In recent work, Griffin, Ono, and Tsai constructs an
where
Dans un article récent, Griffin, Ono et Tsai construisent une série
où
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1282
Mots-clés : Tamagawa numbers, elliptic curves, number fields
Yunseo Choi 1 ; Sean Li 2 ; Apoorva Panidapu 3 ; Casia Siegel 4

@article{JTNB_2024__36_2_361_0, author = {Yunseo Choi and Sean Li and Apoorva Panidapu and Casia Siegel}, title = {Tamagawa {Products} for {Elliptic} {Curves} {Over} {Number} {Fields}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {361--404}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {36}, number = {2}, year = {2024}, doi = {10.5802/jtnb.1282}, mrnumber = {4830936}, zbl = {07948971}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1282/} }
TY - JOUR AU - Yunseo Choi AU - Sean Li AU - Apoorva Panidapu AU - Casia Siegel TI - Tamagawa Products for Elliptic Curves Over Number Fields JO - Journal de théorie des nombres de Bordeaux PY - 2024 SP - 361 EP - 404 VL - 36 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1282/ DO - 10.5802/jtnb.1282 LA - en ID - JTNB_2024__36_2_361_0 ER -
%0 Journal Article %A Yunseo Choi %A Sean Li %A Apoorva Panidapu %A Casia Siegel %T Tamagawa Products for Elliptic Curves Over Number Fields %J Journal de théorie des nombres de Bordeaux %D 2024 %P 361-404 %V 36 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1282/ %R 10.5802/jtnb.1282 %G en %F JTNB_2024__36_2_361_0
Yunseo Choi; Sean Li; Apoorva Panidapu; Casia Siegel. Tamagawa Products for Elliptic Curves Over Number Fields. Journal de théorie des nombres de Bordeaux, Tome 36 (2024) no. 2, pp. 361-404. doi : 10.5802/jtnb.1282. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1282/
[1] Euler and the Zeta Function, Am. Math. Mon., Volume 81 (1974), pp. 1067-1086 | DOI | MR | Zbl
[2] Databases of elliptic curves ordered by height and distributions of Selmer groups and ranks, LMS J. Comput. Math., Volume 19A (2016), pp. 351-370 | DOI | MR | Zbl
[3] Tamagawa Products for Elliptic Curves Over Number Fields (2021) (https://arxiv.org/abs/2108.13625v1)
[4] Local and global densities for Weierstrass models of elliptic curves, Math. Res. Lett., Volume 30 (2020) no. 2, pp. 413-461 | DOI | MR | Zbl
[5] Tamagawa products of elliptic curves over
[6] Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016, xi+142 pages | MR
[7] Personal communication, 2021
[8] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 51, Springer, 1994 | DOI | MR
[9] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, 2009, xx+513 pages | DOI | MR
[10] Introduction to cyclotomic fields, Graduate Studies in Mathematics, 83, Springer, 1996, xiv+487 pages | MR | Zbl
Cité par Sources :