Nous étudions les sous-modules pseudo-nuls maximaux de certains modules d’Iwasawa construits à partir des groupes de classes d’idéaux dans des -extensions de corps de nombres. Nous décrivons quelques critères de la non-trivialité de ces modules, en nous concentrant sur les cas et . De plus, nous en déduisons des applications à des formes faibles de la conjecture de Greenberg généralisée (GGC).
We study the maximal pseudo-null submodules of Iwasawa modules arising from ideal class groups in -extensions of number fields. We describe several sufficient criteria for the non-triviality of such modules, mainly in dimensions and . This has applications to weak versions of Greenberg’s Generalised Conjecture (GGC).
Révisé le :
Accepté le :
Publié le :
Mots clés : Greenberg’s Generalised Conjecture, maximal pseudo-null submodules
@article{JTNB_2022__34_2_583_0, author = {S\"oren Kleine}, title = {On pseudo-null {Iwasawa} modules}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {583--618}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {2}, year = {2022}, doi = {10.5802/jtnb.1218}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1218/} }
TY - JOUR AU - Sören Kleine TI - On pseudo-null Iwasawa modules JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 583 EP - 618 VL - 34 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1218/ DO - 10.5802/jtnb.1218 LA - en ID - JTNB_2022__34_2_583_0 ER -
Sören Kleine. On pseudo-null Iwasawa modules. Journal de théorie des nombres de Bordeaux, Tome 34 (2022) no. 2, pp. 583-618. doi : 10.5802/jtnb.1218. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1218/
[1] Sur les égalités du miroir et certaines formes faibles de la conjecture de Greenberg., Manuscr. Math., Volume 116 (2005) no. 3, pp. 323-340 | DOI | Zbl
[2] Higher Chern classes in Iwasawa theory, Am. J. Math., Volume 142 (2020) no. 2, pp. 627-682 | DOI | MR
[3] Pseudo-null submodules of the unramified Iwasawa module for -extensions., Interdiscip. Inf. Sci., Volume 16 (2010) no. 1, pp. 55-66 | DOI | MR | Zbl
[4] On restricted ramifications and pseudo-null submodules of Iwasawa modules for -extensions., J. Ramanujan Math. Soc., Volume 29 (2014) no. 3, pp. 295-305 | MR | Zbl
[5] On Greenberg’s generalized conjecture for CM-fields, J. Reine Angew. Math., Volume 731 (2017), pp. 259-278 | DOI | MR | Zbl
[6] Some remarks on finite submodules of the unramified Iwasawa module of totally real fields, Proc. Japan Acad., Ser. A, Volume 96 (2020) no. 9, pp. 83-85 | DOI | MR | Zbl
[7] Remarks on -extensions of number fields., Proc. Japan Acad., Ser. A, Volume 70 (1994) no. 8, pp. 264-266 | DOI | MR | Zbl
[8] Sur la capitulation dans une -extension., J. Reine Angew. Math., Volume 362 (1985), pp. 213-217 | DOI | MR | Zbl
[9] Classes généralisées invariantes., J. Math. Soc. Japan, Volume 46 (1994) no. 3, pp. 467-476 | DOI | Zbl
[10] The Iwasawa invariants of -extensions of a fixed number field., Am. J. Math., Volume 95 (1973), pp. 204-214 | DOI | MR | Zbl
[11] Iwasawa theory – past and present., Class field theory – its centenary and prospect. Proceedings of the 7th MSJ International Research Institute of the Mathematical Society of Japan, Tokyo, Japan, June 3–12, 1998, Mathematical Society of Japan, 2001, pp. 335-385 | Zbl
[12] On the -invariants of -extensions., Number theory, algebraic geometry and commutative algebra in honor of Yasuo Akizuki, Kinokuniya Book-Store Co., 1973, pp. 1-11 | Zbl
[13] A new approach for the investigation of Iwasawa invariants., Ph. D. Thesis, University of Göttingen (2015)
[14] Relative extensions of number fields and Greenberg’s generalised conjecture., Acta Arith., Volume 174 (2016) no. 4, pp. 367-392 | DOI | MR | Zbl
[15] Local behavior of Iwasawa’s invariants., Int. J. Number Theory, Volume 13 (2017) no. 4, pp. 1013-1036 | DOI | MR | Zbl
[16] -ranks of Iwasawa modules., J. Number Theory, Volume 196 (2019), pp. 61-86 | DOI | MR | Zbl
[17] Cyclotomic fields. I and II. With an appendix by Karl Rubin: The main conjecture. Combined 2nd edition., New York etc.: Springer-Verlag, 1990, xvii + 433 pages | Zbl
[18] The L-functions and Modular Forms Database, 2021 (http://www.lmfdb.org)
[19] A cup product in the Galois cohomology of number fields., Duke Math. J., Volume 120 (2003) no. 2, pp. 269-310 | DOI | MR | Zbl
[20] Iwasawa modules for -extensions of algebraic number fields., Ph. D. Thesis, University of Washington (1986)
[21] Cohomology of number fields. 2nd ed., Springer, 2008, xv + 825 pages | DOI | Zbl
[22] Sur la conjecture faible de Greenberg dans le cas abélien -décomposé., Int. J. Number Theory, Volume 2 (2006) no. 1, pp. 49-64 | DOI | Zbl
[23] The class group of -extensions over totally real number fields., Tôhoku Math. J., Volume 49 (1997) no. 3, pp. 431-435 | DOI | MR | Zbl
[24] Iwasawa invariants of -extensions over an imaginary quadratic field., Class field theory – its centenary and prospect. Proceedings of the 7th MSJ International Research Institute of the Mathematical Society of Japan, Tokyo, Japan, June 3–12, 1998, Mathematical Society of Japan, 2001, pp. 387-399 | MR | Zbl
[25] Construction of -extensions with prescribed Iwasawa modules, J. Math. Soc. Japan, Volume 56 (2004) no. 3, pp. 787-801 | DOI | MR | Zbl
[26] PARI/GP version 2.11.2 (2021) (available from http://pari.math.u-bordeaux.fr/)
[27] Two theorems on Galois cohomology., Proc. Am. Math. Soc., Volume 17 (1966), pp. 1183-1185 | DOI | MR | Zbl
[28] On small Iwasawa invariants and imaginary quadratic fields., Proc. Am. Math. Soc., Volume 112 (1991) no. 3, pp. 671-684 | DOI | MR | Zbl
[29] Kapitulation der Idealklassen und Einheitenstruktur in Zahlkörpern., J. Reine Angew. Math., Volume 358 (1985), pp. 43-60 | DOI | MR | Zbl
[30] On Galois groups of unramified pro- extensions, Math. Ann., Volume 342 (2008) no. 2, pp. 297-308 | DOI | MR | Zbl
[31] Introduction to cyclotomic fields. 2nd ed., Springer, 1997, xiv + 487 pages | DOI | Zbl
Cité par Sources :