = 1$ and $\psi = \chi \omega$. Recall that τ be a generator of G_0 . By the exact sequence (4.6), Corollary 2.3 and $\widehat{H}^0(G_0, \mathbb{Z}_2(1)) = 1$, we have an exact sequence

$$0 \longrightarrow \mathbb{Z}_2(1) \longrightarrow U^{\omega} \xrightarrow{\Psi^*} V^{\omega} \longrightarrow 0.$$

Since $V = (1 + \tau)\mathbb{Z}_2\llbracket G_{\infty} \rrbracket + \dot{T}\mathbb{Z}_2\llbracket G_{\infty} \rrbracket$, we see that

$$V^{\omega} = \dot{T}(1-\tau)\mathbb{Z}_2\llbracket\Gamma\rrbracket = \dot{T}(\mathbb{Z}_2\llbracket G_{\infty}\rrbracket)^{\omega}.$$

Hence, in the case where $\chi(2) = 1$ and $\psi = \chi \omega$, Proposition 4.6 can be proved by using (4.5). We will decide the image and the kernel of the homomorphism

$$\Psi_*: U_\omega \longrightarrow (\mathbb{Z}_2\llbracket G_\infty \rrbracket)_\omega.$$

Here note that $U_{\omega} = U/(1+\tau)U$ and

$$(\mathbb{Z}_2[\![G_\infty]\!])_\omega = \mathbb{Z}_2[\![G_\infty]\!]/(1+\tau)\mathbb{Z}_2[\![G_\infty]\!].$$

Since the image of Ψ is $V = (1+\tau)\mathbb{Z}_2[\![G_\infty]\!] + \dot{T}\mathbb{Z}_2[\![G_\infty]\!]$, the image of Ψ_* is

$$\begin{aligned} (V + (1+\tau)\mathbb{Z}_{2}[\![G_{\infty}]\!])/(1+\tau)\mathbb{Z}_{2}[\![G_{\infty}]\!] \\ &= ((1+\tau)\mathbb{Z}_{2}[\![G_{\infty}]\!] + \dot{T}\mathbb{Z}_{2}[\![G_{\infty}]\!])/(1+\tau)\mathbb{Z}_{2}[\![G_{\infty}]\!] \\ &= \dot{T}(\mathbb{Z}_{2}[\![G_{\infty}]\!]/(1+\tau)\mathbb{Z}_{2}[\![G_{\infty}]\!]) \\ &= \dot{T}(\mathbb{Z}_{2}[\![G_{\infty}]\!])_{\omega} = \dot{T}\mathbb{Z}_{2}[\![\Gamma]\!]. \end{aligned}$$

For $u \in U$, assume that $u \mod (1+\tau)U \in \ker(\Psi_*)$. Then we have $\Psi(u) \in$ $(1+\tau)\mathbb{Z}_2\llbracket G_\infty \rrbracket$. Since $(1+\tau)\mathbb{Z}_2\llbracket G_\infty \rrbracket = \mathbb{Z}_2\llbracket G_\infty \rrbracket^{\omega^0}$ and we proved that $\Psi(U^{\omega^0}) = \mathbb{Z}_2 \llbracket G_{\infty} \rrbracket^{\omega^0}$ in the above. Hence we have $u \in \ker(\Psi) + U^{\omega^0}$. Conversely, we can also prove that if $u \in \ker(\Psi) + U^{\omega^0}$ then $u \mod (1+\tau)U \in$ $\ker(\Psi_*)$. Therefore we obtain

$$\ker(\Psi_*) = (\ker(\Psi) + U^{\omega^0})/(1+\tau)U.$$

We can see that $\ker(\Psi) \cong \mathbb{Z}_2(1)$, $U^{\omega^0} \cap \ker(\Psi) = 1$ and $U^{\omega^0}/(1+\tau)U =$ $\widehat{H}^0(G_0, U)$. By using the definition of V, we have

$$\hat{H}^0(G_0,V) = \hat{H}^{-1}(G_0,\mathbb{Z}_2(1)) = \mu_2, \quad \hat{H}^{-1}(G_0,V) = \hat{H}^0(G_0,\mathbb{Z}_2(1)) = 1$$
 and an exact sequence

$$1 \longrightarrow \widehat{H}^0(G_0, U) \longrightarrow \mu_2 \longrightarrow \mu_2 \longrightarrow \widehat{H}^{-1}(G_0, U) \longrightarrow 1$$

If $\widehat{H}^0(G_0,U)=1$, then we have $\widehat{H}^{-1}(G_0,U)=1$, and hence $U^{\omega^0}\cong U_{\omega^0}$. This is a contradiction to the above results in the case where $\chi(2) = 1$ and $\psi = \chi$. Hence $\hat{H}^0(G_0, U)$ is nontrivial, so $\hat{H}^0(G_0, U) = \mu_2$. Summarizing the above, we obtain an isomorphism

$$\ker(\Psi_*) \cong \mathbb{Z}_2(1) \oplus \boldsymbol{\mu}_2.$$

Hence we have an exact sequence

$$0 \longrightarrow \mathbb{Z}_2(1) \oplus \boldsymbol{\mu}_2 \longrightarrow U_{\omega} \longrightarrow \dot{T}\mathbb{Z}_2[\![\Gamma]\!] \longrightarrow 0.$$

Proposition 4.7 can be proved by using (4.5) and (4.9).

The case $k_{\infty} \neq K_{\infty}$. Suppose that $k_{\infty} \neq K_{\infty}$, i.e. $\zeta_4 \notin k$. Then K_{∞}/k_{∞} is

a quadratic extension and put $\mathcal{G} = \operatorname{Gal}(K_{\infty}/k_{\infty}) \cong \operatorname{Gal}(k(\zeta_4)/k)$. Since $\mathcal{U}_{k_{\infty}} = \mathcal{U}_{K_{\infty}}^{\mathcal{G}}$, we have $\mathcal{U}_{k_{\infty}}^{\psi} = (\mathcal{U}_{K_{\infty}}^{\mathcal{G}})^{\psi} = \mathcal{U}_{K_{\infty}}^{\psi}$. Therefore Proposition 4.6 in this case is reduced to the case $k_{\infty} = K_{\infty}$.

We will prove Proposition 4.7. First, we assume that k/\mathbb{Q} is an unramified extension at 2. In this case, k = F, $\psi = \chi \omega^0 = \chi$ and $G = \Delta$. Let k^{ψ} be the fixed field of $\ker \psi = H$. As in the case where $k_{\infty} = K_{\infty}$, we can show that $N_H^*: \mathcal{U}_{k_{\infty},H} \xrightarrow{\sim} \mathcal{U}_{k_{\infty}}^H = \mathcal{U}_{k_{\infty}^{\psi}}$. Assume that the order of Δ/H is even. Let C be the subgroup of order 2 in Δ/H . Since k^{ψ}/\mathbb{Q} is an unramified extension at 2, we have $\widehat{H}^{j}(C,\mathcal{U}_{k^{\psi}})=1$ for j=-1,0. By Lemma 2.2, $\xi_{\chi,\Delta/H} = \sum_{\delta \in \Delta/H} \chi(\delta)^{-1} \delta$ gives an isomorphism $\mathcal{U}_{k_{\infty}^{\psi},\psi} \xrightarrow{\sim}$ $\mathcal{U}_{k_{\infty}^{\psi}}^{\psi}$. If the order of Δ/H is odd, we also have $\mathcal{U}_{k_{\infty}^{\psi},\psi} \xrightarrow{\sim} \mathcal{U}_{k_{\infty}^{\psi}}^{\psi}$. We see that $\xi_{\chi,\Delta} = \sum_{\delta \in \Delta} \chi(\delta)^{-1} \delta = N_H \xi_{\chi,\Delta/H}$. Therefore, for $u_{\psi} \in \mathcal{U}_{k_{\infty},\psi}$, the correspondence $u_{\psi} \mapsto \xi_{\chi,\Delta}(\tilde{u}_{\psi})$ gives the isomorphism $\mathcal{U}_{k_{\infty},\psi} \xrightarrow{\sim} \mathcal{U}_{k_{\infty}}^{\psi}$ where \widetilde{u}_{ψ} is a representative of u_{ψ} in $\mathcal{U}_{k_{\infty}}$. We define $\Psi'_{k_{\infty},\psi}(u_{\psi}) = \Psi^{\psi}_{k_{\infty}}(\xi_{\chi,\Delta}(\widetilde{u}_{\psi}))$.

Then we have an isomorphism $\Psi'_{k_{\infty},\psi}: \mathcal{U}_{k_{\infty},\psi} \xrightarrow{\sim} \Lambda$ by using Proposition 4.6 for the isomorphism $\Psi^{\psi}_{k_{\infty}}: \mathcal{U}^{\psi}_{k_{\infty}} \xrightarrow{\sim} \Lambda$. By the definition of $\Psi^{\psi}_{k_{\infty}}$, we have

$$\begin{split} \Psi'_{k_{\infty},\psi}(u_{\psi})z^{\chi} &= \Psi^{\psi}_{k_{\infty}}(\xi_{\chi,\Delta}(\widetilde{u}_{\psi}))z^{\chi} \\ &= \frac{1}{2}\omega^{0}(\Psi_{K_{\infty}}(\xi_{\chi,\Delta}(\widetilde{u}_{\psi}))) \\ &= \frac{1}{2}\omega^{0}(\xi_{\chi,\Delta}(\Psi_{K_{\infty}}(\widetilde{u}_{\psi}))). \end{split}$$

Then $\xi_{\chi,\Delta}(\Psi_{K_{\infty}}(\widetilde{u}_{\psi}))$ maps to $\Psi_{K_{\infty}}(\widetilde{u}_{\psi})_{F,\chi}$, by the isomorphism

$$\widehat{\mathcal{O}}_{F}^{\chi} \llbracket G_{\infty} \rrbracket \xrightarrow{\sim} \widehat{\mathcal{O}}_{F,\gamma} \llbracket G_{\infty} \rrbracket$$

given by $z^{\chi} \mapsto z_{F,\chi}$. Hence $\Psi'_{k_{\infty},\psi}(u_{\psi})z_{F,\chi} = \frac{1}{2}\omega^0(\Psi_{K_{\infty}}(\tilde{u}_{\psi})_{F,\chi})$, so $\Psi'_{k_{\infty},\psi}$ coincides with $\Psi_{k_{\infty},\psi}$ in Proposition 4.4. Then we have an isomorphism $\Psi_{k_{\infty},\psi}: \mathcal{U}_{k_{\infty},\psi} \xrightarrow{\sim} \Lambda$. Since we assume that 2 is unramified in k, i.e. $e_{k,2} = 1$, T_{ψ} is trivial. Hence, in this case, we prove Proposition 4.7.

Next, we assume that k/\mathbb{Q} is a ramified extension at 2. In this case the conductor of k is 4m, thus K/k is an unramified extension at 2. Then norm map $N_{\mathcal{G}}$ induces an isomorphism $N_{\mathcal{G}}^*: \mathcal{U}_{K_{\infty},\mathcal{G}} \xrightarrow{\sim} \mathcal{U}_{K_{\infty}}^{\mathcal{G}} = \mathcal{U}_{k_{\infty}}$. Therefore $\mathcal{U}_{k_{\infty},\psi} = (\mathcal{U}_{K_{\infty}}^{\mathcal{G}})_{\psi} \cong (\mathcal{U}_{K_{\infty},\mathcal{G}})_{\psi} = \mathcal{U}_{K_{\infty},\psi}$. We define a homomorphism $\Psi'_{k_{\infty},\psi}: \mathcal{U}_{k_{\infty},\psi} \to \Lambda$ to the composition of this isomorphism $\mathcal{U}_{k_{\infty},\psi} \cong \mathcal{U}_{K_{\infty},\psi}$ and $\Psi_{K_{\infty},\psi}: \mathcal{U}_{K_{\infty},\psi} \to \Lambda$. The kernel and the cokernel of $\Psi'_{k_{\infty},\psi}$ coincide with these of $\Psi_{K_{\infty},\psi}$. Furthermore, we see that $e_{k,2} = e_{K,2} = 2$ and

$$T_{k,\psi} = \Lambda/(\dot{T}, 2, \psi(2) + \psi\omega^{-1}(2) - 1) = T_{K,\psi}.$$

Hence, it is enough to show that $\Psi'_{k_{\infty},\psi}$ coincides with $\Psi_{k_{\infty},\psi}$ in Proposition 4.4. Let u_{ψ} be an element of $\mathcal{U}_{k_{\infty},\psi}$. We take a representative $\widetilde{u}_{\psi} \in \mathcal{U}_{k_{\infty}}$ of u_{ψ} . Since $\mathcal{U}_{k_{\infty}} = \mathcal{U}_{K_{\infty}}^{\mathcal{G}} = N_{\mathcal{G}}(\mathcal{U}_{K_{\infty}})$, there exists $u' \in \mathcal{U}_{K_{\infty}}$ such that $N_{\mathcal{G}}(u') = \widetilde{u}_{\psi}$. Denote by [u'] the residue class of u' in $\mathcal{U}_{K_{\infty},\psi}$. Then we have $\Psi'_{k_{\infty},\psi}(u_{\psi}) = \Psi_{K_{\infty},\psi}([u'])$. By the definition of $\Psi_{K_{\infty},\psi}$ in Proposition 4.4, we have $\Psi'_{k_{\infty},\psi}(u_{\psi})z_{F,\chi} = \omega^{i}(\Psi_{K_{\infty}}(u')_{F,\chi})$. By regarding \widetilde{u}_{ψ} as an element of $\mathcal{U}_{K_{\infty}}$, we have

$$\omega^{i}(\Psi_{K_{\infty}}(\widetilde{u}_{\psi})_{F,\chi}) = \omega^{i}(\Psi_{K_{\infty}}(N_{\mathcal{G}}(u'))_{F,\chi})$$

$$= \omega^{i}(((1+g)\Psi_{K_{\infty}}(u'))_{F,\chi})$$

$$= (1+\psi(g))\omega^{i}(\Psi_{K_{\infty}}(u')_{F,\chi})$$

$$= 2\omega^{i}(\Psi_{K_{\infty}}(u')_{F,\chi})$$

where g is a generator of \mathcal{G} . Therefore we obtain

$$\Psi'_{k_{\infty},\psi}(u_{\psi})z_{F,\chi} = \frac{1}{2}\omega^{i}(\Psi_{K_{\infty}}(\widetilde{u}_{\psi})_{F,\chi}).$$

Thus $\Psi'_{k_{\infty},\psi}$ coincides with $\Psi_{k_{\infty},\psi}$ in Proposition 4.4.

In [12], we proved that if p is odd and $\psi\omega^{-1}(p) = 1$, there exists an exact sequence of Λ -modules

$$0 \longrightarrow \Lambda/(\dot{T}) \longrightarrow \mathcal{U}_{k_{\infty},\psi} \longrightarrow \dot{T}\Lambda \oplus \Lambda/(d,\dot{T}) \longrightarrow 0$$

where d is the order of the decomposition group of $Gal(k/\mathbb{Q})$. In the same way as the proof of Proposition 4.7, we can also prove the following:

Proposition 4.8. If p is odd prime number and $\psi\omega^{-1}(p) = 1$, we have an exact sequence of Λ -modules

$$0 \longrightarrow \Lambda/(\dot{T}) \longrightarrow \mathcal{U}_{k_{\infty},\psi} \xrightarrow{\Psi_{k_{\infty},\psi}} \dot{T}\Lambda \longrightarrow 0.$$

5. cyclotomic units

In this section we recall the definition of the cyclotomic units in the sense of Sinnott [10] and we define two cyclotomic units groups $\mathcal{C}_{k_{\infty}}$ and $\mathcal{C}'_{k_{\infty}}$. We will determine generators of the ψ -part of $\mathcal{C}_{k_{\infty}}$ and the ψ -quotients of $\mathcal{C}_{k_{\infty}}$ and $\mathcal{C}'_{k_{\infty}}$. For any abelian field L, let D_L denote the subgroup of the multiplicative group L^{\times} generated by

$$\{\pm 1, N_{\mathbb{Q}(t)/\mathbb{Q}(t)\cap L}(1-\zeta_t^a) \mid t, a \in \mathbb{Z}, t > 1, (a,t) = 1\}.$$

Denote E_L by the group of units in L. The cyclotomic units C'_L in L in the sense of Sinnott is defined by $D_L \cap E_L$. For a real abelian field L, let $C_{1,L}$ be the group of units in L whose squares lie in C'_L . We define a group of cyclotomic units C_L in L by $C'_L \cdot C_{1,L^+}$ where L^+ is the maximal real subfield of L. If L is real, then $C'_L \subset C_{1,L}$, and hence $C_L = C_{1,L}$.

Recall that $F = \mathbb{Q}(m) \cap k(\zeta_4)$ where m is the odd part of the conductor of k and $K_n = F(\mu_{2^{n+2}}) = k(\mu_{2^{n+2}})$. We define

$$\eta_t = (N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n}(1-\zeta_{2^{n+2}}\zeta_t^{\sigma^{-n}}))_{n\geq 0} \in \varprojlim C_{K_n}$$

for $t \mid m, t \neq 1$ and

$$\eta_1 = ((-\zeta_{2^{n+2}})^{\frac{\kappa(\gamma)-1}{2}} (1-\zeta_{2^{n+2}})^{\gamma-1})_{n \geq 0} \in \varprojlim C_{K_n}.$$

For an abelian field L, we identify C_L and C'_L with their images under the diagonal embedding $E_L \to (\mathcal{O}_L \otimes_{\mathbb{Z}} \mathbb{Z}_2)^{\times}$. Since $(\mathcal{O}_L \otimes_{\mathbb{Z}} \mathbb{Z}_2)^{\times}$ is decomposed into a product of the principal units \mathcal{U}_L and a finite group of odd order, there is the projection $(\mathcal{O}_L \otimes_{\mathbb{Z}} \mathbb{Z}_2)^{\times} \to \mathcal{U}_L$. Let \mathcal{C}_L and \mathcal{C}'_L be the closure of the intersections $\mathcal{U}_L \cap C_L$ and $\mathcal{U}_L \cap C'_L$ in \mathcal{U}_L . Hence \mathcal{C}_L and \mathcal{C}'_L are the closure of the image of C_L and C'_L under the projection $(\mathcal{O}_L \otimes_{\mathbb{Z}_2})^{\times} \to \mathcal{U}_L$ respectively. Put

$$\mathcal{C} = \mathcal{C}_{k_{\infty}} = \varprojlim \mathcal{C}_{k_n}, \quad \mathcal{C}' = \mathcal{C}'_{k_{\infty}} = \varprojlim \mathcal{C}'_{k_n}.$$

For $\eta \in \varprojlim C_{K_n}$ or $\eta \in \varprojlim C_{k_n}$, we shall also denote by η its image under the projection $\varprojlim (\mathcal{O}_{K_n} \otimes \mathbb{Z}_2)^{\times} \to \mathcal{U}_{K_{\infty}}$ or $\varprojlim (\mathcal{O}_{k_n} \otimes \mathbb{Z}_2)^{\times} \to \mathcal{U}_{k_{\infty}}$ so η_t is in $\mathcal{C}_{K_{\infty}}$. For any t with $t \mid m$, identifying $\operatorname{Gal}(\mathbb{Q}(2^{n+2}t) \cap K_n/\mathbb{Q}(2^{n+2}t) \cap k_n)$

with $\mathcal{G} = \operatorname{Gal}(K_0/k)$, we have $N_{\mathcal{G}}(\eta_t) \in \mathcal{C}'_{k_{\infty}}$. Put $\epsilon = (-\zeta_{2^{n+2}})_{n \geq 0} \in \mathcal{C}_{K_{\infty}}$. First, we prove the following:

Lemma 5.1.

(a) $C'_{k_{\infty}}$ is generated by

$$\{N_{\mathcal{G}}(\epsilon), N_{\mathcal{G}}(\eta_t) \mid t \mid m\}$$

as $\mathbb{Z}_2[G] \llbracket \Gamma \rrbracket$ -module.

(b) Assume that k is a real abelian field. Then $C_{k\infty}$ has a submodule of finite index generated by

$$\{N_{\mathcal{G}}(\eta_t), \ \eta_t^{\gamma-\kappa(\gamma)}, \ \eta_1 \mid t \mid m, t \neq 1\}$$

as $\mathbb{Z}_2[G][\![\Gamma]\!]$ -module and \mathcal{C}'_{k_∞} has a submodule $\mathcal{C}^2_{k_\infty}$ of finite index. Furthermore if $h_t = [\mathbb{Q}(t) : \mathbb{Q}(t) \cap F]$ is even for $t \mid m, t \neq 1$, then \mathcal{C}_{k_∞} is generated by

$$\left\{ \epsilon^{-h_t/2} \eta_t, \ \eta_1 \ \middle| \ t \mid m, t \neq 1 \right\}$$

as $\mathbb{Z}_2[G][\![\Gamma]\!]$ -modules.

Proof. In [8], it is proved that $\mathcal{C}'_{K_{\infty}}$ is generated by $\{\epsilon, \eta_t \mid t \mid m\}$. Since $(\mathbb{Q}(2^{n+2}t) \cap k_n)(\zeta_4) = \mathbb{Q}(2^{n+2}t) \cap K_n$, we have $(\mathbb{Q}(2^{n+2}t) \cap K_n) \cdot k_n = K_n$, so $\mathcal{G} \cong \operatorname{Gal}(\mathbb{Q}(2^{n+2}t) \cap K_n/\mathbb{Q}(2^{n+2}t) \cap k_n)$. Therefore $N_{\mathcal{G}}(\mathcal{C}'_{K_{\infty}}) = \mathcal{C}'_{k_{\infty}}$ and the claim (a) is proved.

Assume that k is real. Fix t with $1 \neq t \mid m$. Let \widetilde{g}_n be the element of $\operatorname{Gal}(\mathbb{Q}(2^{n+2}t)/\mathbb{Q})$ such that $(\zeta_{2^{n+2}}\zeta_t)^{\widetilde{g}_n} = \zeta_{2^{n+2}}^{-1}\zeta_t^{-1}$ and g_n the restriction of \widetilde{g}_n to $\mathbb{Q}(2^{n+2}t) \cap K_n$. Since $\mathbb{Q}(2^{n+2}t) \cap k_n$ is the maximal real subfield of $\mathbb{Q}(2^{n+2}t) \cap K_n$, the element g_n is a generator of $\operatorname{Gal}(\mathbb{Q}(2^{n+2}t) \cap K_n) \cap K_n/\mathbb{Q}(2^{n+2}t) \cap k_n$. We see that

$$\begin{split} N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} &(1-\zeta_{2^{n+2}}\zeta_t^{\sigma^{-n}})^{(\gamma-\kappa(\gamma))g_n} \\ &= N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} \left(\frac{(1-\zeta_{2^{n+2}}^{\kappa(\gamma)}\zeta_t^{\sigma^{-n}})^{g_n}}{(1-\zeta_{2^{n+2}}\zeta_t^{\sigma^{-n}})^{\kappa(\gamma)g_n}} \right) \\ &= N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} \left(\frac{1-\zeta_{2^{n+2}}^{\kappa(\gamma)}\zeta_t^{-\sigma^{-n}}}{(1-\zeta_{2^{n+2}}^{-1}\zeta_t^{-\sigma^{-n}})^{\kappa(\gamma)}} \right) \\ &= N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} \left(\frac{(-\zeta_{2^{n+2}}^{\kappa(\gamma)}\zeta_t^{-\sigma^{-n}})(1-\zeta_{2^{n+2}}^{\kappa(\gamma)}\zeta_t^{\sigma^{-n}})}{(-\zeta_{2^{n+2}}^{-1}\zeta_t^{-\sigma^{-n}})^{\kappa(\gamma)}(1-\zeta_{2^{n+2}}\zeta_t^{\sigma^{-n}})^{\kappa(\gamma)}} \right) \\ &= N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} \left(\frac{1-\zeta_{2^{n+2}}^{\kappa(\gamma)}\zeta_t^{\sigma^{-n}}}{(1-\zeta_{2^{n+2}}\zeta_t^{\sigma^{-n}})^{\kappa(\gamma)}} \right) \\ &= N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} (1-\zeta_{2^{n+2}}\zeta_t^{\sigma^{-n}})^{\gamma-\kappa(\gamma)}. \end{split}$$

We used that $N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n}(\zeta_t)=1$ in \mathcal{U}_{K_n} . Therefore

$$N_{\mathbb{O}(2^{n+2}t)/\mathbb{O}(2^{n+2}t)\cap K_n}(1-\zeta_{2^{n+2}}\zeta_t^{\sigma^{-n}})^{\gamma-\kappa(\gamma)}$$

is an element of $\mathbb{Q}(2^{n+2}t) \cap k_n$. Then $(\eta_t^{\gamma-\kappa(\gamma)})^2 = N_{\mathcal{G}}(\eta_t)^{\gamma-\kappa(\gamma)}$. Therefore by (a), we have

$$\left\langle \left\{ N_{\mathcal{G}}(\eta_t), \ \eta_t^{\gamma - \kappa(\gamma)} \mid t \mid m \right\} \right\rangle^2 = \left\langle \left\{ N_{\mathcal{G}}(\eta_t)^2, \ N_{\mathcal{G}}(\eta_t)^{\gamma - \kappa(\gamma)} \mid t \mid m \right\} \right\rangle$$
$$= (\mathcal{C}'_{k_{\infty}})^{(2,\dot{T})}.$$

In particular, we have $\langle \{N_{\mathcal{G}}(\eta_t), \eta_t^{\gamma-\kappa(\gamma)} \mid t \mid m\} \rangle^2 \subset \mathcal{C}'_{k_{\infty}}$. Since $\mathcal{C}_{k_{\infty}} =$ $\{\eta \in \mathcal{E}_{k_{\infty}} \mid \eta^2 \in \mathcal{C}'_{k_{\infty}}\}, \text{ we have }$

$$\left\langle \left\{ N_{\mathcal{G}}(\eta_t), \ \eta_t^{\gamma - \kappa(\gamma)} \mid t \mid m \right\} \right\rangle \subset \mathcal{C}_{k_{\infty}}.$$

Therefore we have

$$C'_{k_{\infty}} \supset C^2_{k_{\infty}} \supset \left\langle \left\{ N_{\mathcal{G}}(\eta_t), \ \eta_t^{\gamma - \kappa(\gamma)} \mid t \mid m \right\} \right\rangle^2 = (C'_{k_{\infty}})^{(2,\dot{T})}.$$

Since $C'_{k\infty}$ is a finitely generated $\mathbb{Z}_2[T]$ -module, $C'_{k\infty}/(C'_{k\infty})^{(2,\dot{T})}$ is finite. Then $C'_{k_{\infty}} \supset C^2_{k_{\infty}}$ and $C^2_{k_{\infty}} \supset \langle \{N_{\mathcal{G}}(\eta_t), \eta_t^{\gamma-\kappa(\gamma)} \mid t \mid m\} \rangle^2$ are of finite index. The module $\mathcal{U}_{k_{\infty}}$ has no nontrivial element killed by 2 by Theorem 4.1. Therefore $C_{k_{\infty}} \supset \langle \{N_{\mathcal{G}}(\eta_t), \ \eta_t^{\gamma-\kappa(\gamma)} \mid t \mid m\} \rangle$ is also of finite index. Assume that h_t is even, i.e. $\frac{h_t}{2} \in \mathbb{Z}$. We also see that

$$\left((-\zeta_{2^{n+2}})^{-\frac{h_t}{2}} N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} (1 - \zeta_{2^{n+2}} \zeta_t^{\sigma^{-n}}) \right)^{g_n}
= (-\zeta_{2^{n+2}})^{\frac{h_t}{2}} N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} (1 - \zeta_{2^{n+2}}^{-1} \zeta_t^{-\sigma^{-n}})
= (-\zeta_{2^{n+2}})^{\frac{h_t}{2}} N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} \left((-\zeta_{2^{n+2}}^{-1} \zeta_t^{-\sigma^{-n}}) (1 - \zeta_{2^{n+2}} \zeta_t^{\sigma^{-n}}) \right)
= (-\zeta_{2^{n+2}})^{-\frac{h_t}{2}} N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} (1 - \zeta_{2^{n+2}} \zeta_t^{\sigma^{-n}}) \right)$$

where we used $[\mathbb{Q}(2^{n+2}t):\mathbb{Q}(2^{n+2}t)\cap K_n]=[\mathbb{Q}(t):\mathbb{Q}(t)\cap F]=h_t$ and $N_{\mathbb{O}(2^{n+2}t)/\mathbb{O}(2^{n+2}t)\cap K_n}(\zeta_t)=1$ in \mathcal{U}_{K_n} . Hence

$$(-\zeta_{2^{n+2}})^{-\frac{h_t}{2}} N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap K_n} (1-\zeta_{2^{n+2}}\zeta_t^{\sigma^{-n}})$$

is a unit in k_n . Then $(\epsilon^{-h_t/2}\eta_t)^2 = N_{\mathcal{G}}(\epsilon^{h_t/2}\eta_t) = N_{\mathcal{G}}(\eta_t) \in N_{\mathcal{G}}(\mathcal{C}_{K_{\infty}}) = \mathcal{C}'_{k}$ since $N_{\mathcal{G}}(\epsilon) = 1$, so $\epsilon^{-h_t/2} \eta_t$ is in $\mathcal{C}_{k_{\infty}}$. Similarly we see that $\eta_1 \in \mathcal{C}_{k_{\infty}}$. Furthermore, we see that

$$C'_{k_{\infty}} \supset C^2_{k_{\infty}} \supset \langle \{ \epsilon^{-h_t/2} \eta_t, \ \eta_1 \mid t \mid m, t \neq 1 \} \rangle^2$$

and

$$C'_{k_{\infty}} = N_{\mathcal{G}}(C_{K_{\infty}}) = \langle \{N_{\mathcal{G}}(\epsilon), N_{\mathcal{G}}(\eta_t) \mid t \mid m \} \rangle$$
$$= \langle \{(\epsilon^{-h/2}\eta_t)^2, \eta_1^2 \mid t \mid m, t \neq 1 \} \rangle$$
$$= \langle \{\epsilon^{-h_t/2}\eta_t, \eta_1 \mid t \mid m, t \neq 1 \} \rangle^2.$$

Therefore $C_{k_{\infty}}^2 = \langle \{\epsilon^{-h_t/2}\eta_t, \ \eta_1 \mid t \mid m, t \neq 1\} \rangle^2$. The module $\mathcal{U}_{k_{\infty}}$ has no nontrivial element killed by 2 by Theorem 4.1. Therefore, we obtain

$$\mathcal{C}_{k_{\infty}} = \langle \{ \epsilon^{-h_t/2} \eta_t, \ \eta_1 \mid t \mid m, t \neq 1 \} \rangle.$$

Remark 5.2. The condition that $2 \mid h_t = [\mathbb{Q}(t) : \mathbb{Q}(t) \cap F]$ in Lemma 5.1 (b) holds, if 2 is unramified in k. Indeed, if k is real and 2 is unramified in k, then F = k, so F is real. Hence, $\mathbb{Q}(t) \cap F$ is also real, so $2 \mid [\mathbb{Q}(t) : \mathbb{Q}(t) \cap F]$.

Lemma 5.3. Assume that $\psi = \chi \omega^i$ is a non-trivial, even character of G. Put $\xi_{\chi} = \sum_{\delta} \chi(\delta) \delta^{-1}$, δ running over all elements in $\operatorname{Gal}(F \cap \mathbb{Q}(f)/\mathbb{Q})$. Then the Λ -module $\mathcal{C}_{k\infty}^{\psi}$ is generated by $\eta_f^{\xi_{\chi}}$.

Proof. We regard χ as a character of $\operatorname{Gal}(\mathbb{Q}(f)/\mathbb{Q})$. Since $\chi(\delta) = 1$ for $\delta \in \operatorname{Gal}(\mathbb{Q}(f)/\mathbb{Q}(f) \cap F)$, we have

$$\eta_f^{\xi_{\chi}} = \left(\prod_{\delta \in \operatorname{Gal}(\mathbb{Q}(f)/\mathbb{Q})} (1 - \zeta_{2^{n+2}} \zeta_f^{\sigma^{-n} \delta^{-1}})^{\chi(\delta)} \right)_{n \ge 0}$$

Let k^{ψ} be the fixed field of ψ and $F^{\chi} = \mathbb{Q}(f) \cap k^{\psi}(\zeta_4)$. Then $F^{\chi}(\zeta_4) = k^{\psi}(\zeta_4)$. Put $k_n^{\psi} = k^{\psi}\mathbb{Q}_n = k^{\psi}(\zeta_{2^{n+2}} + \zeta_{2^{n+2}}^{-1})$, $k_{\infty}^{\psi} = \bigcup k_n^{\psi}$, $K_n^{\psi} = k^{\psi}(\zeta_{2^{n+2}}) = F^{\chi}(\zeta_{2^{n+2}})$ and $K_{\infty}^{\psi} = \bigcup K_n^{\psi}$. Let \tilde{g}_n be the element of $\operatorname{Gal}(\mathbb{Q}(2^{n+2}f)/\mathbb{Q})$ such that $(\zeta_{2^{n+2}}\zeta_f)^{\widetilde{g}_n} = \zeta_{2^{n+2}}^{-1}\zeta_f^{-1}$ and g_n the restriction of \tilde{g}_n to K_n^{ψ} . Since k_n^{ψ} is a real abelian field and $[K_n^{\psi}:k_n^{\psi}] = 2$, the element g_n is a generator of $\operatorname{Gal}(K_n^{\psi}/k_n^{\psi})$. We see that

$$\left(\prod_{\delta} (1 - \zeta_{2^{n+2}} \zeta_f^{\sigma^{-n} \delta^{-1}})^{\chi(\delta)}\right)^{g_n} \\
= \prod_{\delta} (1 - \zeta_{2^{n+2}}^{-1} \zeta_f^{-\sigma^{-n} \delta^{-1}})^{\chi(\delta)} \\
= \prod_{\delta} (-\zeta_{2^{n+2}}^{-1} \zeta_f^{-\sigma^{-n} \delta^{-1}})^{\chi(\delta)} (1 - \zeta_{2^{n+2}} \zeta_f^{\sigma^{-n} \delta^{-1}})^{\chi(\delta)} \\
= \prod_{\delta} (-\zeta_{2^{n+2}}^{-\chi(\delta)} \zeta_f^{-\sigma^{-n} \chi(\delta) \delta^{-1}}) (1 - \zeta_{2^{n+2}} \zeta_f^{\sigma^{-n} \delta^{-1}})^{\chi(\delta)} \\
= \prod_{\delta} (\zeta_f^{-\sigma^{-n} \chi(\delta) \delta^{-1}}) (1 - \zeta_{2^{n+2}} \zeta_f^{\sigma^{-n} \delta^{-1}})^{\chi(\delta)}$$

where δ runs over all elements of $\operatorname{Gal}(\mathbb{Q}(f)/\mathbb{Q})$. The image of

$$\left(\prod \left(\zeta_f^{-\sigma^{-n}\chi(\delta)\delta^{-1}}\right)\right)_{n>0}$$

under the projection $\varprojlim (\mathcal{O}_{K_n} \otimes \mathbb{Z}_2)^{\times} \to \mathcal{U}_{K_{\infty}}$ is 1. Then we obtain $(\eta_f^{\xi_{\chi}})^g = \eta_f^{\xi_{\chi}}$ where $g = (g_n)_{n \geq 0} \in \operatorname{Gal}(K_{\infty}^{\psi}/k_{\infty}^{\psi})$. Therefore $\eta_f^{\xi_{\chi}}$ is an element in $\mathcal{E}_{K_{\infty}^{\psi}}$ on which g acts trivially hence is in $\mathcal{E}_{k_{\infty}^{\psi}}$. We see that

$$(\eta_f^{\xi_\chi})^2 = N_{K_\infty^\psi/k_\infty^\psi}(\eta_f^{\xi_\chi})$$

$$= \left(\prod_{\delta \in \operatorname{Gal}(\mathbb{Q}(f) \cap F^\chi/\mathbb{Q})} N_{\mathbb{Q}(2^{n+2}f)/\mathbb{Q}(2^{n+2}f) \cap k_n^\psi} (1 - \zeta_{2^{n+2}} \zeta_f^{\sigma^{-n}\delta^{-1}})^{\chi(\delta)}\right)_{n \ge 0}$$

is in $\mathcal{C}'_{k_{\infty}^{\psi}}$, so in $\mathcal{C}'_{k_{\infty}^{+}}$. Hence $\eta_{f}^{\xi_{\chi}} \in \mathcal{C}_{k_{\infty}^{+}} \subset \mathcal{C}_{k_{\infty}}$. Let τ be the generator of $\operatorname{Gal}(K_{0}^{\psi}/F^{\chi})$. As in the proof of Proposition 4.4, by the isomorphism $\operatorname{Gal}(K_{0}^{\psi}/\mathbb{Q}) \cong \operatorname{Gal}(K_{0}^{\psi}/F^{\chi}) \times \operatorname{Gal}(F^{\chi}/\mathbb{Q})$, τg maps to $(1, (\tau g)|_{F^{\chi}})$ and $\chi(\tau g) = \omega^{i}(\tau)$. Hence we see that

$$(\eta_f^{\xi_\chi})^\tau = (\eta_f^{\xi_\chi})^{\tau g} = (\eta_f^{\xi_\chi})^{\chi(\tau g)} = (\eta_f^{\xi_\chi})^{\omega^i(\tau)}.$$

Clearly any element of Δ acts on $\eta_f^{\xi_\chi}$ via χ . Therefore any element of G acts on $\eta_f^{\xi_\chi}$ via ψ , so $\eta_f^{\xi_\chi}$ is in $\mathcal{C}_{k_\infty}^{\psi}$. Then $\mathcal{C}_{k_\infty}^{\psi}$ contains the submodule generated by $\eta_f^{\xi_\chi}$. We can show that both modules are coincide as in the proof of odd prime version [12, Lemma 6.2(a)].

For $\eta \in \mathcal{U}_{k_{\infty}}$, we denote by $\eta_{k_{\infty},\psi} = \eta_{\psi}$ its image under the surjection $\mathcal{U}_{k_{\infty}} \to \mathcal{U}_{k_{\infty},\psi}$. Let $\widetilde{\mathcal{C}}_{k_{\infty},\psi} = \widetilde{\mathcal{C}}_{\psi}$ and $\widetilde{\mathcal{C}}'_{k_{\infty},\psi} = \widetilde{\mathcal{C}}'_{\psi}$ denote the images of $\mathcal{C}_{k_{\infty}}$ and $\mathcal{C}'_{k_{\infty}}$ under the surjection $\mathcal{U}_{k_{\infty}} \to \mathcal{U}_{k_{\infty},\psi}$ respectively. Then we have isomorphisms $(\mathcal{U}/\mathcal{C})_{\psi} \cong \mathcal{U}_{\psi}/\widetilde{\mathcal{C}}_{\psi}$ and $(\mathcal{U}/\mathcal{C}')_{\psi} \cong \mathcal{U}_{\psi}/\widetilde{\mathcal{C}}'_{\psi}$.

Lemma 5.4. Assume that k is an abelian field of the first kind and $\psi = \chi \omega^i$ is a non-trivial, even character of $G = \operatorname{Gal}(k/\mathbb{Q})$. The Λ -module $\widetilde{C}'_{k_{\infty},\psi}$ is generated by $\{N_{\mathcal{G}}(\eta_{m_I})_{k_{\infty},\psi} \mid I \subset \mathcal{L}\}$.

Proof. By Lemma 5.1(a), \widetilde{C}'_{ψ} is generated by $\{N_{\mathcal{G}}(\epsilon)_{\psi}, N_{\mathcal{G}}(\eta_t)_{\psi} \mid t \mid m\}$. If $f \nmid t$, then there exists $\delta \in \Delta$ such that $\delta \not\in \ker \chi$ and $\delta \in \operatorname{Gal}(F/\mathbb{Q}(t) \cap F)$, hence $\chi(\delta) \neq 1$ and $\eta_t^{\delta-1} = 1$. Let s_{χ} be the surjection map from $\mathcal{U}_{K_{\infty}}$ to $\mathcal{U}_{K_{\infty},\chi}$, the χ -quotient as a $\mathbb{Z}_2[\Delta]$ -module $\mathcal{U}_{K_{\infty}}$. Since $s_{\chi}(\eta_t^{\delta-1}) = s_{\chi}(\eta_t)^{\chi(\delta)-1}$, we have $s_{\chi}(\eta_t)^{\chi(\delta)-1} = 1$, i.e. $s_{\chi}(\eta_t)$ is a torsion element of $\mathcal{U}_{K_{\infty},\chi}$. In the proof of Proposition 4.7 we see that \mathcal{U}_{χ_D} has no torsion element and $\mathcal{U}_{K_{\infty},\chi} = \mathcal{U}_{\chi_D} \otimes_{\mathbb{Z}_2[\chi_D]} \mathbb{Z}_2[\chi]$, then $s_{\chi}(\eta_t) = 1$. The image $(\eta_t)_{K_{\infty},\psi}$ of $s_{\chi}(\eta_t)$ under the surjection $\mathcal{U}_{K_{\infty},\chi} \to \mathcal{U}_{K_{\infty},\psi}$ is trivial, where $\mathcal{U}_{K_{\infty},\psi}$ is the

 ψ -quotient of the $\mathbb{Z}_2[\operatorname{Gal}(K_0/\mathbb{Q})]$ -module $\mathcal{U}_{K_{\infty}}$. If $k_{\infty} = K_{\infty}$, i.e. $\mathcal{G} = \{1\}$, then $(N_{\mathcal{G}}(\eta_t))_{\psi} = (\eta_t)_{K_{\infty},\psi} = 1$. In the case where $k_{\infty} \neq K_{\infty}$ and 2 is ramified in k, we see that $\mathcal{U}_{k_{\infty},\psi} \cong \mathcal{U}_{K_{\infty},\psi}$ and $N_{\mathcal{G}}(\eta_t)_{\psi}$ maps to $(\eta_t)_{K_{\infty},\psi}$ by this isomorphism in the proof of Proposition 4.7, hence $N_{\mathcal{G}}(\eta_t)_{\psi} = 1$. In the case where $k_{\infty} \neq K_{\infty}$ and 2 is unramified in k, $\mathcal{U}_{k_{\infty},\psi}$ has no torsion element, hence $N_{\mathcal{G}}(\eta_t)_{\psi} = 1$ by the same method as in another case. For any $\delta \in \operatorname{Gal}(F/\mathbb{Q})$, we have $\epsilon^{\delta-1} = 1$. Hence we can prove that $N_{\mathcal{G}}(\epsilon)_{\psi} = 1$ similarly. Therefore \widetilde{C}'_{ψ} is generated by $\{N_{\mathcal{G}}(\eta_t)_{\psi} \mid t \mid m, f \mid t\}$. The rest of the proof, we can prove in the same way as in the proof of odd prime version [12, Lemma 6.2(b)].

Lemma 5.5. Assume that k is a real abelian field of the first kind and $\psi = \chi \omega^i$ is a non-trivial, even character of $G = \operatorname{Gal}(k/\mathbb{Q})$. The Λ -module $\widetilde{\mathcal{C}}_{k_{\infty},\psi}$ has a submodule of finite index generated by

$$\{N_{\mathcal{G}}(\eta_{m_I})_{k_{\infty},\psi},(\eta_{m_I}^{\gamma-\kappa(\gamma)})_{k_{\infty},\psi}\mid I\subset\mathcal{L}\}$$

and the Λ -module $\widetilde{\mathcal{C}}'_{k_{\infty},\psi}$ has a submodule $\widetilde{\mathcal{C}}^2_{k_{\infty},\psi}$ of finite index. Furthermore if $h_I = [\mathbb{Q}(m_I) : \mathbb{Q}(m_I) \cap F]$ is even for $I \subset \mathcal{L}$ then $\widetilde{\mathcal{C}}_{k_{\infty},\psi}$ is generated by

$$\{(\epsilon^{-h_I/2}\eta_{m_I})_{k_\infty,\psi} \mid I \subset \mathcal{L}\}.$$

Proof. By Lemma 5.1(b), we can show that the Λ -module $\widetilde{\mathcal{C}}_{k_{\infty},\psi}$ has a submodule of finite index generated by

$$\{N_{\mathcal{G}}(\eta_{m_I})_{k_{\infty},\psi},(\eta_{m_I}^{\gamma-\kappa(\gamma)})_{k_{\infty},\psi}\mid I\subset\mathcal{L}\}$$

similarly as the proof of the previous lemma. Similarly we can show that if h_I is even for $I \subset \mathcal{L}$ then $\widetilde{\mathcal{C}}_{k_{\infty},\psi}$ is generated by

$$\{(\epsilon^{-h_I/2}\eta_{m_I})_{k_{\infty},\psi} \mid I \subset \mathcal{L}\}$$

by Lemma 5.1(b). Also we can see that $\widetilde{\mathcal{C}}'_{k_{\infty},\psi}$ has a submodule $\widetilde{\mathcal{C}}^2_{k_{\infty},\psi}$ of finite index by Lemma 5.1(b).

6. The proof of main theorems

Proof of Theorem 3.1. Coleman's power series of $\eta_f^{\xi_\chi}$ is

$$\prod_{\delta \in \operatorname{Gal}(\mathbb{Q}(f)/\mathbb{Q})} (1 - (1 - X)\zeta_f^{\delta^{-1}})^{\chi(\delta)}.$$

By using the formula (4.2) and Lemma 4.2 (a), for $k \equiv i \mod 2$,

$$\begin{split} &(-\kappa)^k (\Psi_{k_\infty}^{\psi}(\eta_f^{\xi_\chi})) z^\chi \\ &= \frac{1}{2} D^k \left(1 - \frac{\varphi}{2}\right) \log \left(\prod_{\delta} (1 - (1 - X) \zeta_f^{\delta^{-1}})^{\chi(\delta)} \right) \bigg|_{X=0} \\ &= \frac{1}{2} D^{k-1} (1 - \varphi) D \log \left(\prod_{\delta} (1 - (1 - X) \zeta_f^{\delta^{-1}})^{\chi(\delta)} \right) \bigg|_{X=0} \\ &= \frac{1}{2} \sum_{\delta} \delta^{-1} \chi(\delta) (D^{k-1} (1 - \varphi) D \log (1 - (1 - X) \zeta_f)) |_{X=0} \\ &= \frac{1}{2} \sum_{\delta} \delta^{-1} \chi(\delta) D^{k-1} \left(\frac{(1 - X) \zeta_f}{1 - (1 - X) \zeta_f} - \frac{(1 - X)^2 \zeta_f^2}{1 - (1 - X)^2 \zeta_f^2} \right) \bigg|_{X=0} \\ &= \frac{1}{2} \sum_{\delta} \delta^{-1} \chi(\delta) D^{k-1} \sum_{a=1}^{f} \left(\frac{(1 - X)^a \zeta_f^a}{1 - (1 - X)^f} - \frac{(1 - X)^{2a} \zeta_f^{2a}}{1 - (1 - X)^{2f}} \right) \bigg|_{X=0} \\ &= \frac{1}{2} D^{k-1} \sum_{a=1}^{f} \left(\frac{(1 - X)^a \xi_\chi (\text{Tr}(\zeta_f^a))}{1 - (1 - X)^f} - \frac{(1 - X)^{2a} \xi_\chi (\text{Tr}(\zeta_f^{2a}))}{1 - (1 - X)^{2f}} \right) \bigg|_{X=0} \\ &= \frac{1}{2} D^{k-1} \sum_{a=1}^{f} \left(\frac{\chi(a)(1 - X)^a}{1 - (1 - X)^f} - \frac{\chi(2a)(1 - X)^{2a}}{1 - (1 - X)^{2f}} \right) z^\chi \bigg|_{X=0} \\ &= \frac{1}{2} \left(-\frac{\mathrm{d}}{\mathrm{d}Z} \right)^{k-1} \sum_{a=1}^{f} \left(\frac{\chi(a)e^{aZ}}{1 - e^{fZ}} - \frac{\chi(2a)e^{2aZ}}{1 - e^{2fZ}} \right) z^\chi \bigg|_{Z=0} \\ &= \frac{1}{2} \left(-\frac{\mathrm{d}}{\mathrm{d}Z} \right)^{k-1} \sum_{n=1}^{\infty} \left(-\frac{B_{n,\chi}}{n!} Z^{n-1} + \chi(2) \frac{B_{n,\chi}}{n!} (2Z)^{n-1} \right) z^\chi \bigg|_{Z=0} \\ &= \frac{1}{2} (-1)^k (1 - \chi(2)2^{k-1}) \frac{B_{k,\chi}}{k} z^\chi \\ &= \frac{1}{2} (-1)^{k-1} g_\psi (\kappa(\gamma)^k - 1) z^\chi \\ &= \frac{1}{2} (-\kappa)^k (-g_\psi (\gamma - 1)) z^\chi \end{split}$$

where δ runs over all elements of $\operatorname{Gal}(\mathbb{Q}(f)/\mathbb{Q})$, $\operatorname{Tr} = \operatorname{Tr}_{\mathbb{Q}(f)/\mathbb{Q}(f)\cap F}$ and $1-X=e^Z$, so D=(1-X)d/dX=-d/dZ. Therefore we obtain

$$\Psi^{\psi}_{k_{\infty}}(\eta^{\xi_{\chi}}_f) = -\frac{1}{2}g_{\psi}(T).$$

By Lemma 5.3, we have

$$\Psi_{k_{\infty}}^{\psi}(\mathcal{C}^{\psi}) = (g_{\psi}(T)/2) \subset \Lambda.$$

Therefore Theorem 3.1 follows from Proposition 4.6.

Proof of Theorems 3.2, 3.4 and 3.5. We first calculate $\Psi_{K_{\infty},\psi}((\eta_{m_I})_{K_{\infty},\psi})$. Let M be the fixed field of $\ker \chi$ and $L_n = M(\mu_{2^{n+2}})$ for $0 \le n \le \infty$. We see that

$$\begin{split} N_{K_{\infty}/L_{\infty}}(\eta_{m_{I}}) &= (N_{K_{n}/L_{n}}N_{\mathbb{Q}(2^{n+2}m_{I})/\mathbb{Q}(2^{n+2}m_{I})\cap K_{n}}(1-\zeta_{2^{n+2}}\zeta_{m_{I}}^{\sigma^{-n}}))_{n\geq 0} \\ &= (N_{\mathbb{Q}(2^{n+2}m_{I})/L_{n}}(1-\zeta_{2^{n+2}}\zeta_{m_{I}}^{\sigma^{-n}})^{[K_{n}:\mathbb{Q}(2^{n+2}m_{I})\cap K_{n}]})_{n\geq 0} \\ &= (N_{\mathbb{Q}(2^{n+2}f)/L_{n}}N_{\mathbb{Q}(2^{n+2}m_{I})/\mathbb{Q}(2^{n+2}f)}(1-\zeta_{2^{n+2}}\zeta_{m_{I}}^{\sigma^{-n}})^{[F:\mathbb{Q}(m_{I})\cap F]})_{n\geq 0} \\ &= (\eta_{f}')^{[F:\mathbb{Q}(m_{I})\cap F]}\prod_{l\in I}(\gamma_{l}-\sigma_{l}^{-1}) \end{split}$$

where γ_l (resp. σ_l) is the Frobenius element of l in G_{∞} (resp. $Gal(M/\mathbb{Q})$) and we put $\eta'_f = (N_{\mathbb{Q}(2^{n+2}f)/L_n}(1-\zeta_{2^{n+2}}\zeta_f^{\sigma^{-n}}))_{n\geq 0}$. We have, by (4.4)

$$\begin{split} &\Psi_{K_{\infty},\psi}((\eta_{m_I})_{K_{\infty},\psi}) \\ &= \Psi_{L_{\infty},\psi}(N_{K_{\infty}/L_{\infty}}(\eta_{m_I})_{L_{\infty},\psi}) \\ &= \Psi_{L_{\infty},\psi}(((\eta_f')^{[F:\mathbb{Q}(m_I)\cap F]}\prod_{l\in I}(\gamma_l-\sigma_l^{-1}))_{\psi}) \\ &= [F:\mathbb{Q}(m_I)\cap F] \left(\prod_{l\in I}(\omega^i(l)(1+T)^{t_l}-\chi(l)^{-1})\right)\Psi_{L_{\infty},\psi}((\eta_f')_{L_{\infty},\psi}) \\ &= [F:\mathbb{Q}(m_{\mathcal{L}})\cap F] d_I \left(\prod_{l\in I}-\chi(l)^{-1}(1-\psi(l)(1+T)^{t_l})\right)\Psi_{L_{\infty},\psi}((\eta_f')_{L_{\infty},\psi}). \end{split}$$

For $k \equiv i \mod 2$, by the formula (4.3) and Lemma 4.2(b), we have

$$(-\kappa)^{k} \Psi_{L_{\infty},\psi}((\eta'_{f})_{L_{\infty},\psi}) z_{M,\chi}$$

$$= (D^{k}(1 - \frac{\varphi}{2}) \log N(1 - (1 - X)\zeta_{f})|_{X=0})_{M,\chi}$$

$$= (D^{k-1}(1 - \varphi) \operatorname{Tr}(D \log(1 - (1 - X)\zeta_{f}))|_{X=0})_{M,\chi}$$

$$= \left(D^{k-1} \sum_{a=1}^{f} \left(\frac{(1 - X)^{a} \operatorname{Tr}(\zeta_{f}^{a})}{1 - (1 - X)^{f}} - \frac{(1 - X)^{2a} \operatorname{Tr}(\zeta_{f}^{2a})}{1 - (1 - X)^{2f}}\right)\Big|_{X=0}\right)_{M,\chi}$$

$$= D^{k-1} \sum_{a=1}^{f} \left(\frac{(1 - X)^{a} \operatorname{Tr}(\zeta_{f}^{a})_{M,\chi}}{1 - (1 - X)^{f}} - \frac{(1 - X)^{2a} \operatorname{Tr}(\zeta_{f}^{2a})_{M,\chi}}{1 - (1 - X)^{2f}}\right)\Big|_{X=0}$$

$$= D^{k-1} \sum_{a=1}^{f} \left(\frac{\chi(a)(1 - X)^{a}}{1 - (1 - X)^{f}} - \frac{\chi(2a)(1 - X)^{2a}}{1 - (1 - X)^{2f}}\right) z_{M,\chi}\Big|_{X=0}$$

where $N = N_{\mathbb{Q}(f)/M}$ and $\text{Tr} = \text{Tr}_{\mathbb{Q}(f)/M}$. Then we have

$$\Psi_{L_{\infty},\psi}((\eta_f')_{L_{\infty},\psi}) = -g_{\psi}(T),$$

and hence

(6.1)
$$\Psi_{K_{\infty},\psi}((\eta_{m_I})_{K_{\infty},\psi}) = v_I d_I \left(\prod_{l \in I} (1 - \psi(l)(1+T)^{t_l}) \right) g_{\psi}(T)$$

where we put $v_I = -[F : \mathbb{Q}(m_{\mathcal{L}}) \cap F] \prod_{l \in I} (-\chi(l)^{-1})$ and this is a unit in Λ . Assume $k_{\infty} = K_{\infty}$. In this case, the Galois group \mathcal{G} is trivial, and then we have

$$\Psi_{k_{\infty},\psi}(N_{\mathcal{G}}(\eta_{m_{I}})_{k_{\infty},\psi}) = \Psi_{K_{\infty},\psi}((\eta_{m_{I}})_{K_{\infty},\psi})
= v_{I}d_{I} \prod_{l \in I} (1 - \psi(l)(1 + T)^{t_{l}})g_{\psi}(T).$$

Assume $k_{\infty} \neq K_{\infty}$. By Proposition 4.4(b), we have

$$\begin{split} \Psi_{k_{\infty},\psi}(N_{\mathcal{G}}(\eta_{m_{I}})_{k_{\infty},\psi})z_{F,\chi} \\ &= \frac{1}{2}\omega^{i}(\Psi_{K_{\infty}}(N_{\mathcal{G}}(\eta_{m_{I}}))_{\chi}) \\ &= \frac{1}{2}(\omega^{i}(\Psi_{K_{\infty}}(\eta_{m_{I}})_{\chi}) + \omega^{i}(\Psi_{K_{\infty}}(\eta_{m_{I}}^{g})_{\chi})) \\ &= \frac{1}{2}(\Psi_{K_{\infty},\psi}(\eta_{m_{I}})_{K_{\infty},\psi}) + \Psi_{K_{\infty},\psi}((\eta_{m_{I}}^{g})_{K_{\infty},\psi}))z_{F,\chi} \\ &= \frac{1}{2}(\Psi_{K_{\infty},\psi}((\eta_{m_{I}})_{K_{\infty},\psi}) + \Psi_{K_{\infty},\psi}((\eta_{m_{I}})_{K_{\infty},\psi}^{\psi(g)}))z_{F,\chi} \\ &= \frac{1}{2}(\Psi_{K_{\infty},\psi}((\eta_{m_{I}})_{K_{\infty},\psi}) + \Psi_{K_{\infty},\psi}((\eta_{m_{I}})_{K_{\infty},\psi}))z_{F,\chi} \\ &= \Psi_{K_{\infty},\psi}((\eta_{m_{I}})_{K_{\infty},\psi})z_{F,\chi}, \end{split}$$

and hence, by (6.1),

$$\Psi_{k_{\infty},\psi}(N_{\mathcal{G}}(\eta_{m_I})_{k_{\infty},\psi}) = v_I d_I \left(\prod_{l \in I} (1 - \psi(l)(1 + T)^{t_l}) \right) g_{\psi}(T).$$

By Lemma 5.4, we have

$$\Psi_{k_{\infty},\psi}(\widetilde{\mathcal{C}}'_{k_{\infty},\psi}) = \left\langle d_{I} \prod_{l \in I} (1 - \psi(l)(1 + T)^{t_{l}}) g_{\psi}(T) \middle| I \subset \mathcal{L} \right\rangle$$
$$= \mathfrak{A}g_{\psi}(T) \subset \Lambda.$$

We can see that $\ker(\Psi_{k_{\infty},\psi}) \cap \widetilde{\mathcal{C}}'_{k_{\infty},\psi} = \{1\}$. Therefore Theorem 3.5 follows from Proposition 4.7.

Assume that k is real. We will calculate the values $\Psi_{k_{\infty},\psi}((\eta_{m_I}^{\gamma-\kappa(\gamma)})_{k_{\infty},\psi})$ and $\Psi_{k_{\infty},\psi}((\epsilon^{-h_I/2}\eta_{m_I})_{k_{\infty},\psi})$. We can see that

$$\begin{split} \Psi_{k_{\infty},\psi}((\eta_{m_{I}}^{\gamma-\kappa(\gamma)})_{k_{\infty},\psi})z_{F,\chi} &= \frac{1}{2}\omega^{i}(\Psi_{K_{\infty}}(\eta_{m_{I}}^{\gamma-\kappa(\gamma)})_{\chi})\\ &= \frac{1}{2}(\gamma-\kappa(\gamma))\omega^{i}(\Psi_{K_{\infty}}(\eta_{m_{I}})_{\chi})\\ &= \frac{1}{2}\dot{T}\Psi_{K_{\infty},\psi}((\eta_{m_{I}})_{K_{\infty},\psi})z_{F,\chi} \end{split}$$

and hence, by (6.1),

$$\Psi_{k_{\infty},\psi}((\eta_{m_{I}}^{\gamma-\kappa(\gamma)})_{k_{\infty},\psi}) = v_{I}d_{I}\left(\prod_{l \in I} (1 - \psi(l)(1 + T)^{t_{l}})\right) \frac{1}{2}\dot{T}g_{\psi}(T).$$

Furthermore, we can see that

$$\begin{split} \Psi_{k_{\infty},\psi}((\epsilon^{-h_I/2}\eta_{m_I})_{k_{\infty},\psi})z_{F,\chi} &= \frac{1}{2}\omega^i(\Psi_{K_{\infty}}(\epsilon^{-h_I/2}\eta_{m_I})_{\chi}) \\ &= \frac{1}{2}\omega^i(\Psi_{K_{\infty}}(\epsilon^{-h_I/2})_{\chi} + \Psi_{K_{\infty}}(\eta_{m_I})_{\chi}) \\ &= \frac{1}{2}\omega^i(\Psi_{K_{\infty}}(\eta_{m_I})_{\chi}) \\ &= \frac{1}{2}\Psi_{K_{\infty},\psi}((\eta_{m_I})_{K_{\infty},\psi})z_{F,\chi} \end{split}$$

and hence, by (6.1),

$$\Psi_{k_{\infty},\psi}((\epsilon^{-h_I/2}\eta_{m_I})_{k_{\infty},\psi}) = v_I d_I \left(\prod_{l \in I} (1 - \psi(l)(1 + T)^{t_l}) \right) \frac{1}{2} g_{\psi}(T).$$

Let $\widetilde{\mathcal{C}''}_{k_{\infty},\psi}$ be the submodule of $\widetilde{\mathcal{C}}_{k_{\infty},\psi}$ generated by

$$\{N_{\mathcal{G}}(\eta_{m_I})_{k_{\infty},\psi},(\eta_{m_I}^{\gamma-\kappa(\gamma)})_{k_{\infty},\psi}\mid I\subset\mathcal{L}\}.$$

By the above calculation, we have

$$\begin{split} &\Psi_{k_{\infty},\psi}(\widetilde{\mathcal{C}''}_{k_{\infty},\psi}) \\ &= \langle 2d_{I} \prod_{l \in I} (1 - \psi(l)(1+T)^{t_{l}}), \dot{T}d_{I} \prod_{l \in I} (1 - \psi(l)(1+T)^{t_{l}}) \mid I \subset \mathcal{L} \rangle g_{\psi}(T)/2 \\ &= (2, \dot{T}) \mathfrak{A}(g_{\psi}(T)/2). \end{split}$$

By Lemma 5.5, $\widetilde{\mathcal{C}}_{k_{\infty},\psi} \supset \widetilde{\mathcal{C}''}_{k_{\infty},\psi}$ and $\langle N_{\mathcal{G}}(\eta_{m_I})_{k_{\infty},\psi} \mid I \subset \mathcal{L} \rangle = \widetilde{\mathcal{C}'}_{k_{\infty},\psi} \supset \widetilde{\mathcal{C}}^2_{k_{\infty},\psi}$, so we have

$$\begin{split} &\Psi_{k_{\infty},\psi}(\widetilde{\mathcal{C}}_{k_{\infty},\psi})\supset (2,\dot{T})\mathfrak{A}(g_{\psi}(T)/2),\\ &\Psi_{k_{\infty},\psi}(\widetilde{\mathcal{C}'}_{k_{\infty},\psi})=\mathfrak{A}g_{\psi}(T)\supset 2\Psi_{k_{\infty},\psi}(\widetilde{\mathcal{C}}_{k_{\infty},\psi}). \end{split}$$

Since Λ is an integral domain, we have

$$\mathfrak{A} g_{\psi}(T)/2 \supset \Psi_{k_{\infty},\psi}(\widetilde{\mathcal{C}}_{k_{\infty},\psi}) \supset (2,\dot{T})\mathfrak{A}(g_{\psi}(T)/2).$$

Therefore there is an ideal \mathfrak{A}' of Λ such that $\mathfrak{A} \supset \mathfrak{A}' \supset (\dot{T}, 2)\mathfrak{A}$ and $\Psi_{k_{\infty},\psi}(\widetilde{C}_{k_{\infty},\psi}) = \mathfrak{A}'(g_{\psi}(T)/2)$. This completes the proof of Theorem 3.2. Assume that k is imaginary. We put

$$\eta_t^+ = (N_{\mathbb{Q}(2^{n+2}t)/\mathbb{Q}(2^{n+2}t)\cap k_n^+(\zeta_4)}(1-\zeta_{2^{n+2}}\zeta_t^{\sigma^{-n}}))_{n\geq 0} \in \varprojlim C_{k_n^+(\zeta_4)}$$

for $t \mid m, t \neq 1$. Recall $C_{k_{\infty}} = C'_{k_{\infty}} \cdot C_{k_{\infty}^+}$. Then $\widetilde{C}_{k_{\infty}, \psi}$ has a submodule of finite index generated by

$$\{N_{\mathcal{G}}(\eta_{m_I})_{k_{\infty},\psi},\ N_{k_{\infty}^+(\zeta_4)/k_{\infty}^+}(\eta_{m_I}^+)_{k_{\infty},\psi},\ ((\eta_{m_I}^+)^{\gamma-\kappa(\gamma)})_{k_{\infty},\psi}\mid I\subset\mathcal{L}\}$$

and if $2 \mid h_I^+ = [\mathbb{Q}(4m_I) : \mathbb{Q}(4m_I) \cap k^+(\zeta_4)]$ for $I \subset \mathcal{L}$, then $\mathcal{C}_{k_{\infty},\psi}$ is generated by

$$\{(\epsilon^{-h_I^+/2}\eta_{m_I}^+)_{k_\infty,\psi}, N_{\mathcal{G}}(\eta_{m_I})_{k_\infty,\psi} \mid I \subset \mathcal{L}\}$$

by Lemma 5.1. We put $\alpha_I = [\mathbb{Q}(4m_I) \cap K_0 : \mathbb{Q}(4m_I) \cap k^+(\zeta_4)]$, which is 1 or 2. Then $\eta_{m_I}^+ = \eta_{m_I}$ or $N_{K_{\infty}/k_{\infty}^+(\zeta_4)}(\eta_{m_I})$ if $\alpha_I = 1$ or 2 respectively. Since $k_{\infty}^+(\zeta_4) \supset k_{\infty}^{\psi}$, we have $(N_{K_{\infty}/k_{\infty}^+(\zeta_4)}(\eta_{m_I}))_{K_{\infty},\psi} = (\eta_{m_I})_{K_{\infty},\psi}^2$. Therefore

$$(\eta_{m_I}^+)_{K_\infty,\psi} = (\eta_{m_I})_{K_\infty,\psi}^{\alpha_I}$$

By Proposition 4.4, we compute the following:

$$\begin{split} \Psi_{k_{\infty},\psi}((\epsilon^{-h_{I}^{+}/2}\eta_{m_{I}}^{+})_{k_{\infty},\psi})z_{F,\chi} &= \frac{1}{[K_{0}:k]}\omega^{i}(\Psi_{K_{\infty}}(\epsilon^{-h_{I}/2}\eta_{m_{I}}^{+})_{\chi}) \\ &= \frac{1}{[K_{0}:k]}\omega^{i}(\Psi_{K_{\infty}}(\eta_{m_{I}}^{+})_{\chi}) \\ &= \frac{1}{[K_{0}:k]}\Psi_{K_{\infty},\psi}((\eta_{m_{I}}^{+})_{K_{\infty},\psi})z_{F,\chi} \\ &= \frac{\alpha_{I}}{[K_{0}:k]}\Psi_{K_{\infty},\psi}((\eta_{m_{I}})_{K_{\infty},\psi})z_{F,\chi}, \end{split}$$

$$\begin{split} \Psi_{k_{\infty},\psi}(N_{k_{\infty}^{+}(\zeta_{4})/k_{\infty}^{+}}(\eta_{m_{I}}^{+})_{k_{\infty},\psi})z_{F,\chi} \\ &= \frac{1}{[K_{0}:k]}\omega^{i}(\Psi_{K_{\infty}}(N_{k_{\infty}^{+}(\zeta_{4})/k_{\infty}^{+}}(\eta_{m_{I}}^{+}))_{\chi}) \\ &= \frac{1}{[K_{0}:k]}\Psi_{K_{\infty},\psi}((N_{k_{\infty}^{+}(\zeta_{4})/k_{\infty}^{+}}(\eta_{m_{I}}^{+}))_{K_{\infty},\psi})z_{F,\chi} \\ &= \frac{1}{[K_{0}:k]}\Psi_{K_{\infty},\psi}((\eta_{m_{I}}^{+})_{K_{\infty},\psi}^{2})z_{F,\chi} \\ &= \frac{2\alpha_{I}}{[K_{0}:k]}\Psi_{K_{\infty},\psi}((\eta_{m_{I}})_{K_{\infty},\psi})z_{F,\chi}, \end{split}$$

and

$$\begin{split} \Psi_{k_{\infty},\psi}(((\eta_{m_{I}}^{+})^{\gamma-\kappa(\gamma)})_{k_{\infty},\psi})z_{F,\chi} &= \frac{1}{[K_{0}:k]}\omega^{i}(\Psi_{K_{\infty}}((\eta_{m_{I}}^{+})^{\gamma-\kappa(\gamma)})_{\chi}) \\ &= \frac{1}{[K_{0}:k]}(\gamma-\kappa(\gamma))\omega^{i}(\Psi_{K_{\infty}}(\eta_{m_{I}}^{+})_{\chi}) \\ &= \frac{1}{[K_{0}:k]}\dot{T}\Psi_{K_{\infty},\psi}((\eta_{m_{I}}^{+})_{K_{\infty},\psi})z_{F,\chi} \\ &= \frac{\alpha_{I}}{[K_{0}:k]}\dot{T}\Psi_{K_{\infty},\psi}((\eta_{m_{I}})_{K_{\infty},\psi})z_{F,\chi}. \end{split}$$

Therefore, by (6.1), we have

$$\begin{split} &\Psi_{k_{\infty},\psi}((\epsilon^{-h_{I}^{+}/2}\eta_{m_{I}}^{+})_{k_{\infty},\psi}) = \frac{v_{I}d_{I}\alpha_{I}}{[K_{0}:k]} \Biggl(\prod_{l \in I} (1 - \psi(l)(1 + T)^{t_{l}}) \Biggr) g_{\psi}(T), \\ &\Psi_{k_{\infty},\psi}(N_{k_{\infty}^{+}(\zeta_{4})/k_{\infty}^{+}}(\eta_{m_{I}}^{+})_{k_{\infty},\psi}) = \frac{2v_{I}d_{I}\alpha_{I}}{[K_{0}:k]} \Biggl(\prod_{l \in I} (1 - \psi(l)(1 + T)^{t_{l}}) \Biggr) g_{\psi}(T), \\ &\Psi_{k_{\infty},\psi}(((\eta_{m_{I}}^{+})^{\gamma-\kappa(\gamma)})_{k_{\infty},\psi}) = \frac{v_{I}d_{I}\alpha_{I}}{[K_{0}:k]} \Biggl(\prod_{l \in I} (1 - \psi(l)(1 + T)^{t_{l}}) \Biggr) \dot{T}g_{\psi}(T). \end{split}$$

Since k is imaginary, we have $[k:k^+] = [k^+(\zeta_4):k^+] = 2$, and hence $[K_0:k] = [K_0:k^+(\zeta_4)]$. Recall that $v_I = -[F:\mathbb{Q}(m_{\mathcal{L}}) \cap F] \prod_{l \in I} (-\chi(l)^{-1}) = -[K_0:\mathbb{Q}(4m_{\mathcal{L}}) \cap K_0] \prod_{l \in I} (-\chi(l)^{-1})$ and $d_I = [\mathbb{Q}(4m_{\mathcal{L}}) \cap K_0:\mathbb{Q}(4m_I) \cap K_0]$. Then we have

$$\frac{v_I d_I \alpha_I}{[K_0 : k]} = -\frac{[K_0 : \mathbb{Q}(4m_I) \cap k^+(\zeta_4)]}{[K_0 : k^+(\zeta_4)]} \left(\prod_{l \in I} -\chi(l) \right)$$
$$= -[k^+(\zeta_4) : \mathbb{Q}(4m_I) \cap k^+(\zeta_4)] \left(\prod_{l \in I} -\chi(l) \right).$$

We can show that

$$\mathfrak{A}_{k^+,\psi} = \left\langle \frac{\alpha_I d_I}{[K_0:k]} \left(\prod_{l \in I} (1 - \psi(l)(1+T)^{t_l}) \right) \middle| I \subset \mathcal{L} \right\rangle \supset \mathfrak{A}_{k,\psi}.$$

Using $\langle N_{k_{\infty}^+(\zeta_4)/k_{\infty}^+}(\eta_{m_I}^+)_{k_{\infty},\psi} \mid I \subset \mathcal{L} \rangle = \widetilde{\mathcal{C}'}_{k_{\infty}^+,\psi} \supset \widetilde{\mathcal{C}}_{k_{\infty}^+,\psi}^2$, we have

$$\Psi_{k_{\infty},\psi}(\widetilde{\mathcal{C}}'_{k_{\infty}^{+},\psi}) = 2\mathfrak{A}_{k^{+},\psi}g_{\psi}(T)$$

and hence

$$\mathfrak{A}_{k^+,\psi}g_{\psi}(T)\supset \Psi_{k_{\infty},\psi}(\widetilde{\mathcal{C}}_{k_{\infty},\psi})\supset (\mathfrak{A}_{k,\psi}+(2,\dot{T})\mathfrak{A}_{k^+,\psi})g_{\psi}(T).$$

If $2 \mid h_I^+$ for $I \subset \mathcal{L}$, then $\Psi_{k_{\infty},\psi}(\widetilde{\mathcal{C}}_{k_{\infty},\psi}) = \mathfrak{A}_{k^+,\psi}g_{\psi}(T)$. We note that if $\zeta_4 \in k$, then $\mathfrak{A}_{k^+,\psi} = \mathfrak{A}_{k,\psi}$. This completes the proof of Theorem 3.4. \square

Remark 6.1. By Lemma 5.5, if $[\mathbb{Q}(t) : \mathbb{Q}(t) \cap F]$ is even for $t \mid m, t \neq 1$ then $\widetilde{\mathcal{C}}_{k_{\infty}, \psi}$ is generated by

$$\{(\epsilon^{-h_I/2}\eta_{m_I})_{k_{\infty},\psi} \mid I \subset \mathcal{L}\}$$

where $h_I = [\mathbb{Q}(m_I) : \mathbb{Q}(m_I) \cap F]$. In this case, using the above calculation, we have

$$\Psi_{k_{\infty},\psi}(\widetilde{\mathcal{C}}_{k_{\infty},\psi}) = \mathfrak{A}(g_{\psi}(T)/2).$$

Then under the condition that $[\mathbb{Q}(t):\mathbb{Q}(t)\cap F]$ is even for $t\mid m,t\neq 1$, we have $\mathfrak{A}'=\mathfrak{A}$. In Remark 5.2, we mentioned that if 2 is unramified in k then this condition holds. Therefore, if 2 is unramified in k, it holds that $\mathfrak{A}'=\mathfrak{A}$ in Theorem 3.2.

7. μ -invariants and the Iwasawa main conjecture

Let \mathcal{M} be the maximal abelian pro 2-extension of k_{∞} unramified outside all primes over 2 and put

$$\mathfrak{X} = \operatorname{Gal}(\mathcal{M}/k_{\infty}).$$

As usual, \mathfrak{X} is a module over $\mathbb{Z}_2[G]\llbracket\Gamma\rrbracket$ so Λ -modules \mathfrak{X}^{ψ} and \mathfrak{X}_{ψ} are defined. We will consider the μ -invariants of \mathfrak{X}^{ψ} and \mathfrak{X}_{ψ} .

Assume that k is real. In this case, it is known that \mathfrak{X} is a finite generated torsion $\mathbb{Z}_2[\![\Gamma]\!]$ -module. Furthermore, in [7], it is shown that the μ -invariant of \mathfrak{X} is zero by using Ferrero's result [3]. Therefore we have $\mu(\mathfrak{X}^{\psi}) = 0$ and $\mu(\mathfrak{X}_{\psi}) = 0$.

Assume that k is imaginary. In this case, the $\mathbb{Z}_2[\![\Gamma]\!]$ -rank of \mathfrak{X} is equal to $[k:\mathbb{Q}]/2$. Let k^+ be the maximal real subfield of k and J the generator of $\operatorname{Gal}(k/k^+) \cong \operatorname{Gal}(k_{\infty}/k_{\infty}^+)$, i.e. J is the complex conjugation. We put

$$\mathfrak{X}^+ = \{x \in \mathfrak{X} \mid Jx = x\}, \quad \mathfrak{X}_+ = \mathfrak{X}/(J-1)\mathfrak{X}.$$

Since ψ is even, we regard ψ as a character of $Gal(k^+/\mathbb{Q})$ and we have

$$\mathfrak{X}^{\psi} \cong (\mathfrak{X}^+)^{\psi}, \quad \mathfrak{X}_{\psi} \cong (\mathfrak{X}_+)_{\psi}.$$

Let \mathcal{M}^+ be the maximal abelian pro 2-extension of k_∞^+ unramified outside all primes over 2. We can show that \mathfrak{X}^+ is pseudo-isomorphic to $\operatorname{Gal}(\mathcal{M}^+/k_\infty^+)$. Therefore the μ -invariant of \mathfrak{X}^ψ is zero. Let \mathcal{M}'/k_∞^+ be the maximal abelian subfield of \mathcal{M}/k_∞^+ , then \mathcal{M}' is the fixed field of $(J-1)\mathfrak{X}$, i.e. $\operatorname{Gal}(\mathcal{M}'/k_\infty) \cong \mathfrak{X}_+$. Let $\widetilde{\mathcal{M}}^+$ be the maximal abelian pro 2-extension of k_∞^+ unramified outside all primes over 2 and all infinite primes. Then $k_\infty^+ \subset k_\infty \subset \widetilde{\mathcal{M}}^+ \subset \mathcal{M}'$. Since all infinite primes are totally ramified in k_∞/k_∞^+ and the number of finite primes of k_∞^+ which ramified in \mathcal{M}' is finite, the degree $[\mathcal{M}':\widetilde{\mathcal{M}}^+]$ is finite. Therefore the kernel and the cokernel of the restriction map

$$\mathfrak{X}_+ \longrightarrow \operatorname{Gal}(\widetilde{\mathcal{M}}^+/k_{\infty}^+)$$

are finite. By [6, Proposition 8], the torsion submodule of $\operatorname{Gal}(\widetilde{\mathcal{M}}^+/k_{\infty}^+)$ is pseudo-isomorphic to $(\mathbb{Z}_2[\![\Gamma]\!]/(2))[\operatorname{Gal}(k^+/\mathbb{Q})]$. Therefore $\mu(\mathfrak{X}_{\psi})=1$.

Summarizing the above, we have

$$\mu(\mathfrak{X}^{\psi}) = 0$$

and

(7.2)
$$\mu(\mathfrak{X}_{\psi}) = \begin{cases} 0 & \text{if } k \text{ is real,} \\ 1 & \text{if } k \text{ is imaginary.} \end{cases}$$

By Theorem 3.1, 3.2 and 3.4, the μ -invariant of \mathfrak{X}^{ψ} and \mathfrak{X}_{ψ} coincide with that of $\mathcal{U}^{\psi}/\mathcal{C}^{\psi}$ and $(\mathcal{U}/\mathcal{C})_{\psi}$ respectively, that is, we obtain the following:

Theorem 7.1. For an abelian field k of the first kind and an even character ψ of $Gal(k/\mathbb{Q})$,

$$\mu(\mathfrak{X}^{\psi}) = \mu(\mathcal{U}^{\psi}/\mathcal{C}^{\psi}), \qquad \mu(\mathfrak{X}_{\psi}) = \mu((\mathcal{U}/\mathcal{C})_{\psi}).$$

Put

$$W = \mathfrak{X} \otimes_{\mathbb{Z}_2} \overline{\mathbb{Q}_2}$$

and define $W^{(\psi)}$ the eigenspace of W corresponding to the action of G via ψ and $\operatorname{char}_{\Lambda}(W^{(\psi)})$ the characteristic polynomial of T acting on this space. We see that

$$W^{(\psi)} \cong \mathfrak{X}^{\psi} \otimes_{\mathbb{Z}_2} \overline{\mathbb{Q}_2} \cong \mathfrak{X}_{\psi} \otimes_{\mathbb{Z}_2} \overline{\mathbb{Q}_2}.$$

The Iwasawa main conjecture proved by Wiles [14] is that

$$\operatorname{char}_{\Lambda}(W^{(\psi)}) = \frac{1}{2}g_{\psi}(T).$$

It is known that $\mu(\frac{1}{2}g_{\psi}(T)) = 0$ by Ferrero-Washington [3, 4]. By (7.1) and (7.2), the Iwasawa main conjecture is the following:

Theorem 7.2. For an abelian field k of the first kind and an even character ψ ,

$$\operatorname{char}_{\Lambda}(\mathfrak{X}^{\psi}) = g_{\psi}(T)/2$$

and

$$\operatorname{char}_{\Lambda}(\mathfrak{X}_{\psi}) = \begin{cases} g_{\psi}(T)/2 & \text{if } k \text{ is real,} \\ g_{\psi}(T) & \text{if } k \text{ is imaginary.} \end{cases}$$

By Theorems 3.1, 3.2 and 3.4, we can show the following:

Theorem 7.3. For an abelian field k of the first kind and an even character ψ of $Gal(k/\mathbb{Q})$,

$$\operatorname{char}_{\Lambda}(\mathfrak{X}^{\psi}) = \operatorname{char}_{\Lambda}(\mathcal{U}^{\psi}/\mathcal{C}^{\psi}), \quad \operatorname{char}_{\Lambda}(\mathfrak{X}_{\psi}) = \operatorname{char}_{\Lambda}((\mathcal{U}/\mathcal{C})_{\psi}).$$

References

- [1] R. COLEMAN, "Division values in local fields", Invent. Math. 53 (1979), p. 96-11.
- [2] ——, "Local units modulo circular units", Proc. Am. Math. Soc. 89 (1983), p. 1-7.
- [3] B. Ferrero, "Iwasawa invariants of abelian number fields", Math. Ann. 234 (1978), p. 9-24.
- [4] B. Ferrero & L. C. Washington, "The Iwasawa invariant μ_p vanishes for abelian number fields", Ann. Math. 109 (1979), p. 377-395.
- [5] R. GILLARD, "Unités cyclotomiques, unités semi-locales et Z_l-extensions II", Ann. Inst. Fourier 29 (1979), no. 1, p. 49-79.
- [6] R. GREENBERG, "On p-adic L-functions and cyclotomic fields. II", Nagoya Math. J. 67 (1977), p. 139-158.
- [7] ———, "On 2-adic L-functions and cyclotomic invariants", Math. Z. 159 (1978), p. 37-45.
- [8] C. Greither, "Class groups of abelian fields, and the main conjecture", Ann. Inst. Fourier 42 (1992), no. 3, p. 449-499.
- [9] K. IWASAWA, "On some modules in the theory of cyclotomic fields", J. Math. Soc. Japan 16 (1964), p. 42-82.
- [10] W. SINNOTT, "On the Stickelberger ideal and the circular units of an abelian field", Invent. Math. 62 (1980), p. 181-234.
- [11] D. SOLOMON, "On the class groups of imaginary abelian fields", Ann. Inst. Fourier 40 (1990), no. 3, p. 467-492.
- [12] T. TSUJI, "Semi-local units modulo cyclotomic units", J. Number Theory 78 (1999), no. 1, p. 1-26.
- [13] L. C. WASHINGTON, Introduction to Cyclotomic Fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer, 1997, xiv+487 pages.
- [14] A. WILES, "The Iwasawa conjecture for totally real fields", Ann. Math. 131 (1990), no. 3, p. 493-540.

Takae Tsuji

STEM Education Center

Tokai University

4-1-1 Kitakaname, Hiratsuka, Kanagawa, Japan

E-mail: tsuji.takae@tokai.ac.jp