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Extremal Sidon Sets are Fourier Uniform, with
Applications to Partition Regularity

par Miquel ORTEGA et Sean PRENDIVILLE

Résumé. En généralisant des résultats d’Erdős–Freud et Lindström, nous
prouvons que le plus grand sous-ensemble de Sidon d’un intervalle d’entiers
borné est équidistribué dans des voisinages de Bohr. Nous le faisons en mon-
trant que les ensembles de Sidon extrémaux sont Fourier-pseudo-aléatoires,
dans le sens qu’ils n’ont pas de coefficients de Fourier grands non triviaux.
Comme application, nous en déduisons que pour une equation régulière à cinq
variables et plus, toute coloration finie d’un ensemble extrémal de Sidon a une
solution monochromatique.

Abstract. Generalising results of Erdős–Freud and Lindström, we prove
that the largest Sidon subset of a bounded interval of integers is equidis-
tributed in Bohr neighbourhoods. We establish this by showing that extremal
Sidon sets are Fourier-pseudorandom, in that they have no large non-trivial
Fourier coefficients. As a further application we deduce that, for any partition
regular equation in five or more variables, every finite colouring of an extremal
Sidon set has a monochromatic solution.

1. Introduction
A subset S of an additively-written abelian group is Sidon if every non-

zero x has at most one representation as a difference x = s1 − s2 with
s1, s2 ∈ S. There have been a number of works investigating the size of
Sidon sets S ⊂ Z. Erdős and Turán [10] established the well-known bound1

(1.1) |(n, n+N ] ∩ S| ⩽ N1/2 +O(N1/4).
A corresponding lower bound was found by Singer [22], who constructed a
Sidon set S ⊂ [N ] := {1, 2, . . . , N} of size
(1.2) |S| ⩾ N1/2 −O(Nα/2),
where α is a real number for which there is always a prime in [x − xα, x]
when x is large (the current record [1] is α = 0.525).

Informally, we call a Sidon set S ⊂ [N ] extremal if its size is “close” to
N1/2 in some sense. There has been speculation on the (im)possibility of

Manuscrit reçu le 22 octobre 2021, révisé le 10 juin 2022, accepté le 30 juillet 2022.
2010 Mathematics Subject Classification. 11B30, 11B25.
Mots-clefs. Sidon sets, pseudorandomness, equidistribution, partition regularity.
1For a proof see Appendix A.
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characterising such sets [7, 8, 11, 13, 19]. We contribute to this discussion
by showing that extremal Sidon sets are Fourier pseudorandom, by which
we mean that (after appropriate renormalisation) their Fourier transform
behaves essentially like the Fourier transform of the ambient interval.

Definition 1.1 (Fourier transform). For f : Z → C with finite support
define f̂ : T → C by

f̂(α) :=
∑
n∈Z

f(n)e(αn).

Here e(β) stands for e2πiβ.

Theorem 1.2 (Fourier uniformity). Let S ⊂ [N ] be a Sidon set. Then

(1.3)
∥∥∥∥1̂S − |S|

N
1̂[N ]

∥∥∥∥
∞

≪ N1/2
(∣∣∣∣ |S|
N1/2 − 1

∣∣∣∣+N−1/6
)1/2

.

Remark 1.3. The exponent −1/6 appearing in (1.3) can be improved to
−1/4. This is accomplished by replacing a use of (1.1) in our proof with a
sharper estimate of Cilleruelo [3]; see Theorem 6.3.

We note that on combining the Erdős–Turán upper bound (1.1) with
Singer’s lower bound (1.2), the largest Sidon subset S of [N ] satisfies∣∣∣|S| −N1/2

∣∣∣ ≪ N21/80, in which case the N−1/6 error term dominates (1.3).

Corollary 1.4. The largest Sidon subset S ⊂ [N ] satisfies

(1.4)
∥∥∥∥1̂S − |S|

N
1̂[N ]

∥∥∥∥
∞

≪
∥∥1̂S

∥∥
∞N

− 1
12 .

We are not the first to investigate the uniformity of extremal Sidon sets.
Erdős and Freud [9] established that such sets are equidistributed in short
intervals2, whilst Lindström [17] proved equidistribution in arithmetic pro-
gressions3. We are able to re-prove (quantitatively weaker) versions of these
results as a consequence of Theorem 1.2.

Corollary 1.5 (Equidistribution in short intervals). Let I ⊂ [0, 1] be an
interval and S ⊂ [N ] a Sidon set of size4 |S| ⩾ 1

100N
1/2. Then we have the

asymptotic5

(1.5) Ex∈S1I(x/N) = meas(I) +Oε

(
N ε
(∣∣∣∣ |S|
N1/2 − 1

∣∣∣∣+N−1/6
)1/2

.

)
2There have since been quantitative improvements in this result, see [3].
3For quantitative improvements, see [16].
4One could replace the factor 1/100 with any positive absolute constant. This assumption

makes our conclusions notationally simpler, and is always satisfied in the range of interest, when
|S| = N1/2(1 + o(1)) with N large.

5See (1.7) for the definition of E.
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Corollary 1.6 (Equidistribution in residue classes). For any congruence
class a (mod q) and Sidon set S ⊂ [N ] of size |S| ⩾ 1

100N
1/2 we have the

asymptotic

(1.6) Ex∈S1q·Z+a(x) = q−1 +Oε

(
N ε
(∣∣∣∣ |S|
N1/2 − 1

∣∣∣∣+N−1/6
)1/2

.

)
In fact, Theorem 1.2 is more general than Corollaries 1.5 and 1.6, yielding

equidistribution in a wider class of sets. In the following, we write T := R/Z
and ∥α∥T := minn∈Z |α− n|.

Corollary 1.7 (Equidistribution in smooth Bohr neighbourhoods). Let
F : Td → [0, 1] have Lipschitz constant K ⩾ 1, in that for any α, β ∈ Td

we have
|F (α) − F (β)| ⩽ K max

j
∥αj − βj∥T .

Then for any Sidon set S ⊂ [N ] of size |S| ⩾ 1
100N

1/2 and α ∈ Td we have

Ex∈SF (αx) = Ex∈[N ]F (αx) +O

K 2
3

(∣∣∣∣ |S|
N1/2 − 1

∣∣∣∣+N−1/6
) 1

8d

 .
Remark 1.8. We have not striven for quantitative efficiency in the error
term of Corollary 1.7, which could be easily improved.

We can drop the smoothness assumption on the Bohr neighbourhood if
we are prepared to assume that it is regular.

Definition 1.9 (Regular Bohr set). Given α ∈ Td and ρ > 0, we say that
the Bohr set

B(α, ρ) :=
{
x ∈ [N ] : max

i
∥αix∥ ⩽ ρ

}
is regular if for any |κ| ⩽ 1

100d we have∣∣∣∣ |B(α, (1 + κ)ρ)|
|B(α, ρ) |

− 1
∣∣∣∣ ⩽ 100d|κ|.

Remark 1.10. Bourgain [2] established that regular Bohr sets are ubiqui-
tous; see Tao and Vu [23, Lemma 4.25].

Corollary 1.11 (Equidistribution in regular Bohr sets). Let B = B(α, ρ)
be a regular Bohr set with α ∈ Td. Then for any Sidon set S ⊂ [N ] of size
|S| ⩾ 1

100N
1/2 we have

Ex∈S1B(x) = Ex∈[N ]1B(x) +O

dρ−1
(∣∣∣∣ |S|
N1/2 − 1

∣∣∣∣+N−1/6
) 1

14d

 .
Remark 1.12. As in Corollary 1.6, the error term in Corollary 1.11 can
be improved with a more refined analysis.
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1.1. Partition regularity over extremal Sidon sets. We offer a fur-
ther application of Theorem 1.2 in proving a colouring analogue of a recent
result of Conlon, Fox, Sudakov and Zhao [4], this being the original mo-
tivation for our paper. See also Prendiville [20] for a proof of their result
with similar techniques to the ones we use in this paper.

Informally, call a Sidon subset of [N ] dense if its cardinality is a positive
proportion of N1/2, say 1

100N
1/2. The authors of [4] show that any dense

Sidon subset of [N ] contains a non-trivial6 solution to the equation

a1x1 + a2x2 + a3x3 + a4x4 = (a1 + a2 + a3 + a4)x5.

The essential features of this equation are that its coefficients sum to zero
and that it has at least five variables. The five variable condition cannot
be relaxed: every Sidon set lacks non-trivial solutions to the four-variable
equation x1 − x2 − x3 + x4 = 0. The assumption that the coefficients sum
to zero is also necessary, as we now show.

Proposition 1.13. There exists a Sidon subset of [N ] with at least
1√
2N

1/2(1 + o(1)) elements, and which has no solutions to the equation
x1 + x2 + x3 + x4 = x5

Proof. Take an extremal Sidon subset S0 of [N−1
2 ] and set S := 2·S0+1. □

Remark 1.14. The above construction can be adapted to show that for
any homogeneous linear equation whose coefficients do not sum to zero
there exists a dense Sidon sets lacking solutions to the equation.

To accommodate equations whose coefficients do not sum to zero, one
may speculate on whether a colouring analogue of the results of Conlon,
Fox, Sudakov and Zhao [4] should hold; cf. Rado’s criterion for partition reg-
ularity [14, §3.2] versus Roth’s criterion for density regularity [21]. Propo-
sition 1.13 indicates that one cannot hope to always find monochromatic
solutions to x1 + x2 + x3 + x4 = x5 in colourings of dense Sidon sets. In
the following theorem we show that such a result does hold for colourings
of extremal Sidon sets.

Theorem 1.15 (Partition regularity over extremal Sidon sets). Let c1, . . . ,
cs ∈ Z \ {0} with s ⩾ 5 and suppose that there exists a non-empty index
set I ⊂ [s] satisfying

∑
i∈I ci = 0. Let r be a positive integer and S ⊂ [N ] a

Sidon set. Then at least one of the following holds:
• N is small, in that N ≪c1,...,cs,r 1.
• S is not extremal, in that

∣∣∣|S| −N1/2
∣∣∣ ≫c1,...,cs,r N

1/2.

6For instance, with all variables distinct.
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• Partition regularity: For any r-colouring S = C1 ∪ · · · ∪ Cr, there
exists a colour class Cj such that∑

c1x1+···+csxs=0
1Cj (x1) · · · 1Cj (xs) ≫c1,...,cs,r |S|sN−1

Remark 1.16. If
∑

i∈I ci ̸= 0 for all ∅ ≠ I ⊂ [s], then there exists a finite
colouring of N with no monochromatic solutions to the equation c1x1+· · ·+
csxs = 0 (see Rado’s criterion for partition regularity [14, §3.2]). Hence the
assumption that some subset of coefficients sums to zero is necessary.

Conlon, Fox, Sudakov and Zhao [4] derive their results on dense Sidon
sets via a removal lemma for C4-free graphs. Since “extremal” C4-free
graphs are pseudorandom, see [15, Theorem 5.1], the transference approach
employed in this paper can surely be combined with a counting lemma
from [4, Theorem 3.1], to prove that every finite colouring of an “extremal”
C4-free graph has a monochromatic C5. It may be interesting to investigate
which other monochromatic subgraphs can be guaranteed in this manner,
see [5].

Acknowledgements. We thank David Conlon for an informative talk
on [4] in the Webinar in Additive Combinatorics7.

Notation.

Standard conventions. We use [N ] to denote the set of consecutive inte-
gers {1, 2, . . . , N}. We use counting measure on Z, so that for f, g : Z → C,
we have

∥f∥p :=
(∑

x

|f(x)|p
) 1

p

and (f ∗ g)(x) :=
∑

y

f(y)g(x− y).

Any sum of the form
∑

x is to be interpreted as a sum over Z. The support
of f is the set supp(f) := {x ∈ Z : f(x) ̸= 0}. For a finite set S and function
f : S → C, denote the average of f over S by

(1.7) Es∈Sf(s) := 1
|S|

∑
s∈S

f(s).

We use Haar probability measure on T := R/Z, so that for integrable
F : T → C, we have

∥F∥p :=
(∫

T
|F (α)|pdα

) 1
p

=
(∫ 1

0
|F (α)|pdα

) 1
p

and
∥F∥∞ := sup

α∈T
|F (α)|.

7https://sites.google.com/view/web-add-comb/

https://sites.google.com/view/web-add-comb/
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Write ∥α∥T := minn∈Z |α − n| for the distance from α ∈ R to the nearest
integer. This remains well-defined on T.

Asymptotic notation. For a complex-valued function f and positive-
valued function g, write f ≪ g or f = O(g) if there exists a constant
C such that |f(x)| ≤ Cg(x) for all x. We write f = Ω(g) if f ≫ g. The
notation f ≍ g means that f ≪ g and f ≫ g. We subscript these symbols
if the implicit constant depends on additional parameters.

We write f = o(g) if for any ε > 0 there exists X ∈ R such that for all
x ⩾ X we have |f(x)| ⩽ εg(x).

Local conventions. Up to normalisation, all of the above are widely used
in the literature. Next, we list notation specific to our paper. We have tried
to minimise this in order to aid the casual reader.

For a real parameter H ⩾ 1, we use µH : Z → [0, 1] to represent the
following normalised Fejér kernel

(1.8) µH(h) := 1
⌊H⌋

(
1 − |h|

⌊H⌋

)
+

=
(1[H] ∗ 1−[H])(h)

⌊H⌋2 ,

where [H] = [⌊H⌋]. This is a probability measure on Z with support in the
interval (−H,H).

2. Fourier uniformity
Given an extremal Sidon set S ⊂ [N ], our main goal in this section is to

show that S is a Fourier uniform subset of [N ], by proving Theorem 1.2.
Recalling our notation (1.8) for the Fejér kernel, we begin with the following
version of van der Corput’s inequality.

Lemma 2.1 (van der Corput differencing). Suppose that 1 ⩽ H ⩽ N ,
f : Z → C and supp(f) ⊂ [N ]. Then

(2.1)
∣∣∣∣∑

x

f(x)
∣∣∣∣2 ⩽ (N +H)

∑
h

µH(h)
∑

x

f(x)f(x+ h).

Proof. We have∣∣∣∣∑
x

f(x)
∣∣∣∣2 =

∣∣∣∣E[H]
∑

x

f(x+ h)
∣∣∣∣2 =

∣∣∣∣∑
x

E[H]f(x+ h)
∣∣∣∣2.

By Cauchy–Schwarz, the latter quantity is bounded by

(N+H)
∑

x

∣∣∣∣E[H]f(x+h)
∣∣∣∣2 = (N+H)

∑
x

1
⌊H⌋2

∑
h1,h2∈[H]

f(x+h1)f(x+ h2).

We obtain the desired inequality on changing variables in x and
using (1.8). □
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The next lemma tells us that, on taking an appropriately sized H and
supposing that S is extremal Sidon, the sum of µH(h) over S−S is nearly 1.

Lemma 2.2. Let S ⊂ [N ] be a Sidon set. Then∑
h∈(S−S)\{0}

µH(h) ⩾ |S|2

N +H
− |S|

⌊H⌋
.

Proof. Since S is Sidon 1S ∗ 1−S(x) = 1S−S if x ̸= 0. In addition 1S ∗
1−S(0) = |S|, but this does not require S to be Sidon. Hence

(2.2)
∑

h∈(S−S)\{0}
µH(h) =

∑
h

1S ∗ 1−S(h)µH(h) − |S|
⌊H⌋

.

Using (1.8) and expanding convolutions we have∑
h

1S ∗ 1−S(h)µH(h) = 1
⌊H⌋2

∑
h

1S ∗ 1−S(h)1[H] ∗ 1−[H](h)

= 1
⌊H⌋2

∑
h

1S ∗ 1[H](h)2.

We may now apply Cauchy–Schwarz to this last sum, giving us∑
h

1S ∗ 1−S(h)µH(h) ⩾ 1
(N +H)⌊H⌋2

(∑
h

1S ∗ 1[H](h)
)2

= |S|2

(N +H) ,

which gives the claimed inequality. □

We are now in a position to prove Theorem 1.2. Our use of van der
Corput’s inequality is reminiscent of the moving averages argument used
by Erdős and Turán [10].

Proof of Theorem 1.2. Let f1 := 1S , f2 := |S|
N 1[N ] and f := f1 − f2. Ap-

plying van der Corput’s inequality (2.1) to f̂ , with 1 ⩽ H ⩽ N to be
determined, we obtain

|f̂(α)|2 ⩽ (N +H)
∑

h

µH(h)
∣∣∣∣∣∑

x

[
f1(x)f1(x+ h) − f1(x)f2(x+ h)

− f2(x)f1(x+ h) + f2(x)f2(x+ h)
]∣∣∣∣∣.

We claim that
∑

h µH(h)||S|2N−1−
∑

x fi(x)fj(x+h)| is small for all choices
of i, j, so that main terms cancel and we are left only with error terms.

Since f2(x)f2(x+ h) = |S|2N−21[N ]∩([N ]−h)(x) we have∑
h

µH(h)
∣∣∣∣∣|S|2N−1 −

∑
x

f2(x)f2(x+ h)
∣∣∣∣∣ = |S|2

N2

∑
h

µH(h)|h| ⩽ H|S|2

N2 .
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We have the identity

f1(x)f2(x+ h) = |S|
N

1S∩([N ]−h)(x) = |S|
N

[1S(x) − 1S∩Ih
(x)],

where Ih ⊂ [N ] is an interval of |h| integers. Since S is a Sidon set, the
bound (1.1) gives that

(2.3) |S ∩ Ih| ≪
√

|h|.

Hence

∑
h

µH(h)
∣∣∣∣∣|S|2N−1 −

∑
x

f1(x)f2(x+ h)
∣∣∣∣∣ ≪

∑
h

µH(h)|S|N−1|h|1/2

≪ |S|H1/2

N
.

By symmetry, the same bound applies to the term involving f2(x)f1(x+h).
Note that f1(x)f1(x + h) = 1S∩(S−h)(x). On account of S being Sidon,

for h ̸= 0 we have∣∣∣∣∣|S|2N−1 −
∑

x

f1(x)f1(x+ h)
∣∣∣∣∣ ⩽ 1 − 1S−S(h) +

∣∣∣|S|2 −N
∣∣∣N−1

= 1 − 1S−S(h) +O
(∣∣∣|S| −N1/2

∣∣∣N−1/2
)
.

Thus by Lemma 2.2 we obtain

∑
h

µH(h)
∣∣∣∣∣|S|2N−1 −

∑
x

f1(x)f1(x+ h)
∣∣∣∣∣

⩽ 1 − |S|2

N +H
+O

 |S|
⌊H⌋

+

∣∣∣|S| −N1/2
∣∣∣

N1/2

 .
Putting everything together, we deduce that

|f̂(α)|2 ≪ N1/2
∣∣∣|S| −N1/2

∣∣∣+ N3/2

⌊H⌋
+N1/2H1/2.

Balancing error terms, we set H := N2/3 which gives

|f̂(α)|2 ≪ N1/2
∣∣∣|S| −N1/2

∣∣∣+N5/6. □

3. Equidistribution in progressions
In this section we derive Corollaries 1.5 and 1.6 from Theorem 1.2. Both

corollaries are immediate consequences of the following.
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Theorem 3.1. Let S ⊂ [N ] be a Sidon set and P ⊂ Z a finite arithmetic
progression. Then

|S ∩ P | = |[N ] ∩ P ||S|
N

+Oε

(
N1/2+ε

(∣∣∣∣ |S|
N1/2 − 1

∣∣∣∣+N−1/6
)1/2)

.

Theorem 3.1 follows from Theorem 1.2 by the Erdős–Turán inequality
(see, for example, [18, Corollary 1.1]). We prove a cheap version of this
inequality that suffices for our purposes. We begin with a standard estimate
for the L1 norm of the Fourier transform of a progression.

Lemma 3.2. Let P ⊂ Z be an arithmetic progression. Then∫
T

∣∣∣1̂P (α)
∣∣∣ dα ≪ log(|P |).

Proof. With a suitable change of variables, we may assume that P =
{1, . . . , |P |}. Let us first prove a pointwise bound. Summing the geometric
series gives∣∣∣1̂P (α)

∣∣∣ ≪ 1
|1 − e(α)| = 1

|e(−α/2) − e(α/2)| = 1
|2 sin(πα)| ≪ 1

∥α∥
,

where we have used that 2|α| ⩽ | sin(πα)| for α ∈ [−1/2, 1/2]. Thus,∣∣∣1̂P (α)
∣∣∣ ≪ min

(
|P |, 1

∥α∥

)
.

We now use dyadic decomposition to complete the proof. Let

Ak =
{
α ∈ T : 2k−1

|P |
⩽ ∥α∥ ⩽

2k

|P |

}
for k = {1, . . . , ⌈log2(|P |)⌉} and A0 = {α ∈ T : ∥α∥ ⩽ 1/|P |}. For k ⩾ 1
we have ∫

Ak

∣∣∣1̂P (α)
∣∣∣ dα ⩽

∫
Ak

1
∥α∥

dα ⩽
|P | meas(Ak)

2k−1 ≪ 1.

On the other hand, ∫
A0

∣∣∣1̂P (α)
∣∣∣ dα ≪ |A0||P | ≪ 1.

Since T ⊂
⋃

k Ak, the claimed bound follows. □

We are now able to deduce Theorem 3.1 from Theorem 1.2.

Proof of Theorem 3.1. Using orthogonality we have

|S ∩ P | − |[N ] ∩ P ||S|
N

=
∑

x

1P ∩[N ](x)
(

1S(x) − |S|
N

1[N ](x)
)

=
∫
T

1̂P ∩[N ](α)
(

1̂S − |S|
N

1̂[N ]

)
(−α)dα.
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The result follows from Lemma 3.2 and the Fourier uniformity obtained in
Theorem 1.2. □

4. Equidistribution in Bohr neighbourhoods
One can prove Corollaries 1.7 and 1.11 using Erdős–Turán type argu-

ments, see for instance [18, Chapter 1]. We opt for the following cruder
trigonometric approximation, a proof of which can be found in Appendix B.

Lemma 4.1 (Trigonometric approximation). Let F : Td → [0, 1] have
Lipschitz constant K ⩾ 1 with respect to the metric

(4.1) max
j

∥αj − βj∥T .

For any ε > 0 there exists a trigonometric polynomial Fε : Td → [0, 1] with
∥F − Fε∥∞ ⩽ ε and such that

Fε(α) =
∑

|mi|⩽M

F̂ε(m)e(m · α)

with M ≪ K2ε−3.

Deduction of Corollary 1.7. Let F : Td → [0, 1] be a 1-bounded function
with Lipschitz constant K ⩾ 1 with respect to the metric (4.1). We apply
Lemma 4.1 to obtain a trigonometric approximation Fε : Td → [0, 1], with
ε > 0 to be determined.

Expanding Fε in terms of its Fourier coefficients gives∑
x∈S

Fε(αx) =
∑

|mi|⩽M

F̂ε(m)
∑
x∈S

e(m · αx).

Approximating
∑

x∈S e(m ·αx) with
∑

x∈[N ] e(m ·αx), we deduce that there
exists an absolute constant C such that∣∣∣∣∣∣

∑
x∈S

Fε(αx) − |S|
N

∑
x∈[N ]

Fε(αx)

∣∣∣∣∣∣ ⩽ (CK2/ε−3)d
∥∥1̂S − |S|

N
1̂N

∥∥
∞.

Balancing the above error term with ε|S|, we take

ε :=
(

|S|−1
(
CK2

)d
∥∥∥∥1̂S − |S|

N
1̂N

∥∥∥∥
∞

) 1
3d+1

to yield the asymptotic

∣∣∣Ex∈SF (αx) − Ex∈[N ]F (αx)
∣∣∣ ≪

(
K2d

(∣∣∣∣ |S|
N1/2 − 1

∣∣∣∣+N−1/6
)1/2) 1

3d+1

,

on employing Theorem 1.2. □
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Deduction of Corollary 1.11. Let ε > 0 be a small quantity to be deter-
mined. Let F1 : T → [0, 1] be a piecewise linear function with F1(α) = 1
on [−ρ, ρ], F1(α) = 0 on T \ [−ρ− ε, ρ+ ε] and with Lipschitz constant at
most ε−1. By a telescoping identity, the function F (α) := F1(α1) · · ·F1(αd)
has Lipschitz constant at most dε−1. Hence by Corollary 1.7 we have

Ex∈S1B(x) ⩽ Ex∈SF (αx)

= Ex∈[N ]F (αx) +O

(d/ε)
2
3

(∣∣∣∣ |S|
N1/2 − 1

∣∣∣∣+N−1/6
) 1

8d

 .
Since F is supported on B(α, ρ + ε), regularity (Definition 1.9) ensures

that ∑
x∈[N ]

F (αx) ⩽ |B| +O
(
dρ−1εN

)
.

Therefore

Ex∈S1B(x) ⩽ |B|
N

+O

dρ−1ε+ (d/ε)
2
3

(∣∣∣∣ |S|
N1/2 − 1

∣∣∣∣+N−1/6
) 1

8d

 .
Choosing ε to balance error terms, then bounding exponents somewhat
crudely, we obtain

Ex∈S1B(x) ⩽ |B|
N

+O

dρ−1
(∣∣∣∣ |S|
N1/2 − 1

∣∣∣∣+N−1/6
) 1

14d

 .
The corresponding lower bound is proved analogously. □

5. Partition regularity
Our deduction of Theorem 1.15 from Theorem 1.2 requires two additional

results, the first being the following transference principle for colourings, a
proof of which can be found in Appendix C.

Lemma 5.1 (Dense model lemma). Let 0 < ε ⩽ 1 and ν : [N ] → [0,∞)
be such that there exist functions fi : [N ] → [0,∞) with f1 + · · · + fr ⩽ ν
and such that for any gi : [N ] → [0,∞) satisfying g1 + · · · + gr ⩽ 1[N ] there
exists i with ∥∥f̂ i − ĝi

∥∥
∞ > εN.

Then

(5.1)
∥∥ν̂ − 1̂[N ]

∥∥
∞ ≫ε,r N.

The second additional result underlying Theorem 1.15 is a lower bound
on the number of monochromatic solutions to a partition regular equation
in an interval.
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Lemma 5.2 (Counting monochromatic solutions in an interval of integers).
Let c1, . . . , cs ∈ Z \ {0} and suppose that there is a non-empty index set
I ⊂ [s] satisfying

∑
i∈I ci = 0. Then for any functions g1, . . . , gr : [N ] →

[0,∞) with 1[N ] = g1 + · · · + gr, either N ≪c1,...,cs,r 1 or there exists gj

satisfying

(5.2)
∑

c1x1+···+csxs=0
gj(x1) · · · gj(xs) ≫c1,...,cs,r N

s−1.

Proof. When each gi is a characteristic function of a set Ci ⊂ [N ], the
result is a special case of Frankl, Graham and Rödl [12, Theorem 1]. In
general, for each x ∈ [N ] fix an index i = i(x) such that gi(x) ⩾ 1/r.
At least one such index exists by the pigeon-hole principle. On setting
Ci = {x ∈ [N ] : i(x) = i} we obtain a colouring, and the lower bound (5.2)
follows on employing [12, Theorem 1]. □

Proof of Theorem 1.15. Let S ⊂ [N ] be a Sidon set and S = C1 ∪ · · · ∪Cr.
Writing δ = δc1,...,cs,r > 0 for the implicit constant in (5.2), suppose that

(5.3)
∑

c1x1+···+csxs=0
1Cj (x1) · · · 1Cj (xs) ⩽ 1

2δ|S|sN−1 (1 ⩽ j ⩽ r).

Define fi := N |S|−11Ci , so that f1 + · · · + fr = N |S|−11S . Then, by
Lemma 5.2, we either have N ≪c1,...,cs,r 1, or for any functions gj ⩾ 0
with g1 + · · · + gr = 1[N ] there exists gj such that∣∣∣∣∣∣

∑
c1x1+···+csxs=0

[gj(x1) · · · gj(xs) − fj(x1) · · · fj(xs)]

∣∣∣∣∣∣ ≫c1,...,cs,r N
s−1.

Applying a telescoping identity to the left hand side, there exists h1, . . . , hs

belonging to {gj , fj , fj − gj}, exactly one of which is equal to fj − gj , and
such that∣∣∣∣∣∣

∑
c1x1+···+csxs=0

[gj(x1) · · · gj(xs) − fj(x1) · · · fj(xs)]

∣∣∣∣∣∣
≪s

∣∣∣∣∣∣
∑

c1x1+···+csxs=0
h1(x1) · · ·hs(xs)

∣∣∣∣∣∣ .
By orthogonality and Hölder’s inequality

(5.4)

∣∣∣∣∣∣
∑

c1x1+···+csxs=0
h1(x1) · · ·hs(xs)

∣∣∣∣∣∣ =
∣∣∣∣∫

T
ĥ1(c1α) · · · ĥs(csα)dα

∣∣∣∣
⩽
∥∥f̂ j − ĝj

∥∥
∞ max

{∥∥f̂ j

∥∥
s−1,

∥∥ĝj

∥∥
s−1

}s−1
.
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Since s− 1 ⩾ 2 and 0 ⩽ gj ⩽ 1[N ], Parseval’s identity gives that∥∥ĝj

∥∥s−1
s−1 ⩽ N s−2.

Since s − 1 ⩾ 4 and 0 ⩽ fj ⩽ N |S|−11S , orthogonality and the Sidon
property give that∥∥f̂ j

∥∥s−1
s−1 ⩽ N s−1|S|−4 ∑

x−x′=y−y′

1S(x)1S(x′)1S(y)1S(y′) ⩽ 2N s−1|S|−2.

Supposing that |S| ⩾ 1
100N

1/2, the latter quantity is O(N s−2). We may
assume that |S| ⩾ 1

100N
1/2 for otherwise ||S| −N1/2| ≫ N1/2.

From the above deliberations, we conclude that if (5.3) holds, then either
N ≪c1,...,cs,r 1, or

∣∣|S| − N1/2∣∣ ≫ N1/2, or for any g1, . . . , gr ⩾ 0 with
g1 + · · · + gr = 1[N ] there exists gj such that

(5.5)
∥∥f̂ j − ĝj

∥∥
∞ ≫c1,...,cs,r N.

Henceforth we assume that we are not in the situation that N ≪c1,...,cs,r 1
or
∣∣|S| − N1/2∣∣ ≫ N1/2. Let η = η(c1, . . . , cr, r) > 0 denote the implicit

constant in (5.5). If it is the case that there exists g1, . . . , gr ⩾ 0 with
g1 + · · · + gr = 1[N ] such that for all 1 ⩽ j ⩽ r − 1 we have∥∥f̂ j − ĝj

∥∥
∞ ⩽

η

2rN,

then (5.5) holds with j = r, so by the triangle inequality∥∥N |S|−11̂S − 1̂[N ]
∥∥

∞ ⩾
1
2ηN ≫c1,...,cs,r N.

Let us show that this conclusion also holds when for any g1, . . . , gr ⩾ 0 with
g1 + · · · + gr = 1[N ] there exists 1 ⩽ j ⩽ r − 1 such that∥∥f̂ j − ĝj

∥∥
∞ >

η

2rN.

Since{
(g1, . . . , gr) : g1 + · · · + gr = 1[N ] and gi ⩾ 0 for all i

}
=
{

(g1, . . . , gr−1, 1[N ] − gr) : g1 + · · · + gr−1 ⩽ 1[N ], gi ⩾ 0 for all i
}
,

we may apply the dense model lemma (Lemma 5.1) to conclude that∥∥N |S|−11̂S − 1̂[N ]
∥∥

∞ ≫c1,...,cs,r N.

Hence by Theorem 1.2 we have

(5.6) N1/4
∣∣∣|S| −N1/2

∣∣∣1/2
+N5/12 ≫c1,...,cs,r |S|.

Again assuming |S| ⩾ 1
100N

1/2 (as we may), (5.6) implies that either
N ≪c1,...,cs,r 1 or

∣∣|S| −N1/2∣∣ ≫c1,...,cs,r N
1/2. □
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6. Improving Fourier uniformity
In previous sections we have seen that the quality of Fourier uniformity

dictates the level of equidistribution of an extremal Sidon set. In this section
we give a modified proof of Theorem 1.2 with an increased power saving
in the quality of Fourier uniformity. This is accomplished by incorporating
an estimate of Cilleruelo [3, Theorem 1.1] on the level of equidistribution
in short intervals.

Theorem 6.1 (Cilleruelo). Let S ⊂ [N ] be a Sidon set and I ⊂ [N ] an
interval. Then∣∣∣∣|S ∩ I| − |I||S|

N

∣∣∣∣ ≪
(
N1/4 + |I|1/2N−1/8

)(
1 +

(
1 − |S|

N1/2

)1/2

+
N1/8

)
,

where x+ = max(0, x).

Corollary 6.2. Let S ⊂ [N ] be a Sidon set and I ⊂ [N ] an interval with
|I| ⩽ N3/4. Then

|S ∩ I| ≪ N1/4 +
∣∣∣∣1 − |S|

N1/2

∣∣∣∣1/2
N3/8.

Using this result we can refine the bounds obtained in Theorem 1.2.

Theorem 6.3. Let S ⊂ [N ] be a Sidon set. Then

(6.1)
∥∥∥∥1̂S − |S|

N
1̂[N ]

∥∥∥∥
∞

≪ N1/2
(∣∣∣∣1 − |S|

N1/2

∣∣∣∣+N−1/4
)1/2

.

Proof. The proof is identical to that given for Theorem 1.2, albeit taking
H := N3/4 and replacing our use of (1.1) in (2.3) with Corollary 6.2. This
gives

|S ∩ Ih| ≪ N1/4 +
∣∣∣∣1 − |S|

N1/2

∣∣∣∣1/2
N3/8.

Hence when i ̸= j we have

∑
h

µH(h)
∣∣∣∣∣|S|2N−1 −

∑
x

fi(x)fj(x+ h)
∣∣∣∣∣

≪ |S|
(
N−3/4 +

∣∣∣∣1 − |S|
N1/2

∣∣∣∣1/2
N−5/8

)
.

Putting everything together, as in the proof of Theorem 1.2, then gives
the desired bound. □

Remark 6.4. This second version of our Fourier uniformity bound solves
a quirk of the previous proof, where we took H = N2/3, whereas in many
results on extremal Sidon sets taking H = N3/4 appears naturally.
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Of course, this new version cannot be used to improve the bounds on
uniform distribution in intervals, since it would give a circular argument.
However, it may be applied to improve our bounds on distribution in residue
classes.

Appendix A. The size of a Sidon set
In this appendix we establish the well-known bound (1.1), again using van

der Corput’s variant of the Cauchy–Schwarz inequality. Let S ⊂ (n, n+N ]
be a Sidon set and H be a positive integer (to be determined). Apply-
ing (2.1) to

∑
x 1S(x) we obtain

|S|2 ⩽ (N + ⌊H⌋)
∑

h

µH(h)
∑

x

1S(x)1S(x+ h).

Using the defining property of Sidon sets, and the fact that µH is a
probability measure, we deduce that

|S|2 ⩽ (N +H)
( |S|
H

+ 1
)
.

By the quadratic formula x2 ⩽ bx + c only if x ⩽ (b +
√
b2 + 4c)/2, which

in turn implies that x ⩽ b+
√
c. Hence

|S| ⩽
√
N +H + (N +H)H−1 ⩽ N1/2 +HN−1/2 +NH−1 + 1.

The bound (1.1) follows on taking, say, H =
⌈
N3/4⌉.

Appendix B. Trigonometric approximation
Definition B.1. Given an integrable function F : Td → [0, 1], we define its
Fourier transform to be the function F̂ : Zd → C given by

F̂ (m) =
∫

α∈Td
F (α)e(−m · α),

where m · α = m1α1 + · · · +mdαd.

Proof of Lemma 4.1. Let λM (α) = λM (α1) · · ·λM (αd) denote the following
renormalised Fourier transform of the Féjer kernel:

∑
m

(
1 − |m1|

M

)
+

· · ·
(

1 − |md|
M

)
+
e(m · α)

= M−d
(
1[M ]d ∗ 1−[M ]d

)
(̂α) = M−d

∣∣∣1̂[M ]d(α)
∣∣∣2 .

Set
FM (α) := F ∗ λM (α) =

∫
Td
F (α− β)λM (β)dβ.
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One can check that

F ∗ λM (α) =
∑
m

(
1 − |m1|

M

)
+

· · ·
(

1 − |md|
M

)
+
F̂ (m)e(m · α).

We utilise the following three properties of the Féjer kernel.
(a) (Non-negativity) λM ⩾ 0.
(b) (Mass one)

∫
Td λM = 1.

(c) (Quantitative decay) λM (α) ⩽M−1∥αj∥−2∏
i ̸=j λM (αi).

The first two facts ensure that 0 ⩽ FM ⩽ 1, since 0 ⩽ F ⩽ 1. Let us
estimate the error ∥F − F ∗ λM ∥∞. By definition of convolution

F (α) − F ∗ λM (α) =
∫
Td

(F (α) − F (α− β))λM (β)dβ.

Since the Féjer kernel is non-negative and has integral 1, the Lipschitz
continuity of F gives that∣∣∣∣∣

∫
maxi |βi|⩽η

(
F (α) − F (α− β)

)
λM (β)dβ

∣∣∣∣∣ ⩽ Kη.

By the quantitative decay estimate∣∣∣∣∣
∫

maxi |βi|>η

(
F (α) − F (α− β)

)
λM (β)dβ

∣∣∣∣∣ ⩽ 2
Mη2 .

Taking η3 = 1/(KM) then gives

∥F − F ∗ λM ∥∞ ⩽ 3K2/3M−1/3.

Setting M =
⌈
27K2ε−3⌉ we have ∥F − F ∗ λM ∥∞ ⩽ ε.

We note that we may assume that ε ⩽ 1, so that M ≪ K2ε−3, for
otherwise the result is immediate on taking Fε = 0 and M = 0. □

Appendix C. A dense model lemma
Lemma C.1 (Separating hyperplane theorem). Let K ⊂ Rn be closed and
convex and v /∈ K. Then there exists ϕ ∈ Rn such that for all u ∈ K we
have v · ϕ > u · ϕ.

Proof. See https://en.wikipedia.org/wiki/Hyperplane_separation
_theorem. □

Lemma C.2. For f, ϕ : [N ] → R write

∥f∥ :=
∥∥f̂∥∥∞ and ∥ϕ∥∗ := sup

∥f∥⩽1

∣∣∣∣∑
x

f(x)ϕ(x)
∣∣∣∣.

Then for any f, ϕ, ψ : [N ] → R we have
• |
∑

x f(x)ϕ(x)| ⩽ ∥f∥ ∥ϕ∥∗;
• ∥ϕψ∥∗ ⩽ ∥ϕ∥∗ ∥ψ∥∗;

https://en.wikipedia.org/wiki/Hyperplane_separation_theorem
https://en.wikipedia.org/wiki/Hyperplane_separation_theorem
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• ∥ϕ∥∞ ⩽ ∥ϕ∥∗.

Proof. The first inequality follows from the definition of ∥·∥∗.
Let eα denote the map x 7→ e(αx). Then ∥·∥ is invariant under multipli-

cation by eα, so for any f, ϕ : [N ] → R the first inequality gives that∣∣∣f̂ϕ(α)
∣∣∣ =

∣∣∣∣∣∑
x

f(x)eα(x)ϕ(x)
∣∣∣∣∣ ⩽ ∥feα∥ ∥ϕ∥∗ = ∥f∥ ∥ϕ∥∗ .

Hence ∣∣∣∣∣∑
x

f(x)ϕ(x)ψ(x)
∣∣∣∣∣ ⩽ ∥fϕ∥ ∥ψ∥∗ ⩽ ∥f∥ ∥ϕ∥∗ ∥ψ∥∗ .

The second inequality follows.
Suppose that ∥ϕ∥∞ = 1, so that |ϕ(x)| = 1 for some x ∈ [N ]. Notice that

the function f := 1{x} has Fourier transform bounded in magnitude by 1.
Therefore

∥ϕ∥∗ ⩾

∣∣∣∣∣∑
y

f(y)ϕ(y)
∣∣∣∣∣ = 1 = ∥ϕ∥∞ .

The third inequality then follows on renormalising. □

Proof of Lemma 5.1. We closely follow Conlon and Gowers [6, Lemma 2.6].
Notice that (

1 + ε

2

)−1
(f1, . . . , fr)

is not a member of the closed convex set{
(g1 + h1, . . . , gr + hr) : gi ⩾ 0, g1 + · · · + gr ⩽ 1[N ],

∥∥ĥi

∥∥
∞ ⩽

1
4εN

}
.

Hence by the separating hyperplane theorem, there exists (ϕ1, . . . , ϕr) such
that for any gi ⩾ 0 with g1 + · · · + gr ⩽ 1[N ] and

∥∥ĥi

∥∥
∞ ⩽ 1

4εN we have

(C.1)
(

1 + 1
2ε
)−1∑

i

∑
x

fi(x)ϕi(x)

>
∑

i

∑
x

gi(x)ϕi(x) +
∑

i

∑
x

hi(x)ϕi(x).

Taking all gi and hi zero shows that the left-hand side of (C.1) is positive,
so we may renormalise (ϕ1, . . . , ϕr) to give

(C.2)
∑

i

∑
x

fi(x)ϕi(x) = (1 + 1
2ε)N

and for all gi ⩾ 0 with g1 + · · · + gr ⩽ 1[N ] and
∥∥ĥi

∥∥
∞ ⩽ 1

4εN we have

(C.3)
∑

i

∑
x

gi(x)ϕi(x) +
∑

i

∑
x

hi(x)ϕi(x) < N.
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Notice that

(C.4)
∑

i

∑
x

fi(x)ϕi(x) ⩽
∑

i

∑
x

fi(x) max{ϕ1(x), . . . , ϕr(x), 0}

⩽
∑

x

ν(x) max{ϕ1(x), . . . , ϕr(x), 0} .

For each x ∈ [N ] fix i(x) ∈ [r] such that

max{ϕ1(x), . . . , ϕr(x)} = ϕi(x)(x).

Define

gi(x) :=
{

1 if i = i(x) and ϕi(x) ⩾ 0,
0 otherwise.

By substituting this function into (C.3) with hi = 0, and using both (C.2)
and (C.4), we deduce that∑

x

[
ν(x) − 1[N ](x)

]
max{ϕ1(x), . . . , ϕr(x), 0} > 1

2εN.

Using the notation and content of Lemma C.2, the inequality gives that

(C.5) ∥ϕi∥∞ ⩽ ∥ϕi∥∗ ⩽ 4/ε.

By the Stone–Weierstrass theorem8, there exists a polynomial Pε with de-
gree and coefficients of size Oε,r(1) such that for all |xi| ⩽ 4/ε we have

|max{x1, . . . , xr, 0} − Pε(x1, . . . , xs)| ⩽ ε/100.

Notice that we may assume that
∑

x ν(x) ⩽ 2N , otherwise we are done.
Hence ∑

x

[
ν(x) − 1[N ](x)

]
Pε(ϕ1(x), . . . , ϕr(x)) > 1

4εN.

Expanding the polynomial, and applying the pigeon-hole principle, there
exist ψ1, . . . , ψR ∈ {ϕ1, . . . ϕr} with R ≪ε,r 1 such that∣∣∣∣∣∑

x

[
ν(x) − 1[N ](x)

]
ψ1(x) · · ·ψR(x)

∣∣∣∣∣ ≫ε,r N.

Recalling (C.5) and Lemma C.2 we have ∥ψ1 · · ·ψR∥∗ ≪ε,r 1. Hence,
again applying the first inequality in Lemma C.2, we deduce (5.1). □

8https://en.wikipedia.org/wiki/Stone-Weierstrass_theorem

https://en.wikipedia.org/wiki/Stone-Weierstrass_theorem
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