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Résumé. Dans un article récent, Griffin, Ono et Tsai construisent une série L
pour prouver que la proportion des courbes elliptiques de Weierstrass courtes
sur Q dont le produit de Tamagawa est trivial est de 0, 5054 . . . et que la valeur
moyenne du produit de Tamagawa est de 1, 8183 . . . . Suite à leur travail, nous
généralisons leur série L au cas où Q est remplacé par un corps de nombres
quelconque K en posant

LTam(K, s) :=
∞∑

m=1

PTam(K,m)
ms

,

où PTam(K,m) est la proportion des courbes elliptiques de Weierstrass courtes
sur K dont le produit de Tamagawa est égal à m. Nous construisons ensuite
des chaînes de Markov pour calculer les valeurs exactes de PTam(K,m) pour
tous les corps de nombres K et tous les entiers positifs m. Comme corol-
laire, nous calculons également le produit de Tamagawa moyen LTam(K,−1).
Nous utilisons ensuite ces résultats pour borner uniformément PTam(K, 1) et
LTam(K,−1) en fonction du degré de K. Enfin, nous montrons qu’il existe des
suites de corps K pour lesquelles PTam(K, 1) et LTam(K,−1) tendent respec-
tivement vers 0 et l’infini, ainsi que des suites de K pour lesquelles PTam(K, 1)
et LTam(K,−1) tendent vers 1.

Abstract. In recent work, Griffin, Ono, and Tsai constructs an L−series to
prove that the proportion of short Weierstrass elliptic curves over Q with triv-
ial Tamagawa product is 0.5054 . . . and that the average Tamagawa product
is 1.8183 . . . . Following their work, we generalize their L-series over arbitrary
number fields K to be

LTam(K, s) :=
∞∑

m=1

PTam(K,m)
ms

,

where PTam(K,m) is the proportion of short Weierstrass elliptic curves over K
with Tamagawa product m. We then construct Markov chains to compute the
exact values of PTam(K,m) for all number fields K and positive integers m.
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As a corollary, we also compute the average Tamagawa product LTam(K,−1).
We then use these results to uniformly bound PTam(K, 1) and LTam(K,−1)
in terms of the degree of K. Finally, we show that there exist sequences of K
for which PTam(K, 1) tends to 0 and LTam(K,−1) to ∞, as well as sequences
of K for which PTam(K, 1) and LTam(K,−1) tend to 1.

1. Introduction

Although there are no elliptic curves E/Q with everywhere good reduc-
tion, Tamagawa trivial curves satisfy [E(Qp) : E0(Qp)] = 1 for all primes
p, where E0(Qp) is the subgroup consisting of the nonsingular points of
E(Qp) after reduction modulo p. For example, the curve

E/Q : y2 = x3 + 3x+ 1,

which has discriminant −24 · 33 · 5, satisfies [E(Q2) : E0(Q2)] = [E(Q3) :
E0(Q3)] = [E(Q5) : E0(Q5)] = 1. In recent work, Griffin, Ono, and Tsai [5,
Corollary 1.2] prove that when the elliptic curves in short Weierstrass form
are ordered by height, the proportion of elliptic curves that are Tamagawa
trivial is 0.5054 . . . .

For every elliptic curve over Q, we associate the Tamagawa product

Tam(E/Q) :=
∏

p prime
cp,

where cp := [E(Qp) : E0(Qp)] is the Tamagawa number at p. Then E/Q is
Tamagawa trivial if and only if Tam(E/Q) = 1. It is known that Tam(E/Q)
can be arbitrarily large (see, for instance, [9, Table C.15.1]), and so it is
natural to ask whether there is an average Tamagawa product for E/Q.
The numerics by Balakrishnan et al. [2, Figure A.14] suggest that the
average Tamagawa product over Q exists and is in the neighborhood of
1.82. This speculation was confirmed by Griffin et al. [5, Theorem 1.3],
who constructed a new L-function and proved that the exact average is
LTam(−1) = 1.8183 . . . .

It is then natural to ask about the values of the same arithmetic statistics
over an arbitrary number field K. To this end, we define the Tamagawa
product Tam(E/K) for an elliptic curve E/K. We let p be a prime ideal
of OK , the ring of integers of K, that lies above a rational prime p. Recall
that there is a unique extension v := vp to K corresponding to p. We let
Kv be the completion of K with respect to v. Then the Tamagawa product
for elliptic curves E/K is

Tam(E/K) :=
∏
p

cp,

where cp := [E(Kv) : E0(Kv)] is the Tamagawa number at p.
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Generalizing the work of Griffin et al. [5], we compute the arithmetic
statistics of Tamagawa products over arbitrary number fields K. Specifi-
cally, we compute the proportion of curves with fixed Tam(E/K) over short
Weierstrass curves

E = E(a4, a6) : y2 = x3 + a4x+ a6,

where a4, a6 ∈ OKv . We require a consistent way to count sets of elliptic
curves to compute the proportion of curves with fixed Tam(E/K). To do
so, we order E/K by their naive height. Recall [4] that the naive height of
E/K is

ht(E/K) :=
∏

p∈MK

max
{

4|a4|3p, 27|a6|2p, 1
}
,

where MK contains all Archimedean and non-Archimedean places on K.
To count the number of E/K with height ≤ X, we introduce:

N (K,X) := #{E := E(a4, a6) : ht(E/K) ≤ X}.

Similarly, to count the number of E/K with Tamagawa product m and
height ≤ X, we define

Nm(K,X) := #{E := E(a4, a6) : ht(E/K) ≤ X with Tam(E/K) = m}.

We now formally define the proportion of elliptic curves E(a4, a6) with
Tamagawa number m to be

PTam(K,m) := lim
X→+∞

Nm(K,X)
N (K,X) .

We compute the global statistic PTam(K,m) by computing the local sta-
tistics of Tamagawa numbers at each p. Namely, we let δK,p(c) be the local
proportion of elliptic curves with Tamagawa number c at p when the ellip-
tic curves are ordered by height. The exact values of δK,p(c) are given in
Propositions 3.3, 4.5 and 5.5. Using δK,p(c), we define an analogue of the
L-function as presented in [5]:

LTam(K, s) =
∏
p

(
δK,p(1)

1s
+ δK,p(2)

2s
+ δK,p(3)

3s
+ . . .

)
.

Remark 1.1. All of the counts in this paper assume that the elliptic curves
are ordered by height. But the congruence conditions are over bounded
powers of π which are pairwise relatively prime for different prime ideals,
so we can compute the L-series as the product above.

Our first result proves that PTam(K,m) are the Dirichlet coefficients of
LTam(K,m).
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Theorem 1.2. If K is a number field, then PTam(K,m) are the Dirichlet
coefficients of

LTam(K, s) =
∞∑

m=1

PTam(K,m)
ms

.

Remark 1.3. Theorem 1.2 gives PTam(K,m) for all number fields K and
every positive integer m. In particular, the theorem makes no assumption
on the class number hK , the structure of the units in O×

K , as well as the
possible splitting types of primes in K.

Corollary 1.4. If K is a number field, then the following are true.
(1) We have

PTam(K, 1) =
∏
p

δK,p(1).

(2) The average Tamagawa product LTam(K,−1) is well-defined by ab-
solute convergence.

In the following example, we illustrate the results of Theorem 1.2 by
computing PTam(K, 1) and LTam(K,−1) for all imaginary quadratic fields
Q(

√
−D) with class number 1. For the values of PTam(Q(

√
−D),m) with

m ≥ 2, refer to Section 7. For further examples, also refer to Section 7,
where we compute PTam(K,m) and LTam(K,−1) for real quadratic fields
Q(

√
D) with squarefree D < 104 and a number field with Galois group S4.

Example 1.5. Tables 1.1 and 1.2 display the convergence to
PTam(Q(

√
−D), 1) and LTam(Q(

√
−D),−1) for class number 1 quadratic

number fields.

Table 1.1. Convergence to PTam(Q(
√

−D), 1).

N1(Q(
√

−D), X)/N (Q(
√

−D), X)
X

√
−1

√
−2

√
−3

√
−7

√
−11

√
−19

√
−43

√
−67

√
−163

104 0.542 0.488 0.663 0.357 0.609 0.620 0.657 0.560 0.450
105 0.539 0.460 0.665 0.359 0.599 0.678 0.716 0.711 0.636
106 0.528 0.468 0.660 0.343 0.586 0.667 0.726 0.744 0.728

...
...

...
...

...
...

...
...

...
...

∞ 0.529 0.468 0.661 0.349 0.581 0.665 0.733 0.750 0.763

In Table 1.1, PTam(Q(
√

−D), 1) is noticeably smaller whenD = 7. On the
other hand, in Table 1.2, LTam(Q(

√
−D),−1) is noticeably larger when D =

7. The variance in PTam(Q(
√

−D), 1) and LTam(Q(
√

−D),−1) is due to the
splitting type of small primes, since δK,p(1) is smaller and

∑∞
m=1 δK,p(m)m

is larger when p has small norm (see Propositions 3.3, 4.5 and 5.5). Indeed, 2
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Table 1.2. Convergence to LTam(Q(
√

−D),−1).∑
ht(Q(

√
−D),E)≤X

Tam(Q(
√

−D)), E)/N(Q(
√

−D); X)
X

√
−1

√
−2

√
−3

√
−7

√
−11

√
−19

√
−43

√
−67

√
−163

104 1.751 2.054 1.589 2.570 1.850 1.718 1.535 1.698 2.017
105 1.720 1.979 1.538 2.417 1.763 1.537 1.393 1.403 1.612
106 1.708 1.946 1.508 2.418 1.723 1.519 1.361 1.333 1.372

...
...

...
...

...
...

...
...

...
...

∞ 1.678 1.904 1.487 2.376 1.708 1.480 1.331 1.300 1.277

splits only in Q(
√

−7). For general number fields K, the possible splitting
types of primes are determined by d := degK. It is then natural to ask
whether PTam(K, 1) and LTam(Q(

√
−D),−1) can be uniformly bounded as

a function of d. We answer this question in the following corollary, where
ζ(s) is the Riemann zeta-function and Bn is the nth Bernoulli number.

Corollary 1.6. If K has degree d, then

(0.5054)d < PTam(Q, 1)d ≤ PTam(K, 1) < (−1)d+1 2(2d)!
B2d(2π)2d

= 1
ζ(2d)

and
ζ(2d)
ζ(4d) = (−1)d B2d(4d)!

B4d(2d)!(2π)2d
< LTam(K,−1) ≤ LTam(Q,−1)d < (1.8184)d.

As d → ∞ in Corollary 1.6, the given lower and upper bounds for
PTam(K, 1) tend to 0 and 1. We can then ask whether PTam(K, 1) can be
arbitrarily close to 0 or arbitrarily close to 1 as d → ∞. More formally, let

t−(d) := inf
deg K=d

{PTam(K, 1)} and t+(d) := sup
deg K=d

{PTam(K, 1)}

to be the infimum and supremum of the Tamagawa trivial proportion over
number fields K with degree d.

Similarly, from Corollary 1.6, as d → ∞, the given lower and upper
bounds for LTam(K,−1) tend to 1 and ∞, respectively. Therefore, we sim-
ilarly define

µ−(d) := inf
deg K=d

{LTam(K,−1)} and µ+(d) := sup
deg K=d

{LTam(K,−1)}

to be the infimum and supremum of the average Tamagawa product over
number fields K with degree d.

Ono [7] conjecture that as d → ∞, the limit infimum of t−(d) is 0, the
limit supremum of t+(d) is 1, the limit infimum of µ−(d) is 1, and the
limit supremum of µ+(d) is ∞. We confirm the conjecture in the following
theorem.
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Theorem 1.7. We have

lim inf
d→+∞

t−(d) = 0 and lim sup
d→+∞

t+(d) = 1,

and
lim inf
d→+∞

µ−(d) = 1 and lim sup
d→+∞

µ+(d) = ∞.

Remark 1.8. The proof of Theorem 1.7 is constructive. Namely, we pro-
vide a family of multiquadratic fields K for which PTam(K, 1) → 0 and
LTam(K,−1) → ∞, and a family of cyclotomic fields K for which
PTam(K, 1) → 1 and LTam(K,−1) → 1. In Section 7, we compute the values
of PTam(K, 1) and LTam(K,−1) for example fields within these families.

The remainder of the paper is structured as follows: In Section 2, we
introduce Tate’s algorithm, a recursive procedure that computes the local
invariants for elliptic curves, including the Tamagawa number of an elliptic
curve E/K at p. Running Tate’s algorithm at p ∤ (6) is relatively straight-
forward, but additional challenges arise at p | (3) and p | (2) since E/K
is cubic in x and quadratic in y. Therefore, we begin by running Tate’s
algorithm at p ∤ (6) in Section 3, and then run Tate’s algorithm for p | (3)
and p | (2) in Sections 4 and 5, respectively. In Section 6, we prove our
main theorems. In Section 7, we compute PTam(K,m) and LTam(K,−1)
for example number fields to illustrate Theorem 1.2. For a classification of
non-minimal short Weierstrass models at primes above 2 and 3, refer to
Appendix A. For the exact proportions of Tamagawa numbers for primes
above 2 and 3 with large ramification indices, refer to Appendix B of an
extended version of the paper [3].

2. Tate’s Algorithm Over OK

Tate’s algorithm (see [8, Section 4.9]) is an iterative process that returns
the Kodaira type and the Tamagawa number of an elliptic curve E/K at
p, which allows us to compute δK,p(c). A single iteration of the algorithm
consists of 11 steps. Select a uniformizer π and denote the corresponding
valuation on Kv by vπ. If the model for E has minimal vπ(∆) over the
π-integral models for E, then the algorithm terminates during the first ten
steps, which correspond to each of the ten Kodaira types. We refer to such
elliptic curves as p-minimal models. However, if E is not p-minimal, then, at
Step 11 of Tate’s algorithm, we scale (x, y) 7→ (π2x, π3y). The substitutions
from Steps 1 through 10 of Tate’s algorithm guarantee that E is π-integral
after Step 11. A non-minimal model E then loops back into Step 1 of Tate’s
algorithm. Tate’s algorithm eventually terminates as the scaling at Step 11
decreases vπ(∆) by 12. At the step in which the algorithm terminates,
the Tamagawa number of E/K at p is determined. After determining the
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proportion of elliptic curves with a fixed Tamagawa number that terminate
at each step, we sum these proportions over all steps to compute δK,p(c).

Griffin et al. [5] classify elliptic curves by vπ(a4), vπ(a6), and vπ(∆). They
then apply distinct linear shifts to the curves in each case and parametrize
a4 and a6 in terms of these shifts prior to running Tate’s algorithm. Finally,
they run the algorithm on each case separately. In our paper, we do not
classify elliptic curves into cases before running Tate’s algorithm. Instead,
for each p, we run Tate’s algorithm simultaneously for all p-minimal elliptic
curves in the short Weierstrass form. These p-minimal elliptic curves are
guaranteed to terminate during the first iteration of the algorithm. But
when E is non-minimal, E passes through Step 11, then loops back into
Step 1. For prime ideals p ∤ (6), a non-minimal E(a4, a6) is still in the short
Weierstrass form after Step 11. But when p | (3), the coefficient a2 may be
non-zero after Step 11, since E is cubic in x. Therefore, when p | (3), we
must study Tate’s algorithm over

E(a2, a4, a6) : y2 = x3 + a2x
2 + a4x+ a6

to understand how non-minimal curves loop back into Tate’s algorithm.
When p | (2), the coefficients a1 and a3 may be nonzero after Step 11, since
E is quadratic in y. Likewise, we must study Tate’s algorithm over

E(a1, a3, a4, a6) : y2 + a1xy + a3y = x3 + a4x+ a6.

Therefore, to study how Tate’s algorithm acts on non-minimal E(a4, a6),
we should study how Tate’s algorithm acts on E(a1, a2, a3, a4, a6).

We compute δK,p(c) by first studying the p-minimal curves and then the
non-minimal curves. Let δ′

K,p(T, c;α1, α2, α3) be the proportion of models
E(a1, a2, a3, a4, a6) that are p-minimal with vπ(ai) = αi for i = 1, 2, 3,
Kodaira type T , and Tamagawa number c. In Lemmas 3.1, 4.2 and 5.2, we
compute δ′

K,p(T, c; ∞,∞,∞) for p ∤ (6), δ′
K,p(T, c; ∞, α2,∞) for p | (3), and

δ′
K,p(T, c;α1,∞, α3) for p | (2), respectively. These values of δ′ accounts for

the potentially nonzero coefficients after Step 11.
Then we study the form of non-minimal curves after Step 11. When

p ∤ (6), the elliptic curves that loop back are still in the short Weierstrass
form, which we visualize in a simple Markov chain in Figure 3.1. When
p | (3) (resp. p | (2)) however, a non-minimal elliptic curve after Step 11
may not be short anymore, and so the underlying Markov chain structure
is more complex as in Figure 4.1 (resp. Figure 5.1). Families, which are
sets of elliptic curves that act as nodes in these Markov chain, are defined
in Definition 4.1 and Definition 5.1. The edges are determined for p | (3)
(resp. p | (2)) in Lemma 4.4 (resp. Lemma 5.4).

Our analysis of Tate’s algorithm boils down to studying congruences in
terms of the coefficients a1, a2, a3, a4, a6 modulo bounded powers of π. We
often note that, when certain quantities like a2, a4, or a6 (mod π) are fixed,
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there are a fixed number of choices for a4 and a6 modulo bounded powers
of π. As such, an important quantity throughout our calculation is the ideal
norm q := NK/Q(p), or the number of distinct residues in OKv modulo π. To
further illustrate the connection between Tate’s algorithm and these mod-
ular congruences, we generalize the results of Griffin et al. [5, Lemmas 2.2,
2.3] by classifying and counting the non-minimal short Weierstrass models
at primes p | (6) in Appendix A.

3. Classification for p ∤ (6)

In this section, we calculate δK,p(c) for p above p ≥ 5. We realize upon
running Tate’s algorithm for non-minimal short Weierstrass models (see
Lemma 3.1) that the coefficients a1, a2, and a3 remain invariant at 0. (This
confirms the converse of non-minimality for char k ̸= 2, 3 in [9].) Hence, we
define φK,p(T, cp) := δ′

K,p(T, cp; ∞,∞,∞). We first calculate the values of
φK,p(T, cp) and the structure of the associated Markov chain.

Lemma 3.1. Suppose that p ∤ (6) is a prime ideal in K. Consider the
family of Weierstrass models E(a4, a6) : y2 = x3 + a4x+ a6. Then the local
densities φK,p(T, c) are provided in Table 3.1.

Table 3.1. The values of φK,p(T, c) for p ∤ (6). (Note:
ε(n) := ((−1)n + 3)/2.)

Type cp φK,p(T, cp) Type cp φK,p(T, cp) Type cp φK,p(T, cp)

I0 1 q−1
q I∗

0 1 1
3

(q2−1)
q7 III 2 (q−1)

q4

I1 1 (q−1)2

q3 I∗
0 2 1

2
(q−1)

q6 III ∗ 2 (q−1)
q9

I2 2 (q−1)2

q4 I∗
0 4 1

6
(q−1)(q−2)

q7 IV 1 1
2

(q−1)
q5

In≥3 ε(n) 1
2

(q−1)2

qn+2 I∗
n≥1 2 1

2
(q−1)2

q7+n IV 3 1
2

(q−1)
q5

In≥3 n 1
2

(q−1)2

qn+2 I∗
n≥1 4 1

2
(q−1)2

q7+n IV ∗ 1 1
2

(q−1)
q8

II 1 (q−1)
q3 II ∗ 1 (q−1)

q10 IV ∗ 3 1
2

(q−1)
q8

Proof. Recall that q = NK/Q(p) is the ideal norm of p. We run through
Tate’s algorithm over E(a4, a6) to compute φK,p(T, c).

Step 1. E terminates if π ∤ ∆ = −16(4a3
4 + 27a2

6) or when (a4, a6) ̸≡
(−3w2, 2w3) (mod π). Therefore, we have q2 − q choices of (a4, a6) modulo
π. As a result, φK,p(I0, 1) = q−1

q .
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Step 2. Suppose that E is singular at (u, 0) after reduction. We shift x 7→
x+ u; the new model is

y2 = (x+ u)3 + a4(x+ u) + a6.

We stop if u ̸≡ 0 (mod π). We check that exactly half of the choices
of u result in T 2 − 3u splitting. By Hensel’s lemma, these curves have
a (q−1)2

qn+2 chance of satisfying n = vπ(∆). Hence, we have δK,p(In, n) =
δK,p(In, ε(n)) = (q−1)2

2qn+2 . Henceforth, assume u = 0, which implies π | a4, a6.

Step 3. We stop if π2 ∤ a6. There is one choice for a4 (mod π) and q − 1
choices for a6 (mod π2), whence δK,p(II , 1) = q−1

q3 . Henceforth, assume
π2 | a6.

Step 4. We stop when π2 ∤ a4. Thus, we have q− 1 choices for a4 (mod π2)
and one choice for a6 (mod π2), so δK,p(III , 1) = q−1

q4 . Henceforth, assume
π2 | a4.

Step 5. We stop at Step 5 if π3 ∤ a6. Thus, we have one choice for a4
(mod π2) and q − 1 choices for a6 (mod π3). The Tamagawa number is 3
if Y 2 − (π−2a6)2 splits modulo π, and 1 otherwise. Hence, δK,p(IV, 1) =
δK,p(IV, 3) = q−1

2q5 . Henceforth, assume π3 | a6.

Step 6. In Steps 6 to 8, we study the polynomial P (T ) = T 3 + a4
π2T + a6

π3 =:
T 3 + A4T + A6. Note that A4 and A6 are equally distributed among the
residues in k. The cubic P (T ) has discriminant 4A3

4+27A2
6. We stop if P (T )

has three distinct roots, i.e., if 4A3
4 + 27A2

6 ̸≡ 0 (mod π). This accounts for
q2 − q residue pairs as (A4, A6) ̸≡ (−3w2, 2w3) modulo π.

We now classify P (T ) based on the number of its roots in k. First, if
cp = 1, then P (T ) must be irreducible. The linear map Tr : Fq3 → Fq is
surjective, so there are q3/q = q2 traceless elements of Fq3 , one of which is
in Fq. Thus, there are q2−1

3 such cubics. Next, if cp = 2, then P (T ) factors
into a linear term and an irreducible quadratic. There are q2−q

2 irreducible
quadratics and upon fixing this quadratic, the linear term is fixed as P (T )
is traceless. Finally, if cp = 4, then P (T ) has three roots in k. There are(q

3
)

ways to select three roots and 1/q of them have trace 0, so we have
(q−1)(q−2)

6 such P (T ). In all, we have δK,p(I∗
0 , 1) = q2−1

3q7 , δK,p(I∗
0 , 2) = q−1

2q6 ,
and δK,p(I∗

0 , 4) = (q−1)(q−2)
6q7 .

Step 7. We stop when 4A3
4 + 27A2

6 ≡ 0 (mod π) but (A4, A6) ̸≡ (0, 0)
(mod π). Let r :=

√
A4/3 that serves as the double root of P (T ). We

accordingly shift x 7→ x+ πr:
(3.1) y2 = (x+ πr)3 + a4(x+ πr) + a6 = x3 + a′

2x
2 + a′

6.
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Terminate
1 − 1

q10

1
q10

Figure 3.1. The Markov chain structure for short Weier-
strass curves when p ∤ (6).

Ultimately, the Kodaira type depends on n := vπ(a′
6)−3, which occurs with

proportion (q−1)2

qn+7 . The Tamagawa number depends on whether a′
6

π
vπ(a′

6) is
a quadratic residue, which happens half of the time. Hence, δK,p(I∗

n, 2) =
δK,p(I∗

n, 4) = (q−1)
2qn+7 .

Step 8. P (T ) is traceless. Therefore, its triple root must be 0, so henceforth
π3 | a4 and π4 | a6. We stop if Y 2−π−4a6 has distinct roots, i.e., if π−4a6 ̸≡ 0
(mod π). We have one choice for a4 (mod π3) and q − 1 choices for a6
(mod π5), half of which cause Y 2 − π−4a6 to split. Thus, φK,p(IV ∗, 1) =
φK,p(IV ∗, 3) = q−1

2q8 .

Step 9. We terminate if π4 ∤ a4. There are q − 1 choices for a4 (mod π4)
and one choice for a6 (mod π5), whence φK,p(III ∗, 2) = q−1

q9 .

Step 10. We stop if π6 ∤ a6. There is one choice for a4 (mod π4) and q − 1
choices for a6 (mod π6), whence φK,p(II ∗, 1) = q−1

q10 .

Step 11. For E not to be p-minimal, it must be that π4 | a4 and π6 | a6, so
the proportion of non-minimal E is 1

q10 . □

Remark 3.2. The above local proportions φK,p(T, c) exactly match the lo-
cal proportions δ′

p(T, c) for p ≥ 5 in Griffin et al. [5, Table 5] after replacing
the rational prime p with the ideal norm q.

In the proof of Lemma 3.1, a non-minimal curve E(a4, a6) transforms
into E′(a4, a6) := E(π−4a4, π

−6a6). As we run through the non-minimal E,
the family of E′ is equivalent to that of E. Thus, we may rerun Lemma 3.1
on the new family E′. Figure 3.1 illustrates the resultant Markov chain.
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Proposition 3.3. If p ∤ (6) is a prime ideal in K and c ≥ 1, then letting
q := NK/Q(p) we have

δK,p(c) =



1 − q(6q7 + 9q6 + 9q5 + 7q4 + 8q3 + 7q2 + 9q + 6)
6(q + 1)2(q8 + q6 + q4 + q2 + 1) if c = 1,

q(2q7 + 2q6 + q5 + q4 + 2q3 + q2 + 2q + 2)
2(q + 1)2(q8 + q6 + q4 + q2 + 1) if c = 2,

q2(q4 + 1)
2(q + 1)(q8 + q6 + q4 + q2 + 1) if c = 3,

q3(3q2 − 2q − 1)
6(q + 1)(q8 + q6 + q4 + q2 + 1) if c = 4,

q10 − 2q9 + q8

2qc(q10 − 1) if c ≥ 5.

Proof. Following the expressions for δK,p(c) in Lemma 3.1 and the Markov
chain as illustrated in Figure 3.1, we have that

□(3.2) δK,p(c) =
(

1 + 1
q10 + 1

q20 + . . .

) ∑
cp=n

φK,p(T, cp).

Remark 3.4. When K = Q, then p = (p) for rational primes p and we
recover the formulae over rationals found in [5]. Conversely, the expressions
for the proportions over general K match that of Q, except the rational
prime p is replaced with the prime ideal norm q.

4. Classification for p | (3)

In this section, we derive δK,p(c) for p | (3). Unlike in Section 3, Tate’s
algorithm may introduce a non-zero a2-coefficient on non-minimal E(a4, a6)
that loops back into the algorithm. Therefore, to determine δK,p(c), we
study the action of Tate’s algorithm on a larger class of elliptic curves
(namely, on E(a2, a4, a6), as defined in Section 2). The short Weierstrass
elliptic curves are exactly the E(a2, a4, a6) with α2 = ∞. Naturally, we
group elliptic curves into families depending on α2 as follows.

Definition 4.1. The 3-family F (α2) refers to the set of models
F (α2) := {E(a2, a4, a6) : vπ(a2) = α2; a4, a6 integral}.

The 3-family F (≥ α2) refers to the set
⊔

α≥α2 F (α).

For brevity, we refer to 3-families as families for this section. We first run
Tate’s algorithm to calculate χK,p(T, c;α2) := δ′

K,p(T, c; ∞, α2,∞), which
is the proportion of models that are p-minimal with Kodaira type T and
Tamagawa number c for each family F (α2).
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Lemma 4.2. Suppose that p ⊆ K is above 3 with ramification index e. Then
for F (α2), the local densities χK,p(T, c;α2) is as provided in Table 4.1.

Table 4.1. The values of χK,p(T, c;α2) for p | (3).

e = 1 e ≥ 2
Type cp α2 = 0 α2 ≥ 1 α2 = 0 α2 = 1 α2 ≥ 2
I0 1 (q − 1)/q (q − 1)/q (q − 1)/q (q − 1)/q (q − 1)/q
I1 1 (q − 1)/q2 0 (q − 1)/q2 0 0
I2 2 (q − 1)/q3 0 (q − 1)/q3 0 0
In≥3 n (q − 1)/2qn+1 0 (q − 1)/2qn+1 0 0
In≥3 ε(n) (q − 1)/2qn+1 0 (q − 1)/2qn+1 0 0
II 1 0 (q − 1)/q2 0 (q − 1)/q2 (q − 1)/q2

III 2 0 (q − 1)/q3 0 (q − 1)/q3 (q − 1)/q3

IV 1 0 (q − 1)/2q4 0 (q − 1)/2q4 (q − 1)/2q4

IV 3 0 (q − 1)/2q4 0 (q − 1)/2q4 (q − 1)/2q4

I∗
0 1 0 (q2 − 1)/3q6 0 1/3q5 (q − 1)/3q5

I∗
0 2 0 (q − 1)/2q5 0 (q − 1)/2q6 (q − 1)/2q5

I∗
0 4 0 (q − 1)(q − 2)/6q6 0 (q − 3)/6q6 (q − 1)/6q5

I∗
n≥1 2 0 (q − 1)2/2q6+n 0 (q − 1)/2q5+n 0
I∗

n≥1 4 0 (q − 1)2/2q6+n 0 (q − 1)/2q5+n 0
IV ∗ 1 0 (q − 1)/2q7 0 0 (q − 1)/2q6

IV ∗ 3 0 (q − 1)/2q7 0 0 (q − 1)/2q6

III ∗ 2 0 (q − 1)/q8 0 0 (q − 1)/q7

II ∗ 1 0 (q − 1)/q9 0 0 (q − 1)/q8

Proof. We run Tate’s algorithm over F (α2) to compute χK,p(T, c;α2).

Step 1. Suppose that E terminates at Step 1. If E ∈ F (0), then ∆ ≡
−a3

2a6 + a2
2a

2
4 − a3

4 (mod π). Thus, for π ∤ ∆, there are q − 1 choices for a6
modulo π for fixed a2 and a4. If E ∈ F (1) or E ∈ F (≥ 2), then ∆ ≡ −a3

4
(mod π). Therefore, there are q−1 choices for a4 modulo π for fixed a2 and
a6. Thus, χK,p(I0, 1; 0) = χK,p(I0, 1; 1) = χK,p(I0, 1; ≥2) = q−1

q . Moving
forward, for curves that pass Step 1, in F (0), the units digit of a6 is fixed
for fixed a4 and a2, and in F (≥ 1) the units digit of a4 is 0.

Step 2. Suppose that the singular point of E after reduction by π is at
(u, 0). Then, the translation x 7→ x+ u yields the new model
(4.1) y2 = (x+ u)3 + a2(x+ u)2 + a4(x+ u) + a6.

Curves in F (0) always terminate as π ∤ b2 = a2 + 3u. By Hensel’s lemma,
exactly q−1

qn+1 of curves within F (0) satisfy vπ(∆) = n as a2 varies. We also
check that half of these values make a2 a quadratic residue modulo π. Thus,
χK,p(In, n; 0) = χK,p(In, ε(n); 0) = q−1

2qn+1 .
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However, if E ∈ F (≥ 1), we always pass this step, so χK,p(In, n; 0) =
χK,p(In, ε(n); 0) = 0. Since (u, 0) lies on the curve after reduction and
vπ(a4) ≥ 1 from Step 1, note u3 + a6 ≡ 0 (mod π).

Step 3. If we stop at Step 3, π2 ∤ a6 +a4u+a2u
2 +u3. From Step 2, we have

that π | a6 + a4u + a2u
2 + u3. After fixing u, a2, a4, we have q − 1 choices

for a6 (mod π2). As a result, χ(II , 1; ≥1) = q−1
q2 .

Step 4. To terminate at Step 4, we must have π3 ∤ 4(a2 + 3u)(a6 + a4u +
a2u

2+u3)−(3u2+3a2u+a4)2. From Steps 2 and 3 respectively, we have that
π | a2+3u and π2 | a6+a4u+a2u+u3. As such, we stop if π2 ∤ 3u2+3a2u+a4.
We find that for fixed a2 and u, there are q(q − 1) choices for a4 (mod π2)
and one choice for a6 (mod π2). Hence, χK,p(III , 2; ≥1) = q−1

q3 .

Step 5. To stop at Step 5, π ∤ π−2(a6 + a4u+ a2u
2 + u3). For fixed a2 and

u, we have q choices for a4 (mod π2) and q − 1 choices for a6 (mod π3),
half of which make π−2(a6 + a4u+ a2u

2 + u3) a quadratic residue. Hence,
χK,p(IV, 1; ≥1) = χK,p(IV, 3; ≥1) = q−1

2q4 . Moving forward, we have q choices
for a4 (mod π2) and a6 (mod π3) for each choice of a2, u, and the π2-digit
of a4.

Step 6. We begin by writing P (T ) = T 3 + 3u+a2
π T 2 + 3u2+2a2u+a4

π2 T +
u3+a2u2+a4u+a6

π3 =: T 3 +A2T
2 +A4T +A6 (mod π). Note that fixing A4, A6

(mod π) and a choice of a2, u, and the π3-digit of a4 uniquely determines
a4 (mod π3) and a6 (mod π4).

Suppose that we fix A2 and consider P (T ) across (A4, A6) modulo π. For
P (T ) to have 3 distinct roots, P (T ) and P ′(T ) = 2A2x+A4 (mod π) must
not have a shared root. In other words, A3

4 + 2A2
2A

2
4 +A6A

3
2 ̸≡ 0 (mod π).

As such, for a fixed A2 modulo π, there are q choices for A4 and q − 1
choices of A6 modulo π such that P (T ) has three distinct roots. Suppose
further that all three of P (T )’s roots are in Fq. If P (T ) is traceless, i.e.,
A2 ≡ 0 (mod π), there are q choices for the first root and q − 1 choices for
the second root. Then, the third root is guaranteed to be different from the
first two. If P (T ) has a non-zero trace, however, then there are q choices
for the first root and q − 3 choices for the second root to guarantee that
the fixed third root is distinct from the first two. Now, suppose that P (T )
has exactly one root in Fq. Then, once we fix an irreducible quadratic, the
linear term is fixed. Therefore, no matter the trace, the number of P (T )
with exactly one root in Fq across (A4, A6) modulo π is q2−q

2 . The last case
is when P (T ) is irreducible. In Fq3 , there are q2

3 elements of a given trace
as the linear map Tr : Fq3 → Fq is surjective. The elements of Fq all have
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trace 0. Therefore, the number of irreducible P (T ) with zero trace is q2−q
3 ,

and the number of that with a non-zero trace is q2−q
3 .

We first discuss e = 1. Here, a fixed A2 modulo π uniquely determines
u—the units digit of a6. We thus conclude from the aforementioned anal-
ysis that for e = 1, χK,p(I∗

0 , 1; ≥1) = q2−1
3q6 , χK,p(I∗

0 , 2; ≥1) = q−1
2q5 , and

χK,p(I∗
0 , 4; ≥1) = (q−1)(q−2)

6q6 . We now repeat for e ≥ 2 and E ∈ F (1). Here,
the trace is fixed and necessarily non-zero. As such, χK,p(I∗

0 , 1; 1) = 1
3q5 ,

χK,p(I∗
0 , 2; 1) = q−1

2q6 , and χK,p(I∗
0 , 4; 1) = q−3

6q6 . Finally, we discuss e ≥ 2 and
E ∈ F (≥ 2). Here, the trace is necessarily zero. Thus, χK,p(I∗

0 , 1; ≥2) = q−1
3q5 ,

χK,p(I∗
0 , 2; ≥2) = q−1

2q5 , and χK,p(I∗
0 , 4; ≥2) = q−1

6q5 .

Step 7. If E stops at Step 7, P (T ) has a double root that is not a triple
root. This implies that A2 ̸≡ 0 (mod π), but that A3

2 + 2A2
2A

2
4 +A6A

3
2 ≡ 0

(mod π). For A2 ̸≡ 0 (mod π), α2 = 1 and e ≥ 2, or α2 ≥ 1 and e = 1.
Hence, χK,p(I∗

n, 2; ≥1) = χK,p(I∗
n, 4; ≥1) = (q−1)2

2q6+n for e = 1. If E ∈ F (1) and
e ≥ 2, E terminates at Step 7. Now suppose that E ∈ F (≥ 2) and e = 1.
Then, for A3

2 + 2A2
2A

2
4 + A6A

3
2 ≡ 0 (mod π), we have q − 1 choices for A6

for each A4. We then shift the double root of P (T ) to 0. The constant term
of the shifted model is surjective over a6. Therefore, the proportion of E
with valuation 3 + n is q−1

qn , half of which has n = 2 and half of which has
n = 4. Hence, χK,p(I∗

n, 2; 1) = χK,p(I∗
n, 4; 1) = q−1

2q5+n and χK,p(I∗
n, 2; ≥2) =

χK,p(I∗
n, 4; ≥2) = 0 for e ≥ 2.

Step 8. If E reaches Step 8, P (T ) has a triple root. If so, then e ≥ 1 and
E ∈ F (1), or e ≥ 2 and E ∈ F (≥ 2). Let the triple root of P (T ) be v, so
v3 ≡ A6 (mod π). We shift the triple root of P (T ) to 0 via x 7→ x + vπ.
Letting s := u+ vπ, E becomes
(4.2) y2 = (x+ s)3 + a2(x+ s)2 + a4(x+ s) + a6.

We stop if π ∤ π−4(s3 + a2s
2 + a4s + a6). We count by fixing a2 and s

(mod π2), the latter of which we have q choices for e = 1 and q2 choices for
e ≥ 2. Resultantly, there is one choice for a4 (mod π3) and q − 1 choices
for a6 (mod π5), half of which make π−4(s3 + a2s

2 + a4s+ a6) a quadratic
residue. Hence, we have χK,p(IV ∗, 1; ≥1) = χK,p(IV ∗, 3; ≥1) = q−1

2q7 for
e = 1, and χK,p(IV ∗, 1; ≥2) = χK,p(IV ∗, 3; ≥2) = q−1

2q6 for e ≥ 2.

Step 9. Suppose that E reaches Step 9. We stop if π4 ∤ 3s2 + 2a2s+ a4. As
in Step 8, we first choose a2 and s (mod π2), the latter of which we have
q choices for e = 1 and q2 choices for e ≥ 2. These choices allow for q − 1
choices of a4 (mod π4) and a unique choice of a6 (mod π5) Hence, we have
χK,p(III ∗, 2; ≥1) = q−1

q8 for e = 1, and χK,p(III ∗, 2; ≥2) = q−1
q7 for e ≥ 2.
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Step 10. We stop at Step 10 if π ∤ π−5(s3 + a2s
2 + a4s + a6). Once again,

we first choose a2 and s, the latter of which we have q choices for e = 1
and q2 choices for e ≥ 2. These choices give a unique choice of a4 (mod π4)
and q − 1 choices of a6 (mod π6). Hence, we have χK,p(II ∗, 1; ≥1) = q−1

q9

for e = 1, and χK,p(II ∗, 1; ≥2) = q−1
q8 for e ≥ 2.

Step 11. Suppose E is non-minimal. If s is fixed, then (a4, a6) is fixed up
to modulo π4 and π6 respectively. When e = 1 and E ∈ F (≥ 1), there are q
choices of s modulo π2. Therefore, 1

q9 of the curves are non-minimal. When
e ≥ 2 and E ∈ F (≥ 2), there are q2 choices for s. Hence, 1

q8 curves are
non-minimal. □

We now justify how we reclassify the non-minimal models of one family
as another family of curves. We first note that the models in F (≥ e) and
F (∞) have the same local properties in the following sense.
Remark 4.3. Because linear transformations do not change the local data
of an elliptic curve, instead of computing local densities on short Weierstrass
models F (∞), we may compute the local densities on the set
(4.3)

{(
E : y2 = (x+ t)3 + a4(x+ t) + a6

)
: t, a4, a6 integral

}
.

Since a4 and a6 are drawn uniformly from the residues modulo πk for all k
and the x2-coefficient varies uniformly across multiples of 3, the set in (4.3)
is precisely F (≥ e).

Thus, moving forward, if α2 ≥ e, then we work with the curves in F (≥ e)
instead of F (α2). We first show that when α2 < e, the local densities at the
non-minimal models of a family F (α2) exactly match the local densities
at the family F (α2 − 2). To do this, we establish a map which sends a
non-minimal model in F (α2) to another isomorphic model in F (α2 − 2),
induced by the transformation at Step 11. Likewise, we demonstrate that
the local densities at the non-minimal models of F (≥ e) match the local
densities at F (≥ e− 2).
Lemma 4.4. We have surjective, q2-to−1 maps

• between the set of non-minimal models in F (α2) and the set
F (α2 − 2) for each α2 < e and

• between the set of non-minimal models in F (≥ e) and the set
F (≥ e− 2)

that each sends E to its transformation E′ after passing Step 11.
Proof. First, suppose that α2 < e. Then fix a set of q2 representatives to be
the residues modulo π2. Recall that for non-minimal E(a2, a4, a6), Tate’s
algorithm produces a unique residue s (mod π2) for which
(4.4) y2 = (x+ s)3 + a2(x+ s)2 + a4(x+ s) + a6
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has the coefficient of xi divisible by πi for i = 2, 4, 6. Hence, each non-
minimal model E(a2, a4, a6) ∈ F (α2) is sent to

(4.5) E

(
3s+ a2
π2 ,

3s2 + 2a2s+ a4
π4 ,

s3 + a2s
2 + a4s+ a6
π6

)
∈ F (α2 − 2),

and the map is well-defined.
Conversely, given a model E(a′

2, a
′
4, a

′
6) ∈ F (α2 − 2), choosing s uniquely

determines a2, a4, a6, and moreover vπ(a2) = α2. Hence, E(a′
2, a

′
4, a

′
6) has

exactly q2 preimages in F (α2), as we had sought.
The existence proof of a surjective, q2-to−1 map between the set of non-

minimal models in F (≥ e) and the set F (≥ e − 2) is analogous to that of
the case α2 < e and is thus omitted. □

We now complete our classification for p | (3) in Proposition 4.5. A key
ingredient is the underlying Markov chain structure that helps us study how
non-minimal curves loop back into Tate’s algorithm. Lemma 4.4 allows us to
identify the non-minimal curves of F (0), F (1), . . . , F (≥ e) to be identified
with other families. In particular, we see from Lemma 4.4 that the non-
minimal curves in F (α2) for α < e are always transformed into curves in
F (α2 −2), which as shown in Step 11 of the proof of Lemma 4.2 occurs with
probability 1

q8 . We also see from Lemma 4.4 that the non-minimal curves
in F (≥ e) with probability 1

q2 loop back to itself, with probability q−1
q2 loop

to F (e− 1), and with probability q−1
q transform to F (e− 2). Thus, F (≥ e)

maps into the set F (≥ e) with proportion 1
q8 · 1

q2 = 1
q10 , the set F (e − 1)

with proportion 1
q8 · q−1

q2 = q−1
q10 , and the set F (e − 2) with proportion

1
q8 · q−1

q = q−1
q9 . Finally, Lemma 4.2 determines the local densities at each

F (α2) for α2 = 1, 2, . . . , e − 1, and the set F (≥ e). We collate all of this
information in Figure 4.1.

Proposition 4.5. If p | (3) is a prime ideal in K and c ≥ 1, then letting
q := NK/Q(p) and e = 1 we have

δK,p(c) =



1 − (q − 1)(6q10 + 9q9 + 7q8 + 8q7 + 7q6 + 9q5 + 6q + 3)
6q2(q + 1)(q10 − 1) if c = 1,

(q − 1)(2q11 + 2q10 + q9 + 2q8 + q7 + 2q6 + 2q5 + 2q2 − 1)
2q3(q + 1)(q10 − 1) if c = 2,

(q − 1)(q10 + q7 + q − 1)
2q4(q10 − 1) if c = 3,

(q − 1)(q10 + q9 + 3q − 3)
6q5(q10 − 1) if c = 4,

(q − 1)2

2qc+1(q10 − 1) if c ≥ 5.
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Terminate

F (0)

F (≥ 1)

1

1
q10

q−1
q10

1 − 1
q9

Terminate

F (e− 3)

F (e− 2)

F (e− 1)

F (≥ e)

F (2)

F (1)

F (0)

.

.

.

1

1

1
q10

q−1
q10

q−1
q9

1 − 1
q8

1 − 1
q8

1 − 1
q8

1
q8 1 − 1

q8

1
q8

1 − 1
q8

1
q8

1
q8

Figure 4.1. The Markov chain structure when p | (3) for
e = 1 (left) and e ≥ 2 (right).

If e ≥ 2 is even, we have

δK,p(c) =



1 − (q − 1)
[

(6q14 + 9q13 + 13q12 + 16q11 + 22(q10 + q9 + q8))
6(q + 1)(q2 + 1)(q4 + 1)(q10 − 1) +O

( 1
q10

)]
if c = 1,

(q − 1)(2q13 + 3q11 + 5q9 + 5q7 + 5q5 + 3q3 + 2q)
2(q2 + 1)(q4 + 1)(q10 − 1) +O

( 1
q4e+3

)
if c = 2,

(q − 1)(q4e+8 + q4e+6 + q4e+4 + q4e+2 + q4e − q6 + q4 − q2)
2q4e−2(q4 + 1)(q10 − 1) if c = 3,

(q − 1)(q11 + q9 + q7 + q5 + q3)
6(q2 + 1)(q4 + 1)(q10 − 1) +O

( 1
q4e+4

)
if c = 4,

(q − 1)2

2q4e+c−8(q10 − 1) if c ≥ 5.
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If e > 2 is odd, we have

δK,p(c) =



1 − (q − 1)
[

(6q14 + 9q13 + 13q12 + 16q11 + 22(q10 + q9 + q8))
6(q + 1)(q2 + 1)(q4 + 1)(q10 − 1) +O

( 1
q10

)]
if c = 1,

(q − 1)(2q13 + 3q11 + 5q9 + 5q7 + 5q5 + 3q3)
2(q2 + 1)(q4 + 1)(q10 − 1) +O

( 1
q4e−2

)
if c = 2,

(q − 1)(q10 + q8 + q6 + q4 + q2)
2(q4 + 1)(q10 − 1) +O

( 1
q4e−1

)
if c = 3,

(q − 1)(q11 + q9 + q7 + q5 + q3)
6(q2 + 1)(q4 + 1)(q10 − 1) +O

( 1
q4e+1

)
if c = 4,

(q − 1)2

2q4e+c−3(q10 − 1) if c ≥ 5.

The exact proportions are given in Proposition B.1 of the extended version
of the paper [3].

Proof. Refer to Figure 4.1. Because we begin with a short Weierstrass form,
we start at the node F (≥ e). Fix a Kodaira type T and Tamagawa number
c over which we compute the local density of curves with this data. We
perform casework on the family we terminate in.

First, suppose that e = 1. The proportion of curves that terminate in
F (≥ 1) with Kodaira type T and Tamagawa number c is(

1 + 1
q10 + 1

q20 + . . .

)
χK,p(T, c; ≥1).

On the other hand, the proportion of curves that terminate in F (0) with
our prescribed local data is(

1 + 1
q10 + 1

q20 + . . .

)
q − 1
q10 χK,p(T, c; 0).

Now, suppose that e ≥ 2. The proportion of curves that terminate in
F (2), F (3), . . . , F (≥ e) with Kodaira type T and Tamagawa number c is

(
1 + 1

q10 + 1
q20 + . . .

)(
1 +

⌊(e−1)/2⌋∑
k=0

q − 1
q8k+10 +

⌊(e−2)/2⌋∑
k=0

q − 1
q8k+9

)
χK,p(T, c; ≥2).

Second, the proportion of curves that terminate in F (1) with our prescribed
local data is

(
1 + 1

q10 + 1
q20 . . .

)
q − 1
q4e+2χK,p(T, c; 1) if 2 | e(

1 + 1
q10 + 1

q20 . . .

)
q − 1
q4e−3χK,p(T, c; 1) if 2 ∤ e.
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Finally, the proportion of curves that terminate in F (0) with our prescribed
local data is

(
1 + 1

q10 + 1
q20 . . .

)
q − 1
q4e+1χK,p(T, c; 0) if 2 | e(

1 + 1
q10 + 1

q20 . . .

)
q − 1
q4e+6χK,p(T, c; 0) if 2 ∤ e.

The values δK,p(T, c) are provided in Lemma 4.2. We sum these propor-
tions over all Kodaira types T with Tamagawa number c to get the total
density δK,p(c). □

5. Classification for p | (2)

In this section, we calculate δK,p(cp) for p | (2). Unlike in Section 3 and
in Section 4, Tate’s algorithm may introduce a non-zero a1, a2, and a3
coefficient on non-minimal E(a4, a6) that loops back into the algorithm.
However, even if E is transformed after Step 11 into E′(a′

1, a
′
2, a

′
3, a

′
4, a

′
6),

as in Section 2, with a′
2 ̸= 0, the translation x 7→ x−a2/3 eliminates the a2

coefficient of E′ without changing the local data of the curve. Therefore, to
study how p-non-minimal elliptic curves loop back into Tate’s algorithm,
we study the action of Tate’s algorithm on the larger class of elliptic curves
E = E(a1, a3, a4, a6), defined as in Section 2. By convention, we re-eliminate
the a2 coefficient after passing Step 11 before re-running Tate’s algorithm.

Upon running Tate’s algorithm, we find that the sets of elliptic curves
E(a1, a3, a4, a6) across (a4, a6) with fixed a1 and a3 behave similarly if they
have the same α1 := vπ(a1) and α3 := vπ(a3). Moreover, the short Weier-
strass elliptic curve are exactly the E(a1, a3, a4, a6) with α1 = α3 = ∞. We
thus group elliptic curves entering Tate’s algorithm into families depending
on α1 and α3 as follows.

Definition 5.1. The 2-family F (α1, α3) refers to the set of models
F (α1, α3) := {E(a1, a3, a4, a6) : vπ(a1) = α1, vπ(a3) = α3; a4, a6 integral}.
The 2-family F (≥ α1,≥ α3) refers to the set

⊔
α≥α1

⊔
β≥α3 F (α, β).

For brevity, refer to 2-families as families for the rest of this section. The
rest of the section is structured similarly to Section 4. In Lemma 5.2, we
run Tate’s algorithm to calculate ψK,p(T, c;α1, α3) := δ′

K,p(T, c;α1,∞, α3),
which is the proportion of p-minimal models with Kodaira type T and Tam-
agawa number c for each family F (α1, α3). Then, we show in Lemma 5.4
that the non-minimal models from certain families may themselves be
viewed as a family. The analysis of non-minimal models in this section
is more involved than the analysis in Section 4 for two reasons: there are
now two relevant valuations α1 and α3, and we have to incorporate the
shift x 7→ x − a2/3 after Step 11. Finally, in Proposition 5.5, we leverage
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these lemmas to form a Markov chain whose nodes are families and whose
edges represent the reclassification of non-minimal models, which we use to
compute the local proportion δK,p(c).

Lemma 5.2. Suppose that p ⊆ K is above 2 with ramification index e.
Then for F (α1, α3), the local densities ψK,p(T, cp;α1, α3) is as provided in
Table 5.1 for e = 1, 2 and Table 5.2 for e ≥ 3.

Table 5.1. The values of ψK,p(T, c;α1,∞, α3) for p | (2).

e = 1 e = 2

Type cp α1 = 0 α1 ≥ 1
α3 = 0

α1 ≥ 1
α3 ≥ 1 α1 = 0 α1 ≥ 1

α3 = 0
α1 = 1
α3 ≥ 1

α1 ≥ 2
α3 = 1

α1 ≥ 2
α3 ≥ 2

I0 1 q−1
q 1 0 q−1

q 1 0 0 0
I1 1 q−1

q2 0 0 q−1
q2 0 0 0 0

I2 2 q−1
q3 0 0 q−1

q3 0 0 0 0
In≥3 n q−1

2qn+1 0 0 q−1
2qn+1 0 0 0 0

In≥3 ε(n) q−1
2qn+1 0 0 q−1

2qn+1 0 0 0 0
II 1 0 0 q−1

q 0 0 q−1
q

q−1
q

q−1
q

III 2 0 0 q−1
q2 0 0 q−1

q2
q−1
q2

q−1
q2

IV 1 0 0 q−1
2q3 0 0 q−1

2q3
1

2q2 0
IV 3 0 0 q−1

2q3 0 0 q−1
2q3

1
2q2 0

I∗
0 1 0 0 q2−1

3q5 0 0 q2−1
3q5 0 q2−1

3q4

I∗
0 2 0 0 q−1

2q4 0 0 q−1
2q4 0 q−1

2q3

I∗
0 4 0 0 (q−1)(q−2)

6q5 0 0 (q−1)(q−2)
6q5 0 (q−1)(q−2)

6q4

In≥1∗ 2 0 0 (q−1)2

2q5+n 0 0 (q−1)2

2q5+n 0 (q−1)2

2q4+n

In≥1∗ 4 0 0 (q−1)2

2q5+n 0 0 (q−1)2

2q5+n 0 (q−1)2

2q4+n

IV ∗ 1 0 0 q−1
2q6 0 0 q−1

2q6 0 q−1
2q5

IV ∗ 3 0 0 q−1
2q6 0 0 q−1

2q6 0 q−1
2q5

III ∗ 2 0 0 q−1
q7 0 0 q−1

q7 0 q−1
q6

II ∗ 1 0 0 q−1
q8 0 0 q−1

q8 0 q−1
q7

Proof. We run through Tate’s algorithm to compute ψp,K(T, cp;α1, α3). Re-
call that q = NK/Q(p) is the norm of p.

Step 1. E terminates at Step 1 if π ∤ ∆. By definition, ∆ ≡ b2
2b8+b2

6+b2b4b6
(mod π), where b2 ≡ a2

1 (mod π), b4 ≡ a1a3 (mod π), b6 ≡ a2
3 (mod π),

and b8 ≡ a2
1a6 − a1a3a4 − a2

4 (mod π). Therefore, ∆ ≡ a6
1a6 − a5

1a3a4 −
a4

1a
2
4 + a4

3 + a3
1a

3
3 (mod π). If α1 ≥ 1, then ∆ ≡ a4

3 (mod π). As such,
ψK,p(I0, 1;α1, α3) = 1 if α3 = 0 and 0 if α3 ≥ 1. Now, suppose that α1 = 0,
in which case ∆ is then linear in terms of a6. Therefore, for each a1 and a3,
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Table 5.2. The values of ψK,p(T, c;α1,∞, α3) for p | (2).

e ≥ 3

Type cp α1 = 0 α1 ≥ 1
α3 = 0

α1 = 1
α3 ≥ 1

α1 ≥ 2
α3 = 1

α1 = 2
α3 ≥ 2

α1 ≥ 3
α3 = 2

α1 ≥ 3
α3 ≥ 3

I0 1 q−1
q 1 0 0 0 0 0

I1 1 q−1
q2 0 0 0 0 0 0

I2 2 q−1
q3 0 0 0 0 0 0

In≥3 n q−1
2qn+1 0 0 0 0 0 0

In≥3 ε(n) q−1
2qn+1 0 0 0 0 0 0

II 1 0 0 q−1
q

q−1
q

q−1
q

q−1
q

q−1
q

III 2 0 0 q−1
q2

q−1
q2

q−1
q2

q−1
q2

q−1
q2

IV 1 0 0 q−1
2q3

1
2q2 0 0 0

IV 3 0 0 q−1
2q3

1
2q2 0 0 0

I∗
0 1 0 0 q2−1

3q5 0 q2−1
3q4

q2−1
3q4

q2−1
3q4

I∗
0 2 0 0 q−1

2q4 0 q−1
2q3

q−1
2q3

q−1
2q3

I∗
0 4 0 0 (q−1)(q−2)

6q5 0 (q−1)(q−2)
6q4

(q−1)(q−2)
6q4

(q−1)(q−2)
6q4

In≥1∗ 2 0 0 (q−1)2

2q5+n 0 (q−1)2

2q4+n
(q−1)2

2q4+n
(q−1)2

2q4+n

In≥1∗ 4 0 0 (q−1)2

2q5+n 0 (q−1)2

2q4+n
(q−1)2

2q4+n
(q−1)2

2q4+n

IV ∗ 1 0 0 q−1
2q6 0 q−1

2q5
1

2q4 0
IV ∗ 3 0 0 q−1

2q6 0 q−1
2q5

1
2q4 0

III ∗ 2 0 0 q−1
q7 0 q−1

q6 0 q−1
q5

II ∗ 1 0 0 q−1
q8 0 q−1

q7 0 q−1
q6

there is one choice of a6 modulo π such that E terminates at Step 1. We
thus have ψK,p(I0, 1; 0,≥ 0) = q−1

q .

Step 2. Suppose that the singular point of E is at (s, u) after reduction by
π; accordingly, we shift the singular point to (0, 0) by (x, y) 7→ (x+s, y+u).
Our model is now:
(5.1) (y + u)2 + a1(x+ s)(y + u) + a3(y + u) = (x+ s)3 + a4(x+ s) + a6.

To stop at Step 2, we require that π ∤ b2 = a2
1 + 12s. Therefore, if α1 =

0, then we always stop. By Hensel’s lemma, exactly q−1
qn+1 of curves have

vπ(∆) = n. Also, for exactly half of E, T 2 + a1T − 3s splits in k. Hence,
ψK,p(In, n; 0,≥ 0) = ψK,p(In, ε(n); 0,≥ 0) = q−1

2qn+1 . If α1 ≥ 1, then α3 ≥ 1
by Step 1. In this case, we always pass. Thus, ψK,p(In, cp;α1, α3) = 0 for all
α1, α3 ≥ 1. Henceforth, α1, α3 ≥ 1. By taking partial derivatives of (5.1),
we find that s2 ≡ a4 (mod π) and u2 ≡ a6 (mod π).
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Step 3. Suppose that E reaches Step 3. We stop if π ∤ π−1(s3 + a4s+ a6 −
u2 − a1su− a3u). For fixed a1, a3, and a4, there are q(q − 1) choices of a6
modulo π2. Hence, ψK,p(II , 1;α1, α3) = q−1

q for each α1, α3 ≥ 1.

Step 4. E terminates at this step if π3 ∤ (3s)(2u+ a1s+ a3)2 − (3s2 + a4 −
a1u)2. By Step 2, we know that π2 | (3s)(2u+a1s+a3)2 −(3s2 +a4 −a1u)2.
Thus, we want π ∤ π−2(3s(2u+a1s+a3)2 +(3s2 +a4 −a1u)2). Therefore, for
fixed a1 and a3, there are q(q − 1) choices for a4 modulo π2 and q choices
for a6 modulo π2. Thus, ψK,p(III , 2;α1, α3) = q−1

q2 for α1, α3 ≥ 1.

Step 5. For an elliptic curve to terminate at Step 5, it must be that π ∤
π−1(2u + a3 + a1s). If e = 1, for fixed a1 and a3, we have q choices of a4
modulo π2 and q− 1 choices of a6 modulo π2. Now, the Tamagawa number
depends on whether the polynomial Y 2+2u+a3+a1

π Y−a6+a4s+s3−u2−a1su−a3u
π2

modulo π factors over Fq. To count, we will fix a1, a3, and a4 and count
over the q(q−1) possible a6 modulo π3. Suppose that the polynomial has a
root in Fq and fix one of the roots. Then, since the trace is fixed, the other
root is fixed. Because π−1(2u+a3 +a1) is non-zero modulo π, the two roots
must be distinct. Therefore, there are q(q−1)

2 choices of a6 modulo π3 that
each results in Tamagawa number 1 and 3. Thus, ψK,p(IV, 1; ≥1,≥1) =
ψK,p(IV, 3; ≥1,≥1) = q−1

2q3 when e = 1. Now, suppose that e ≥ 2. First,
if α1 = 1, then we have q − 1 choices of a4 modulo π2 and q choices for
a6 modulo π2. With the same argument as above, we conclude that for
q2

2 choices of a6 modulo π3, the Tamagawa number is 1, and for the same
number of choices, the Tamagawa number is 3. Now, suppose that α1 ≥ 2.
If α3 = 1, then the elliptic curves always terminate at this step. Again,
we have that for half of the choices of a6, the Tamagawa number is 1 and
that for the other half, the Tamagawa number is 3. Therefore, we have
that ψK,p(IV, 1; ≥2, 1) = ψK,p(IV, 3; ≥2, 1) = 1

2q2 . Conversely, if α3 ≥ 2,
then no curves terminate at this step. Therefore, ψK,p(IV, 1; ≥2,≥2) =
ψK,p(IV, 3; ≥2,≥2) = 0.

Step 6. Let t2 ≡ s (mod π) and β2 ≡ π−2(s3 + a4s+ a6 − u2 − a1su− a3u)
(mod π), and define v := u+ βπ. Following the shifts outlined in Step 6 of
Tate’s algorithm, we have

(5.2) (y + tx+ v)2 + a1(x+ t2)(y + tx+ v) + a3(y + tx+ v)
= (x+ t2)3 + a4(x+ t2) + a6.
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We study

P (T ) = T 3 + 2t2 − a1t

π
T 2 + 3t4 + a4 − 2tv − a1t

3 − a1v − a3t

π2 T

+ t6 + a4t
2 + a6 − v2 − a1t

2v − a3v

π3 .

Define A2, A4, and A6 such that P (Y ) ≡ T 3 +A2T
2 +A4T +A6 (mod π).

Now, suppose that we fix a4 modulo π2 and a6 modulo π3. There then
exists a bijective map between the π possible values of a4 modulo π3 and
A4 modulo π and between the π possible values of a6 modulo π4 and A6
modulo π. For E to terminate at Step 6, P (T ) must have three distinct
roots. If so, P (T ) and P ′(T ) ≡ 3T 2 + A4 ≡ 0 (mod π) should not have
shared roots. Therefore, for P (T ) to have three distinct roots, A2A4 ̸≡ A6
(mod π). Thus, for each A2 modulo π, there are q(q−1) choices of (A4, A6)
modulo π. We also note that when P (T ) has three distinct roots, none of
the roots can be A2 as if so, the remaining two roots must be the same; a
contradiction to P (T ) having distinct roots.

We now fix A2 and count the number of P (T ) with three distinct roots
that have three, one, and no roots in Fq over (A4, A6) modulo π. Because
we fix A2 modulo π, the trace of P (T ) is fixed. We first count the number of
P (T ) that have all three roots in Fq with fixed trace. We have q− 1 choices
for the first root, q − 2 choices for the second root, and a fixed choice for
the third root, because as long as none of the roots are congruent to A2
modulo π, the three roots are distinct. Therefore, for fixed A2, there are
(q−1)(q−2)

6 choices of (A4, A6) modulo π that allows for P (T ) to have three
distinct roots, all of which are in Fq. We now proceed to count the number
of P (T ) with three distinct roots with exactly one root in Fq with fixed a2.

We start by choosing one of q2−q
2 irreducible quadratics. The root in Fq is

then fixed as the trace of P (T ) is fixed. Therefore, there are a total of q2−q
2

choices of P (T ) with three distinct roots, exactly one root of which is in Fq.
Lastly, we count the number of irreducible cubics with three distinct roots.
Out of the q3 elements in Fq3 , q are in Fq. Because the traces are equally
distributed, for a fixed trace, there are q3−q

q = q2 − 1 elements with that
fixed trace. Since P (T ) is a cubic, there are q2−1

3 irreducible cubics with
trace A2.

Now, suppose that e = 1. From Steps 1 and 2, we have that α1, α3 ≥ 1.
Now, for each fixed (a4,

a1
π ) modulo π, we have (q−1)(q−2)

6 P (T ) with three
distinct roots all in Fq, q(q−1)

2 P (T ) with exactly one of the three distinct
roots in Fq, and q2−1

2 P (T ) with three distinct roots, none of which are
in Fq. Thus, we have that for ψK,p(I∗

0 , 4; ≥1,≥1) = (q−1)(q−2)
6q5 , ψK,p(I∗

0 , 2;
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≥1,≥1) = (q−1)
2q4 , and ψK,p(I∗

0 , 1; ≥1,≥1) = q2−1
3q5 . Suppose that e ≥ 2. If

α1 = 1, then α3 ≥ 1 from Step 1. Then, A2 modulo π forms a bijec-
tive map with a1

π modulo π. Therefore, by our aforementioned counting
of P (T ) with three distinct roots, a fixed number of which are in Fq, we
have that for ψK,p(I∗

0 , 4; 1,≥ 1) = (q−1)(q−2)
6q5 , ψK,p(I∗

0 , 2; 1,≥ 1) = (q−1)
2q4 , and

ψK,p(I∗
0 , 1; 1,≥ 1) = q2−1

3q5 . If α1 ≥ 2, then α3 ≥ 2 from Step 6. Then, A2 ≡ 0
(mod π). Therefore, by our aforementioned counting of P (T ) with a fixed
number of roots in Fq, we have that for ψK,p(I∗

0 , 4;α1, α3) = (q−1)(q−2)
6q4 ,

ψK,p(I∗
0 , 2;α1, α3) = (q−1)

2q3 , and ψK,p(I∗
0 , 1;α1, α3) = q2−1

3q4 for α1, α3 ≥ 2.

Step 7. E terminates at Step 7 if A2A4 ≡ A6 (mod π) and (A4, A6) ̸≡
(A2

2, A
3
2) (mod π). We study the interaction between quadratics R(Y ) =

Y 2 + a′
3,∗Y − a′

6,∗ and S(X) = a′
2,∗X

2 + a′
4,∗X + a′

6,∗, translating the curve
as we move between them. Note that by varying a6, the quantity a′

6,∗ is
surjective modulo π. As before, since a2, a3, a4, a6 are equidistributed, by
Hensel’s lemma, there are q−1

qn residues for which we have Kodaira type
In, and moreover, half of these cause the quadratic in question to split.
Hence, ψK,p(I∗

n, 1; ≥1,≥1) = ψK,p(I∗
n, 3; ≥1,≥1) = q−1

2q5+n for e = 1 and
ψK,p(I∗

n, 1; ≥2,≥2) = ψK,p(I∗
n, 3; ≥2,≥2) = q−1

2q4+n for e ≥ 2.

Step 8. Suppose that E reaches Step 8. Then (A2, A4, A6) ≡ (A2, A
2
2, A

3
2)

(mod π). Perform x 7→ x+πA2 = x+(2t2 −a1t) and let v′ := v+2t3 −a1t
2

to get the penultimate model

(y + tx+ v′)2 + a1(x+ 3t2 − a1t)(y + tx+ v′) + a3(y + tx+ v′)
= (x+ 3t2 − a1t)3 + a4(x+ 3t2 − a1t) + a6.

We stop if π ∤ π−2(2v′ + 3a1t
2 − a2

1t+ a3). We notice that if we fix a1, a4,
and a6, then a3 modulo π2 is fixed such that 2v′ + 3a1t

2 − a2
1t + a3 is a

multiple of π2. We then notice that π−2(2v′ + 3a1t
2 − a2

1t + a3) modulo π
forms a bijective map with the q possible values of a3 modulo π3.

First, suppose that e = 1. From Steps 1 and 2, we have that α1, α3 ≥ 1.
For each a3 modulo π2, we see that for q

2 possible values of a3 mod-
ulo π3, E terminates with Tamagawa number 1 and that for q

2 choices
for a3 moudlo π3, E terminates with Tamagawa number 3. Therefore,
when e ≥ 1, ψK,p(IV ∗, 1; ≥1,≥1) = ψK,p(IV ∗, 3; ≥1,≥1) = q−1

2q6 . For the
same reasons, we conclude that when e = 2 and α1 = 1 and α3 ≥ 1,
ψK,p(IV ∗, 1; 1,≥ 1) = ψK,p(IV ∗, 3; 1,≥ 1) = q−1

2q6 . We also see in the same
way that ψK,p(IV ∗, 1; ≥2,≥2) = ψK,p(IV ∗, 3; ≥2,≥2) = q−1

2q5 .
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Now, suppose that e ≥ 3. When α1 = 1 and α3 ≥ 1, we conclude as
we did in the previous paragraph that ψK,p(IV ∗, 1; 1,≥ 1) = ψK,p(IV ∗, 3;
1,≥1) = q−1

2q6 . We also see in the same way that ψK,p(IV ∗, 1; ≥2,≥2) =
ψK,p(IV ∗, 3; ≥2,≥2) = q−1

2q6 . Similarly, when α1 = 2 and α3 ≥ 2, we have
that ψK,p(IV ∗, 1; 2,≥ 2) = ψK,p(IV ∗, 3; 2,≥ 2) = q−1

2q5 . But when α1 ≥ 3
and α3 = 2, then E necessarily terminates at Step 8. Then depending on
a3
π2 , E has Tamagawa number 1 and 3 with equal proportions. Therefore,
we have that ψK,p(IV ∗, 1; ≥3, 2) = ψK,p(IV ∗, 3; ≥3, 2) = 1

2q4 . If α1, α3 ≥ 3,
however, no E terminates at this step. Therefore, ψK,p(IV ∗, 1; ≥3, 2) =
ψK,p(IV ∗, 3; ≥3, 2) = 0.

Step 9. Let w2 ≡ π−4((3t2 − a1t)3 + a4(3t2 − a1t) + a6 − v′2 + a2
1tv

′ − a3v
′)

(mod π) and let w := π2w′ + v′. Then, we have the final model

(5.3) (y + tx+ w)2 + a1(x+ 3t2 − a1t)(y + tx+ w) + a3(y + tx+ w)
= (x+ 3t2 − a1t)3 + a4(x+ 3t2 − a1t) + a6.

We terminate at this case if π4 ∤ −2tw−a1w−a2
1t

2 −a3t+3(3t2 −a1t)2 +a4.
From Step 8, we have that π3 | −2tw−a1w−a2

1t
2 −a3t+3(3t2 −a1t)2 +a4.

Therefore, we want π | π−3(−2tw−a1w−a2
1t

2 −a3t+3(3t2 −a1t)2 +a4). For
fixed a4 modulo π3, π−3(−2tw−a1w−a2

1t
2 −a3t+3(3t2 −a1t)2 +a4) forms

a bijective map with the q possible values of a4 modulo π4. When e = 1,
α1, α3 ≥ 1 from Steps 1 and 2. Therefore, ψK,p(III ∗, 2; ≥1,≥1) = q−1

q7 .

When e = 2, we have from Steps 1, 2 and 5 that either α1 = 1 and
α3 ≥ 1 or α1, α3 ≥ 2. We thus conclude, ψK,p(III ∗, 2; 1,≥ 1) = q−1

q7 and
ψK,p(III ∗, 2; ≥2,≥2) = q−1

q6 . Lastly, when e ≥ 3, we have that either α1 = 1
and α3 ≥ 1, α1 = 2 and α3 ≥ 2, and α1 ≥ 3 and α3 ≥ 3. We similarly
conclude that ψK,p(III ∗, 2; 1,≥ 1) = q−1

q7 , ψK,p(III ∗, 2; 2,≥ 2) = q−1
q6 , and

ψK,p(III ∗, 2; ≥3,≥3) = q−1
q5 .

Step 10. E terminates at Step 10 if π6 ∤ −w2 + a2
1tw− a3w+ (3t2 − a1t)3 −

a1a4t + a6. From Step 9, we have that π5 | −w2 + a2
1tw − a3w + (3t2 −

a1t)3 − a1a4t + a6. Therefore, we want that π | π−5(−w2 + a2
1tw − a3w +

(3t2 − a1t)3 − a1a4t+ a6). Fix a6 modulo π5. Then, note that π−5(−w2 +
a2

1tw−a3w+(3t2 −a1t)3 −a1a4t+a6) modulo π forms a bijective map with
the q possible values of a6 modulo π6. For q − 1 of the q possible values
of a6 modulo π6, E terminates at Step 10. When e = 1, α1, α3 ≥ 1 from
Steps 1 and 2. Therefore, ψK,p(II ∗, 1; ≥1,≥1) = q−1

q8 . When e = 2, we have
from Steps 1, 2 and 5 that either α1 = 1 and α3 ≥ 1 or α1, α3 ≥ 2. We thus
conclude, ψK,p(II ∗, 1; 1,≥ 1) = q−1

q8 and ψK,p(II ∗, 2; ≥2,≥2) = q−1
q7 . Lastly,

when e ≥ 3, we have that either α1 = 1 and α3 ≥ 1, α1 = 2 and α3 ≥ 2, and
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α1 ≥ 3 and α3 ≥ 3. We similarly conclude that ψK,p(II ∗, 1; 1,≥ 1) = q−1
q8 ,

ψK,p(II ∗, 1; 2,≥ 2) = q−1
q7 , and ψK,p(II ∗, 1; ≥3,≥3) = q−1

q6 .

Step 11. For E to reach Step 11, it must not have terminated at a previous
step. Therefore, we check that when e = 1, α1, α3 ≥ 1, the proportion of
non-minimal curves is 1

q8 , when e = 2, α1 = 1, and α3 ≥ 1, the proportion
of non-minimal curves is 1

q8 as well, and that when e = 2 and α1, α3 ≥ 2,
the proportion of non-minimal curves is 1

q7 . When e ≥ 3, the proportion of
non-minimal curves equal 1

q8 when α1 = 1 and α3 ≥ 1, 1
q7 when α1 = 2 and

α3 ≥ 2, and 1
q6 when α1, α3 ≥ 3. □

We now show how we reclassify the non-minimal models of one family as
another family of curves. As in Section 4, we first note that the models in
F (≥ e,≥ e) and F (∞,∞) have the same local properties in the following
sense.

Remark 5.3. Because linear transformations do not change the local data
of an elliptic curve, without loss of generality, instead of computing the
local density on short Weierstrass forms F (∞,∞), we can compute the
local density at the set
(5.4){(
E : (y + tx+ s)2 =

(
x+ t2

3

)3

+a4

(
x+ t2

3

)
+a6

)
: s, t, a4, a6 integral

}
.

By the surjectivity of a4 and a6, the set in (5.4) is precisely F (≥ e,≥ e).

Thus, moving forward, if α1, α3 ≥ e, then we work with the curves in
F (≥ e,≥ e) instead of F (α1, α3). Similarly, if α1 ≥ e > α3, then we work
with the curves in F (≥ e, α3) and if α3 ≥ e > α1, then we work with the
curves in F (α1,≥ e). We first show that, for α3, α1 < e, the local densities
at the non-minimal models of a family F (α1, α3) exactly match the local
densities at the family F (α1 − 1, α3 − 3). To do this, we establish a map
which sends a non-minimal model in F (α1, α3) to another isomorphic model
in F (α1 − 1, α3 − 3), induced by the transformation at Step 11 followed by
the shift x 7→ x − a2/3. Likewise, we show that for α1 ≥ e > α3 (resp.
α3 ≥ e > α1 and α1, α3 ≥ e), the local densities at the non-minimal models
of a family F (≥ e, α3) (resp. F (α1,≥ e) and F (≥ e,≥ e)) exactly match
the local densities at the family F (≥ e− 1, α3 − 3) (resp. F (α1 − 1,≥ e− 3)
and F (≥ e− 1,≥ e− 3)).

Lemma 5.4. We have surjective, q4-to-1 maps between
• the set of non-minimal models in F (α1, α3) and the set F (α1 − 1,
α3 − 3) for each α1, α3 < e,
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• the set of non-minimal models in F (≥e, α3) and the set F (≥ e− 1,
α3 − 3) for each α1 ≥ e > α3

• the set of non-minimal models in F (α1,≥e) and the set F (α1 − 1,
≥ e− 3) for each α3 ≥ e > α1

• the non-minimal models in F (≥e,≥e) and the set F (≥ e− 1,
≥ e− 3)

that each sends E to its transformation E′ after passing Step 11.

Proof. First, suppose that α1, α3 < e. Recall from Step 11 of Tate’s algo-
rithm that for non-minimal E(a1, a2, a3, a4, a6), Tate’s algorithm produces
a unique residue t (mod π) and w (mod π3) for which

(y + tx+ w)2 + a1(x+ 3t2 − a1t)(y + tx+ w) + a3(y + tx+ w)
= (x+ 3t2 − a1t)3 + a4(x+ 3t2 − a1t) + a6

has the coefficient of y and xy divisible by π and π3, respectively, and the
coefficient of xi divisible by πi for i = 2, 4, 6. Hence, each non-minimal
model E(a1, a2, a3, a4, a6) ∈ F (α1, α3) is sent to

Ê(a1, a2, a3, a4, a6) := E

(
a1 + 2t
π

,
8t2 − 4a1t

π2 ,
2w + 3a1t

2 − a2
1t+ a3

π3 ,

−2tw − a1w − 3a1t
3 + a2

1t
2 − a3t+ 3(3t2 − a1t

2) + a4
π4 ,

−w2 − a1w(3t2 − a1t) − a3w + (3t2 − a1t)3 + a4(3t2 − a1t) + a6
π6

)
,

with vπ(2t+ a1) = vπ(a1) = α1 and vπ(2w + 3a1t
2 − a2

1t+ a3) = vπ(a3) =
α3. Now, let Ê(a1, a2, a3, a4, a6) = E(â1, â2, â3, â4, â6). Then we perform
x → x− â2

3 to Ê and transform Ê to E′ :

E′ (a1, a2, a3, a4, a6) := y2 + â1

(
x− â2

3

)
y + â3y

=
(
x− â2

3

)3
+ â2

(
x− â2

3

)2
+ â4

(
x− â2

3

)
+ â6.

We now have

E′ (a1, a2, a3, a4, a6)

= E

(
â1,−

â1â2
3 + â3,

−â2
2

3 + â4,
2â2

3

27 − â2â4
3 + â6

)
∈ F (α1 − 1, α3 − 3).

The two transformations are well-defined, so the map is also well-defined.



388 Yunseo Choi, Sean Li, Apoorva Panidapu, Casia Siegel

Conversely, given a model E(a′
1, a

′
3, a

′
4, a

′
6) ∈ F (α1 − 1, α3 − 3), pick a

pair of residues t (mod π) and w (mod π3). Then, there is a unique choice
of a′

2 for which

E(â1, â2, â3, â4, â6) := y2 + a′
1

(
x+ a′

2
3

)
y + a′

3y

=
(
x+ a′

2
3

)3
+ a′

4

(
x+ a′

2
3

)
+ a′

6

and (â1, â2) =
(

a1+2t
π , 8t2−4a1t

π2

)
for some a1 so that E(â1, â2, â3, â4, â6) has

some preimage E ∈ F (α1, α3). In fact, there is a unique preimage E for
which E 7→ E(â1, â2, â3, â4, â6) after Step 11. Hence, after varying t and
w across a set of q and q3 representatives, respectively, we have shown
the aforementioned map is q4-to-1, as we had sought. The proof of the
statement of the lemma when α1 ≥ e or α3 ≥ e follows in the same way
and is thus omitted. □

We now finish by using our lemmas to compute δK,p(c) by forming a
Markov chain amongst families of curves. Lemma 5.4 establish the edges
between these families, while Lemma 5.2 establishes the local densities at
each node. This information is collated in Figures 5.1 to 5.3.

Terminate

vπ(a1) = 0
vπ(a3) ≥ 0

vπ(a1) ≥ 1
vπ(a3) = 0

vπ(a1) ≥ 1
vπ(a3) ≥ 1

1
q10

q−1
q10

q−1
q9

1 − 1
q8

1

1

vπ(a1) = 0

vπ(a1) ≥ 1

Figure 5.1. The Markov Chain structure when p | (2) for
e = 1.
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vπ(a1) = 1
vπ(a3) ≥ 1

vπ(a1) = 0
vπ(a3) ≥ 0

vπ(a1) = 1
vπ(a3) = 0

vπ(a1) ≥ 2
vπ(a3) = 0

vπ(a1) ≥ 2
vπ(a3) = 1

vπ(a1) ≥ 2
vπ(a3) ≥ 2

1
q10

q−1
q10

q−1
q9

q−1
q9

(q−1)2

q9

1
q8

vπ(a1) ≥ 2

vπ(a1) = 1

vπ(a1) = 0

Figure 5.2. The Markov Chain structure when p | (2) for
e = 2.

Proposition 5.5. For p | (2) is a prime ideal in K and c ≥ 1, let q :=
NK/Q(p). If e = 1, we have

δK,p(c) =



1 − (q − 1)(6q10 + 9q9 + 7q8 + 8q7 + 7q6 + 9q5 + 6q4 + 6q + 3)
6q(q + 1)(q10 − 1) if c = 1,

(q − 1)(2q11 + 2q10 + q9 + 2q8 + q7 + 2q6 + 2q5 + 2q2 − 1)
2q2(q + 1)(q10 − 1) if c = 2,

(q − 1)(q10 + q7 + q − 1)
2q3(q10 − 1) if c = 3,

(q − 1)(q10 + q9 + 3q − 3)
6q4(q10 − 1) if c = 4,

(q − 1)2

2qc(q10 − 1) if c ≥ 5.

If e = 2, we have

δK,p(c) =



1 − (q − 1)(6q18 + 10q17 + 8q16 + 7q15 + 9q14 + 6q13 + 6q10 + 9q9)
6q9(q + 1)(q10 − 1) +O

( 1
q11

)
if c = 1,

(q − 1)(2q19 + 3q18 + 2q17 + q16 + 2q15 + 2q14 + 2q11 + 2q10))
2q10(q + 1)(q10 − 1) +O

( 1
q11

)
if c = 2,

(q − 1)(q2 + 1)(q4 − q2 + 1)(q10 + q − 1)
2q11(q10 − 1) if c = 3,

(q − 1)(q19 + q18 + q10 − q8 + 3q − 3)
6q12(q10 − 1) if c = 4,

(q − 1)2

2q8+c(q10 − 1) if c ≥ 5.
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Step v(a1) = 0 v(a1) ≥ 1
v(a3) = 0

v(a1) = 1
v(a3) ≥ 1

v(a1) ≥ 2
v(a3) = 1

v(a1) = 2
v(a3) ≥ 2

v(a1) ≥ 3
v(a3) = 2

v(a1) ≥ 3
v(a3) ≥ 3

Color

11 1 1

1
q8

1 − 1
q8

1
q8

(q−1)
q8

1 − 1
q7

1
q8

(q−1)
q8

(q−1)
q7

1 − 1
q6

1
q6

1 − 1
q6

1
q7

(q−1)
q7

1 − 1
q6

1
q10

(q−1)
q9

(q−1)2

q9

(q−1)2

q8

1
q9

(q−1)
q9

(q−1)
q8

1 − 1
q6

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

.
.

.

Figure 5.3. The Markov Chain structure when p | (2) for
e ≥ 3.
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The exact proportions for e = 2 and the proportions for e ≥ 3 are given in
Proposition B.2 of the extended version of the paper [3].

Proof. The proof is very similar to Proposition 4.5: we compute the propor-
tion of curves which reach each of the (e+ 1)(e+ 2)/2 non-terminal nodes,
then sum and scale the proportions by q10

q10−1 to account for curves which
initially loop back to F (≥e,≥e). □

6. Proofs of the Main Results

In this section, we make use of the computed local densities to prove our
main results.

Proof of Theorem 1.2. That

(6.1)
∏
p

(
δK,p(1)

1s
+ δK,p(2)

2s
+ δK,p(3)

3s
+ . . .

)
=

∞∑
m=1

PTam(K,m)
ms

follows directly from expansion of the product over p, but for PTam(K,m)
to be well-defined, we must additionally show that its value given by the
left hand side of (6.1) converges. From Proposition 3.3, for a prime ideal p
such that p ∤ (6), we have that 1 − 1

q2 < δK,p(1) < 1, where q := NK/Q(p).
Therefore, the convergence of PTam(K,m) follows from the convergence of
ζ(2). □

Proof of Corollary 1.4. By Theorem 1.2,

(6.2)
∏
p

(
δK,p(1)

1s
+ δK,p(2)

2s
+ δK,p(3)

3s
+ . . .

)
=

∞∑
m=1

PTam(K,m)
ms

.

Thus, the expansion of the left hand side gives PTam(K, 1) =
∏

p δK,p(1),
which converges as shown in the proof of Theorem 1.2.

Now, setting m = −1 in Theorem 1.2, the average Tamagawa number
LTam(K,−1) is given as

LTam(K,−1) =
∞∑

m=1
PTam(K,m)m

=
∏
p

(δK,p(1) + 2δK,p(2) + 3δK,p(3) + . . . ) .

By Proposition 3.3, for prime ideal p with p ∤ (6) and q := NK/Q(p), we
have that δK,p(1) = 1 − 1

q2 +O(1/q3) and 0 < cδK,p(c) < c
qc for c ≥ 2. Since∑∞

c=2
c
qc = 2q−1

(q−1)2q
= 2

q2 +O( 1
q3 ), we obtain

(6.3)
∞∑

c=1
cδK,p(c) = 1 + 1

q2 +O

( 1
q3

)
.
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From Propositions 4.5 and 5.5, when p | (6), letting q := NK/Q(p), we
have

(6.4)
∑
c≥1

cδK,p(c) ≤ δK,p(1) +
∞∑

k=1
(4 + k)(1 − δK,p(1))q − 1

qk

= 5 − 4δK,p(1) + (1 − δK,p(1))
q − 1 .

Therefore, LTam(K,−1) must converge as sought. □

Proof of Corollary 1.6. We begin by establishing bounds on PTam(K, 1)
with respect to d. Recall from Corollary 1.4 that

(6.5) PTam(K, 1) =
∏
p

δK,p(1).

We first establish a lower bound on PTam(K, 1) with respect to d. From
Propositions 3.3, 4.5 and 5.5, δK,p(1) is at least when each p is unramified
and has residue field degree 1. If p is unramified and has residue field
degree 1, then q = NK/Q(p) = p and

(6.6) PTam(Q, 1)d ≤ PTam(K, 1).
From [5], PTam(Q, 1) = 0.5054 . . .. Therefore,

(6.7) (0.5054)d < PTam(Q, 1)d ≤ PTam(K, 1).
Next, we establish a lower bound on PTam(K, 1) with respect to d. Again,

from Propositions 3.3, 4.5 and 5.5, δK,p is at most when each p is inert.
When p is inert, q := NK/Q(p) = pd. Furthermore, from Propositions 3.3
and 4.5, when p ∤ (2),

(6.8) δK,p(1) ≤ 1 − 1
q2 + 1

q3 = 1 − 1
p2d

+ 1
p3d

and from Proposition 5.5, when p | (2),

(6.9) δK,p(1) ≤ 1 − 1
q

+ 1
q2 = 1 − 1

2d
+ 1

22d
.

Now collecting (6.5), (6.8), and (6.9), we have that

(6.10) PTam(K, 1) =
∏
p

δK,p(1) ≤
(

1− 1
2d

+ 1
22d

) ∏
p≥3 prime

(
1− 1

p2d
+ 1
p3d

)
.

Because
∏

p prime

(
1 − 1

p2d

)
= 1

ζ(2d) [6], the upper bound on PTam(K, 1) in
the theorem statement follows from (6.10) if

(6.11)
(

1 − 1
2d

+ 1
22d

) ∏
p≥3 prime

(
1 − 1

p2d
+ 1
p3d

)
≤

∏
p prime

(
1 − 1

p2d

)
.
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By combining the denominators of the terms within each parenthesis of
(6.11), we can rewrite (6.11) as

(6.12)
(

22d − 2d + 1
22d

) ∏
p≥3 prime

(
p3d − pd + 1

p3d

)
≤

∏
p prime

(
p2d − 1
p2d

)
.

Dividing each side of (6.12) by
(

22d−2d+1
22d

)∏
p≥3 prime

(
p2d−1

p2d

)
gives

(6.13)
∏

p≥3 prime

(
p3d − pd + 1
pd(p2d − 1)

)
=

∏
p≥3 prime

(
1 + 1

p3d − pd

)

≤ 22d − 1
22d − 2d + 1 = 1 + 2d − 2

22d − 2d + 1 .

Now, because

(6.14)
∏

p≥3 prime

(
1 + 1

p3d − pd

)
≤

∏
p prime

(
1 + 1

p3d−1 − 1

)
= ζ(3d− 1),

and

(6.15) ζ(3d− 1) ≤ 1 + 1
23d−1 +

∫ ∞

2

1
x3d−1 dx

= 1 + 1
23d−1 + 1

(3d− 2)23d−2 ≤ 1 + 2d − 2
22d − 2d + 1 ,

(6.13) holds true. Therefore, (6.11) holds true. Thus, combining (6.10) and
(6.11), we have that

(6.16) PTam(K, 1) ≤ 1
ζ(2d) = (−1)d+1 2(2d)!

B2d(2π)2d
,

where the last equality follows from a well-known result by Euler [1].
We now establish bounds on LTam(K,−1) with respect to d. Recall from

Corollary 1.4 that

(6.17) LTam(K,−1) =
∏
p

∞∑
m=1

δK,p(m)m.

We begin by establishing an upper bound on LTam(K,−1) with respect
to d. From Propositions 3.3, 4.5 and 5.5, LTam(K,−1) is at most when each
p splits completely. When p splits completely, q := NK/Q(p) = p, and

(6.18) LTam(K,−1) ≤ LTam(Q,−1)d.

From [5], LTam(Q,−1) = 1.8184 . . .. Therefore,
(6.19) LTam(K,−1) ≤ LTam(Q,−1)d < (1.8184)d.

We now establish a lower bound on LTam(K,−1) with respect to d.
Again, from Propositions 3.3, 4.5 and 5.5, LTam(K,−1) is at least when
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each p is inert. When p is inert, q := NK/Q(p) = pd. Now, because for
each p,

(6.20) δK,p(1) + 2(1 − δK,p(1)) = 2 − δK,p(1) ≤
∞∑

m=1
δK,p(m)m,

from Propositions 3.3, 4.5 and 5.5, we have that

(6.21)
(

1 + 1
2d

− 1
22d

) ∏
p≥3 prime

(
1 + 1

p2d
− 1
p3d

)
≤ LTam(K,−1).

Now, because
∏

p prime

(
1 + 1

p2d

)
= ζ(2d)

ζ(4d) , if we show that

(6.22)
∏

p prime

(
1 + 1

p2d

)
≤
(

1 + 1
2d

− 1
22d

) ∏
p≥3 prime

(
1 + 1

p2d
− 1
p3d

)
,

then the statement of the theorem follows from (6.21). Now, combining
the denominator across the terms within the parentheses of (6.22), we can
rewrite (6.22) as

(6.23)
∏

p prime

(
p2d + 1
p2d

)
≤
(

22d + 2d − 1
22d

) ∏
p≥3 prime

(
p3d + pd − 1

p3d

)
.

Dividing each side by 22d+2d−1
22d

∏
p≥3 prime

(
p2d+1

p2d

)
, (6.23) is equivalent to

(6.24) 22d + 1
22d + 2d − 1 = 1 − 2d − 2

22d + 2d − 1

≤
∏

p≥3 prime

(
p3d + pd − 1
p3d + pd

)
=

∏
p≥3 prime

(
1 − 1

p3d + pd

)
.

Now, because

(6.25) 1
ζ(3d) =

∏
p≥3 prime

(
1 − 1

p3d

)
≤

∏
p≥3 prime

(
1 − 1

p3d + pd

)
,

(6.24) follows if we show that

(6.26) 1 − 2d − 2
22d + 2d − 1 ≤ 1

ζ(3d) .

Now, because

(6.27) ζ(3d) ≤ 1 + 1
23d

+
∫ ∞

2

1
x3d

dx = 1 + 1
23d

+ 1
(3d− 1)23d−1
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and

1 − 2d − 2
22d + 2d − 1 ≤ 1 − 3d+ 1

23d(3d− 1) + 3d+ 1

= 23d(3d− 1)
(23d + 1)(3d− 1) + 2 = 1

1 + 1
23d + 1

23d−1(3d−1)
,

(6.26) holds true. Now, combining (6.21) and (6.22), we have that

(6.28) ζ(2d)
ζ(4d) = (−1)d B2d(4d)!

B4d(2d)!(2π)2d
≤ LTam(K,−1),

where the equality follows from Euler [1]. □

Proof of Theorem 1.7. It suffices to explicitly construct a family of multi-
quadratic fields whose Tamagawa trivial proportions tend to 0 and a family
of cyclotomic fields whose proportions tend to 1.

We begin by proving lim infd→+∞ t−(d) = 0. Let p1 < p2 < p3 < . . . be
an infinite sequence of 1 (mod 8) primes. Consider the sequence of multi-
quadratic field extensions

K1 = Q(√p1),
K2 = Q(√p1,

√
p2),

K3 = Q(√p1,
√
p2,

√
p3),

...
Fix a field Ki. Since 2 is a quadratic residue modulo pi for 1 ≤ j ≤ i, (2)
splits completely in the number fields Q(√pj). Hence the ideal (2) also splits
completely in the composite field Ki. In particular, there are 2i distinct
prime ideals above (2), each with inertial degree and ramification index 1.
Recall from Proposition 5.5 that for norm 2 unramified prime ideals p we
have δK,p(1) = 241/396. Hence, we have an upper bound

(6.29) t−(2i) ≤ PTam(Ki; 1) =
∏
p

δKi,p(1) ≤
∏
p|(2)

δKi,p(1) = (241/396)2i
,

which tends to 0 as i grows large. Thus, lim infd→+∞ t−(d) = 0.
In fact, this sequence of fields also show that lim supd→+∞ µ+(d) = ∞.

For each p above 2, we may compute
∑∞

m=1 δK,p(m)m > 1.49, whence

(6.30) µ+(2i) ≥
∏
p

∞∑
m=1

δKi,p(m)m ≥
∏
p|(2)

∞∑
m=1

δKi,p(m)m > (1.49)2i
.

The right-hand side tends to infinity as i → ∞, from which the claim
follows.

We now prove that lim supd→+∞ t+(d) = 1 for the sequence of fields
K = Q(ξa), where a is some increasing sequence of odd primes and ξa =
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e2πi/a. By Propositions 3.3 and 4.5, a prime ideal p ∤ (2) satisfies the bound
δK,p(1) ≥ 1 − (NK/Q(p))−1.5. Hence, letting ζQ(ξa) be the Dedekind zeta
function of Q(ξa), we have the lower bound

t+(a− 1) ≥ PTam(K; 1) =
∏
p

δK,p(1)(6.31)

≥

(
1 − 2− orda(2)

) a−1
orda(2)

(
1 − 2−1.5 orda(2)) a−1

orda(2)

1
ζQ(ξa)(1.5)(6.32)

≥

(
1 − 2− log2(a)

) a−1
log2(a)

(
1 − 2−1.5 log2(a)) a−1

log2(a)

1
ζQ(ξa)(1.5) ,(6.33)

where the last inequality follows from orda(2) ≥ loga(2). It now remains to
show that as a → ∞, (6.33) converges to 1.

First, it is straightforward that

(6.34) 1 ≥ lim
a→∞

(
1 − 2− log2(a)

1 − 2−1.5 log2(a)

) a−1
log2(a)

= lim
a→∞

(
1 − a−1) a−1

log2(a)

(1 − a−1.5)
a−1

log2(a)
= 1.

Next,

log ζQ(ζa)(1.5) = −
∑
p

log (1 −NK/Q(p)1.5) =
∑
p

∞∑
k=1

1
kNK/Q(p)1.5k

(6.35)

≤
∑
p

a− 1
NK/Q(p)1.5 +

∑
p

∞∑
k=2

1
kNK/Q(p)1.5k

,(6.36)

where the last inequality follows from at most a−1 primes having the same
norm in Q(ζa).

Now, taking the limit of each side,

lim sup
a→∞

log ζQ(ζa)(1.5) ≤ lim sup
a→∞

∑
p

a− 1
NK/Q(p)1.5(6.37)

Now, by Theorem 2.13 in [10], NK/Q(p) ≡ 1 (mod a) for all p unless
pa−1 = (a). Therefore,

lim sup
a→∞

log ζQ(ζa)(1.5) ≤ lim sup
a→∞

∑
p

a− 1
NK/Q(p)1.5(6.38)

≤ lim sup
a→∞

a− 1
a1.5 + lim sup

a→∞

∑
p∤(a)

a− 1
NK/Q(p)1.5(6.39)
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≤ lim sup
a→∞

∞∑
k=1

a− 1
(ak)1.5(6.40)

≤ lim sup
a→∞

a− 1
a1.5

1
1.5 − 1 = 0.(6.41)

Thus,
(6.42) lim sup

a→∞
ζQ(ζa)(1.5) = 1.

Now, from (6.34), and (6.42), we have that

(6.43) lim sup
a→∞

(
1 − 2− log2(a)

) a−1
log2(a)

(
1 − 2−1.5 log2(a)) a−1

log2(a)

1
ζQ(ξa)(1.5) = 1.

Thus, by (6.33), it holds that lim supd→+∞ t+(d) = 1.
Next, we show that the same sequence of fields K = Q(ξa) satisfies

lim infd→+∞ µ−(d) = 1. By Propositions 3.3 and 4.5, for p ∤ (2), we have
that

(6.44)
∞∑

m=1
δK,p(m)m ≤ 1 + 2NK/Q(p)−1.95 ≤ 1

1 −NK/Q(p)−1.5 .

In addition, from Proposition 5.5, for p | (2), we have that

(6.45)
∞∑

m=1
δK,p(m)m ≤ 1 + 2NK/Q(p)−0.95 ≤ 1

1 −NK/Q(p)−1 .

Thus, by (6.44) and (6.45),

µ−(a− 1) ≤
∏
p

∞∑
m=1

δK,p(m)m(6.46)

≤

(
1 − 2−1.5 orda(2)

) a−1
orda(2)

(
1 − 2− orda(2)) a−1

log2(a)
ζQ(ξa)(1.5)(6.47)

≤

(
1 − 2−1.5 log2(a)

) a−1
log2(a)

(
1 − 2− log2(a)) a−1

log2(a)
ζQ(ξa)(1.5),(6.48)

where the last inequality follows from the naive bound log2(a) ≤ orda(2).
Now, by (6.43),

(6.49) lim sup
a→∞

µ−(a− 1) ≤ lim sup
a→∞

(
1 − 2−1.5 log2(a)

) a−1
log2(a)

(
1 − 2− log2(a)) a−1

log2(a)
ζQ(ξa)(1.5) = 1

as sought. □
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7. Examples

In this section, we offer numerical examples that illustrate the results in
this paper.

Example 7.1. There are finitely many imaginary quadratic fields of class
number 1. As briefly discussed in the introduction, in Table 1.1, we calcu-
lated the following values for their proportion of Tamagawa trivial curves.
Then Tables 7.1 and 7.2 shows the convergence of PT am(Q(

√
−D), 2) and

PT am(Q(
√

−D), 3) respectively. Lastly, in Table 1.2 we have average Tam-
agawa product for each of the imaginary quadratic fields, as shown below.

Table 7.1. Convergence to PTam(Q(
√

−D), 2).

N2(X,K)/N (X,K)
X

√
−1

√
−2

√
−3

√
−7

√
−11

√
−19

√
−43

√
−67

√
−163

104 0.353 0.351 0.248 0.354 0.255 0.278 0.260 0.284 0.283
105 0.360 0.387 0.253 0.369 0.277 0.231 0.220 0.218 0.207
106 0.377 0.382 0.266 0.382 0.298 0.256 0.228 0.211 0.215

...
...

...
...

...
...

...
...

...
...

∞ 0.378 0.384 0.264 0.370 0.299 0.265 0.226 0.216 0.206

Table 7.2. Convergence to PTam(Q(
√

−D), 3).

N3(X,K)/N (X,K)
X

√
−1

√
−2

√
−3

√
−7

√
−11

√
−19

√
−43

√
−67

√
−163

104 0.008 0.023 0.015 0.074 0.018 0.027 0.019 0.069 0.100
105 0.015 0.026 0.029 0.078 0.035 0.029 0.035 0.040 0.089
106 0.017 0.025 0.027 0.078 0.035 0.024 0.021 0.025 0.031

...
...

...
...

...
...

...
...

...
...

∞ 0.018 0.026 0.032 0.082 0.038 0.028 0.024 0.024 0.024

Example 7.2. Figure 7.1 (resp. Figure 7.2) displays the spread of the pro-
portion of Tamagawa trivial curves (resp. the average Tamagawa product)
across square-free real quadratic fields Q(

√
D) for 2 ≤ D < 104.

In Figure 7.1, one can see that PTam(Q(
√
D), 1) does not have a normal

distribution, nor does it resemble a skewed normal distribution. Instead,
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Figure 7.1. Distribution of PTam(K, 1) for real quadratic
number fields.

Figure 7.2. Distribution of LTam(K,−1) for real quadratic
number fields.

there appear to be three distinct sections, from ≈ 0.26 to ≈ 0.36, from
≈ 0.41 to ≈ 0.57, and from ≈ 0.58 to ≈ 0.75. These three distinct regions
correspond to how 2 behaves at any particular field. The left-most section
corresponds to fields where 2 splits, the middle section corresponds to fields
where 2 ramifies, and the right-most section corresponds to fields where 2 is
inert. This leads us to many possible questions. Is the distribution uniform
or random among each section? Are the proportions dense on any interval?
How might these generalize over different degree fields? Are there always
gaps between the sections? In Figure 7.2, we see that LTam(Q(

√
D),−1) also
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does not have a normal distribution, but instead has two distinct sections.
This leads to further questions, such as how do these sections relate to those
for PTam(Q(

√
D), 1)?

Example 7.3. From Theorem 1.7 we have
lim inf
d→+∞

t−(d) = 0 and lim sup
d→+∞

t+(d) = 1,

and
lim inf
d→+∞

µ−(d) = 1 and lim sup
d→+∞

µ+(d) = ∞.

In Table 7.3, we have an example of a sequence of fields with the propor-
tion of Tamagawa trivial curves decreasing to zero, and the corresponding
average Tamagawa products heading off to infinity. The sequence follows
the sequence of fields constructed in the proof of Theorem 1.7.

Table 7.3. The proportion of Tamagawa trivial curves in
multiquadratic fields.

K Q(
√

17) Q(
√

17,
√

41) Q(
√

17,
√

41,
√

73) Q(
√

17,
√

41,
√

73,
√

89)
PTam(K, 1) 0.35585 0.13273 0.01778 0.00031
LTam(K,−1) 2.32335 5.14423 26.22779 686.87874

Similarly, in Figure 7.3, the sequence of fields Q(ζp) for primes p < 258
excluding p = 5, 7, 31, and 127 have the proportion of Tamagawa trivial
curves heading to 1.

Figure 7.3. PTam(Q(ζp), 1) for primes p < 258 excluding
p = 5, 7, 31, and 127.
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Figure 7.4. LTam(Q(ζp),−1) for primes p < 258 excluding
p = 5, 7, 31, and 127.

In Figure 7.4, we see that for the same sequence of fields, the average
Tamagawa products converge to 1. Note that as displayed in Table 7.4, the
data points for p = 5, 7, 31, and 127 are outliers. For the latter three p, it
is hinted in the proof of Theorem 1.7 that the reason is small ordp(2).

Table 7.4. Omitted values for PTam(Q(ζp), 1) and LTam(Q(ζp),−1)

p 5 7 31 127
PTam(Q(ζp), 1) 0.867 . . . 0.753 . . . 0.827 . . . 0.868 . . .
LTam(Q(ζp),−1) 1.155 . . . 1.309 . . . 1.205 . . . 1.151 . . .

Example 7.4. Many of the above examples are of simpler fields, how-
ever in our paper we are able to calculate trivial Tamagawa proportions
and average Tamagawa products for all fields, regardless of class number
or degree. Thus, even for a more complicated field such as Q(x4 + 5x2 −
6x + 3) with Galois group S4, we can even determine the trivial Tama-
gawa proportion. Note that Q(x4 + 5x2 − 6x + 3) has ∆ = 32880, and
thus the primes 2, 3, 5, and 137 all ramify. More specifically, we have that
2 = (−8α3 − α2 − 37α + 47)2, 3 = (−α)2(2α3 + 9α − 13)(α − 1), 5 =
(−α3 +α−1)(−2α2 +2α−1)2, and 137 = (44α3 +33α2 +235α−100)(−α3 −
4α2 −9α−17)2. By knowing how these primes ramify, we can calculate that
PTam(Q(x4 + 5x2 − 6x+ 3), 1) = 0.526 . . . .
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Appendix A. Classification of non-minimal models

In this section, we classify the non-minimal short Weierstrass models at
prime ideals p | (3) and p | (2). These results generalize the work of Griffin et
al. [5, Lemmas 2.2, 2.3], who classify the non-minimal short Weierstrass ra-
tional elliptic curves for primes p = 2, 3. The conditions for non-minimality
can be written as a set of modular equations for bounded powers of π,
which allows for a parametrization for the non-minimal curves. Since we
are working with primes modulo powers of π, our results depend on the
size of e.

Lemma A.1. Let p ⊆ K have ramification index e over (3). The curve
E(a4, a6) is not p-minimal if and only if some residues r (mod πmin{2,e})
and w (mod π2) satisfy

a4 ≡ −3πmax{0,4−2e}r2 + π4w (mod π6)

and
a6 ≡ 2πmax{0,6−3e}r3 − πmax{4,6−e}rw (mod π6).

Moreover, across a4 modulo π4 and a6 modulo π6 such that E(a4, a6) is
non-minimal, the choice of (r, w) from their respective residue classes is
unique, i.e., there are exactly q3 (resp. q4) classes (a4, a6) (mod π6) of
non-minimal models for e = 1 (resp. e ≥ 2).

Proof. Suppose that E/K is not p-minimal. Throughout Steps 1 to 10 of
Tate’s algorithm, we potentially translate (x, y) in the original curve to
(x + R, y + V x + U). If the starting curve is non-minimal, we must reach
Step 11, and the new coefficients ai of the curve after Tate’s algorithm must
be divisible by πi for i = 1, 2, 3, 4, 6. Translating this into equations, the
restrictions on a4, a6, R, V, U are as follows:

2V ≡ 0 (mod π)(A.1)
3R− V 2 ≡ 0 (mod π2)(A.2)

2U ≡ 0 (mod π3)(A.3)
3R2 + a4 − 2UV ≡ 0 (mod π4)(A.4)

R3 + a4R+ a6 − U2 ≡ 0 (mod π6)(A.5)

Regardless of p, (A.1) and (A.3) imply that V ≡ 0 (mod π) and U ≡ 0
(mod π3). As such, U and V vanish from the remaining equations.

From (A.2), we have that R ≡ 0 (mod πmax{0,2−e}). Therefore,
suppose that R = πmax{0,2−e}r for some π-adic integer r. Then, from
(A.4), we have a4 ≡ −3πmax{0,4−2e}r2 (mod π4). We therefore write a4 =
−3πmax{0,4−2e}r2 + π4w. Then, (A.5) is equivalent to a6 ≡ −R3 − a4R ≡
2πmax{0,6−3e}r3 − πmax{4,6−e}rw (mod π6).
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To determine (a4, a6) up to (mod π6), r should be determined up to
(mod πmax{3,e+1}) and w should be determined up to π2. Yet, we contend,
in order for the map between (a4, a6) (mod π6) and (r, w) to be bijec-
tive, the residues r and w must be selected modulo πmin{2,e} and modulo
π2, respectively. To show injectivity, we note that the resulting (a4, a6)
(mod π6) from (r, w) and (r + kπmin{2,e}, w + 6

πmin{2,e}αk + 3k2) are equiv-
alent. To show surjectivity, suppose that for some (r, w) and (r′, w′), the
resulting (a4, a6) are equivalent (mod π6), i.e.,

−3πmax{0,4−2e}r2 + π4w ≡ −3πmax{0,4−2e}r′2 + π4w′ (mod π6),(A.6)
and

(A.7) 2πmax{0,6−3e}r3 − πmax{4,6−e}rw

≡ 2πmax{0,6−3e}r′3 − πmax{4,6−e}r′w′ (mod π6).

From (A.7), r ≡ r′ (mod πmin{2,e}). Then, from (A.6), w ≡ w′ (mod π2)
as we had sought. □

Lemma A.2. Let p have ramification index e over (2). The curve E(a4, a6)
is not p-minimal if and only some residues u (mod πmin{3,e}), v (mod π),
and w (mod π2) satisfy

a4 ≡ 2πmax{0,3−e}uv − 3v4 + π4w (mod π6)
and

a6 ≡ πmax{0,6−2e}u2 − v6 − a4v
2 (mod π6).

For each (a4, a6), the choice of (u, v, w) from their respective residue classes
is unique, i.e., there exists exactly q4 (resp. q5 and q6) classes (a4, a6)
(mod π6) of non-minimal models for e = 1 (resp. e = 2 and e ≥ 3).

Proof. Suppose that E is not p-minimal in K. Following the same steps as
in the proof of Lemma A.1, we have (A.1), (A.2), (A.3), (A.4), (A.5) as
restrictions on R,U, V and a4, a6. From here, we check that (R,U, V ) and
(R+ kπ2, U + kπ2V, V ) give rise to the same (a4, a6) modulo π6. Hence, by
choosing a suitable value of k, we assume R = −V 2.

To begin, (A.3) yields U ≡ 0 (mod πmax{0,3−e}). Therefore, we suppose
that U = πmax{0,3−e}u for some π-adic integer u. From (A.4), we get a4 =
2πmax{0,3−e}uV −3V 4, whence we write a4 = (2πmax{0,3−e}uV −3V 4)+π4w
for some π-adic integer w. Finally, (A.5) gives a6 ≡ πmax{0,6−2e}u2 − V 6 −
V 2a4 (mod π6).

By the analogous reasoning as in the proof of Lemma A.1, it can be
shown that selecting u, v, w as representatives modulo πmin{3,e}, π, and π2

respectively forms a bijective map between u, v, w and (a4, a6) as we had
sought. □
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