Dans cet article, motivés par la cryptographie à base d’isogénies, nous étudions les courbes elliptiques supersingulières munies d’une structure de niveau. De la même manière que la correspondance classique de Deuring associe à une courbe elliptique supersingulière un ordre maximal dans une algèbre de quaternions, on associe à une courbe elliptique supersingulière avec une structure de niveau un ordre d’Eichler. Nous étudions cette correspondance et les ordres d’Eichler eux-mêmes. Nous examinons également les graphes d’isogénies des courbes elliptiques supersingulières avec structure de niveau et leur lien avec les graphes des ordres d’Eichler.
In this paper, we add the information of level structure to supersingular elliptic curves and study these objects with the motivation of isogeny-based cryptography. Supersingular elliptic curves with level structure map to Eichler orders in a quaternion algebra, just as supersingular elliptic curves map to maximal orders in a quaternion algebra via the classical Deuring correspondence. We study this map and the Eichler orders themselves. We also look at isogeny graphs of supersingular elliptic curves with level structure, and how they relate to graphs of Eichler orders.
Révisé le :
Accepté le :
Publié le :
Mots clés : supersingular, level structure, elliptic curves, isogeny graphs
@article{JTNB_2024__36_2_405_0, author = {Sarah Arpin}, title = {Adding {Level} {Structure} to {Supersingular} {Elliptic} {Curve} {Isogeny} {Graphs}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {405--443}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1283}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1283/} }
TY - JOUR AU - Sarah Arpin TI - Adding Level Structure to Supersingular Elliptic Curve Isogeny Graphs JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 405 EP - 443 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1283/ DO - 10.5802/jtnb.1283 LA - en ID - JTNB_2024__36_2_405_0 ER -
%0 Journal Article %A Sarah Arpin %T Adding Level Structure to Supersingular Elliptic Curve Isogeny Graphs %J Journal de théorie des nombres de Bordeaux %D 2024 %P 405-443 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1283/ %R 10.5802/jtnb.1283 %G en %F JTNB_2024__36_2_405_0
Sarah Arpin. Adding Level Structure to Supersingular Elliptic Curve Isogeny Graphs. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 405-443. doi : 10.5802/jtnb.1283. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1283/
[1] -adic dynamics of Hecke operators on modular curves, J. Théor. Nombres Bordeaux, Volume 33 (2021) no. 2, pp. 387-431 | DOI | Numdam | Zbl
[2] Adventures in Supersingularland, Exp. Math., Volume 32 (2021) no. 2, pp. 1-28 | DOI
[3] Orientations and cycles in supersingular isogeny graphs (2022) | arXiv
[4] Orienteering with one endomorphism, Matematica, Volume 2 (2023) no. 3, pp. 523-582 | DOI | Zbl
[5] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 Computational algebra and number theory (London, 1993) | DOI | MR | Zbl
[6] An efficient key recovery attack on SIDH, Advances in Cryptology—EUROCRYPT 2023. Part V (Lecture Notes in Computer Science), Volume 14008, Springer, 2023, pp. 423-447 | DOI | MR | Zbl
[7] CSIDH: an efficient post-quantum commutative group action, Advances in Cryptology—ASIACRYPT 2018. Part III (Lecture Notes in Computer Science), Volume 11274, Springer, 2018, pp. 395-427 | DOI | MR | Zbl
[8] Cryptographic hash functions from expander graphs, J. Cryptology, Volume 22 (2009) no. 1, pp. 93-113 | DOI | MR | Zbl
[9] Higher-degree supersingular group actions, Math. Cryptol., Volume 1 (2022) no. 2, pp. 85-101
[10] Spectral Theory of Isogeny Graphs (2023) | arXiv
[11] Orienting supersingular isogeny graphs, J. Math. Cryptol., Volume 14 (2020) no. 1, pp. 414-437 | DOI | Zbl
[12] Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, J. Math. Cryptol., Volume 8 (2014) no. 3, pp. 209-247 | DOI | MR | Zbl
[13] Computing isogenies between supersingular elliptic curves over , Des. Codes Cryptography, Volume 78 (2016) no. 2, pp. 425-440 | DOI | MR | Zbl
[14] Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Semin. Hansische Univ., Volume 14 (1941), pp. 197-272 | DOI | Zbl
[15] Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math., Volume 195 (1955), pp. 127-151 | DOI | MR | Zbl
[16] The basis problem for modular forms and the traces of the Hecke operators, Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 320, Springer (1973), pp. 75-151 | MR | Zbl
[17] Computing endomorphism rings of supersingular elliptic curves and connections to pathfinding in isogeny graphs, ANTS XIV. Proceedings of the fourteenth algorithmic number theory symposium (The Open Book Series), Volume 4, Mathematical Sciences Publishers, 2020, pp. 215-232 | Zbl
[18] SQISign: compact post-quantum signatures from quaternions and isogenies, Advances in Cryptology—ASIACRYPT 2020. Part I (Lecture Notes in Computer Science), Volume 12491, Springer, 2020, pp. 64-93 | MR | Zbl
[19] Endomorphism rings of elliptic curves over finite fields, Ph. D. Thesis, University of California, Berkely (1996)
[20] On the quaternion -isogeny path problem, Cryptology ePrint Archive, Report 2014/505, 2014 (https://eprint.iacr.org/2014/505)
[21] Supersingular curves with small noninteger endomorphisms, ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium (The Open Book Series), Volume 4, Mathematical Sciences Publishers (2020), pp. 7-22 | DOI | MR | Zbl
[22] An attack on SIDH with arbitrary starting curve, Cryptology ePrint Archive, Paper 2022/1026, 2022 (https://eprint.iacr.org/2022/1026)
[23] A direct key recovery attack on SIDH, Advances in Cryptology—EUROCRYPT 2023. Part V (Lecture Notes in Computer Science), Volume 14008, Springer, 2023, pp. 448-471 | DOI | MR | Zbl
[24] On oriented supersingular elliptic curves, Finite Fields Appl., Volume 69 (2021), 101777, 19 pages | Zbl
[25] The supersingular Endomorphism Ring and One Endomorphism problems are equivalent, Cryptology ePrint Archive, Paper 2023/1399, 2023 (https://eprint.iacr.org/2023/1399)
[26] Type Numbers of Eichler Orders, J. Reine Angew. Math., Volume 264 (1973), pp. 76-102 | Zbl
[27] Bimodules and Abelian Surfaces, Algebraic Number Theory — in honor of K. Iwasawa (Advanced Studies in Pure Mathematics), Volume 17, Academic Press Inc.; Kinokuniya Company Ltd., 1989, pp. 359-407 | DOI | Zbl
[28] Breaking SIDH in polynomial time, Cryptology ePrint Archive, Paper 2022/1038, 2022 (https://eprint.iacr.org/2022/1038)
[29] Supersingular isogeny graphs with level N structure and path problems on ordinary isogeny graphs, 2019 (Master’s thesis, McGill University)
[30] SageMath, the Sage Mathematics Software System (Version 8.7) (2019) (https://www.sagemath.org)
[31] The Arithmetic of Elliptic Curves, 2nd Edition, Springer, 2009 | DOI
[32] Quaternion algebras, Graduate Texts in Mathematics, 288, Springer, 2021, xxiii+885 pages | DOI | MR
[33] Orientations and the Supersingular Endomorphism Ring Problem, Advances in Cryptology—EUROCRYPT 2022 (Orr Dunkelman; Stefan Dziembowski, eds.), Springer (2022), pp. 345-371 | DOI | Zbl
Cité par Sources :