Fix a hyperelliptic curve of genus , and consider the number fields generated by the algebraic points of . In this paper, we study the number of such extensions with fixed degree and discriminant bounded by . We show that when and is sufficiently large relative to the degree of , with even if is even, there are such extensions, where is a positive constant depending on which tends to as . This result builds on work of Lemke Oliver and Thorne who, in the case where is an elliptic curve, put lower bounds on the number of extensions with fixed degree and bounded discriminant over which the rank of grows with specified root number.
Choisissons une courbe hyperelliptique de genre et considérons les corps de nombres engendrés par les points algébriques de . Dans cet article, nous étudions le nombre de telles extensions de degré fixé et de discriminant inférieur ou égal à . Nous montrons que lorsque et est suffisamment grand par rapport au degré de (en supposant que est pair si est un nombre pair), ce nombre est , où est une constante positive dépendant de qui tend vers lorsque . Ce résultat s’appuie sur le travail de Lemke Oliver et Thorne qui, dans le cas où est une courbe elliptique, donnent une minoration pour le nombre d’extensions de degré fixé et de discriminant borné sur lesquelles le rang de augmente avec une constante locale spécifiée.
Revised:
Accepted:
Published online:
Mots-clés : Arithmetic statistics, hyperelliptic curves, Diophantine stability
Christopher Keyes 1
@article{JTNB_2022__34_1_271_0, author = {Christopher Keyes}, title = {Growth of points on hyperelliptic curves over number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {271--294}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {34}, number = {1}, year = {2022}, doi = {10.5802/jtnb.1201}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1201/} }
TY - JOUR AU - Christopher Keyes TI - Growth of points on hyperelliptic curves over number fields JO - Journal de théorie des nombres de Bordeaux PY - 2022 SP - 271 EP - 294 VL - 34 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1201/ DO - 10.5802/jtnb.1201 LA - en ID - JTNB_2022__34_1_271_0 ER -
%0 Journal Article %A Christopher Keyes %T Growth of points on hyperelliptic curves over number fields %J Journal de théorie des nombres de Bordeaux %D 2022 %P 271-294 %V 34 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1201/ %R 10.5802/jtnb.1201 %G en %F JTNB_2022__34_1_271_0
Christopher Keyes. Growth of points on hyperelliptic curves over number fields. Journal de théorie des nombres de Bordeaux, Volume 34 (2022) no. 1, pp. 271-294. doi : 10.5802/jtnb.1201. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1201/
[1] A positive proportion of locally soluble hyperelliptic curves over have no point over any odd degree extension, J. Am. Math. Soc., Volume 30 (2017) no. 2, pp. 451-493 | DOI | MR | Zbl
[2] Abstract algebra, Wiley, 2004
[3] The number of extensions of a number field with fixed degree and bounded discriminant, Ann. Math., Volume 163 (2006) no. 2, pp. 723-741 | DOI | MR | Zbl
[4] Über die obere Schranke des absoluten Betrages der Wurzeln einer algebraischen Gleichung, Tôhoku Math. J., Volume 10 (1916), pp. 167-171 | Zbl
[5] Rational and integral points on quadratic twists of a given hyperelliptic curve, Int. Math. Res. Not., Volume 2007 (2007) no. 8, rnm027, 25 pages | MR | Zbl
[6] Algebraic number theory, Graduate Texts in Mathematics, 110, Springer, 1994 | DOI
[7] Upper bounds on number fields of given degree and bounded discriminant (2020) (https://arxiv.org/abs/2005.14110, to appear in Duke Math. J.)
[8] Rank growth of elliptic curves in non-abelian extensions, Int. Math. Res. Not., Volume 2021 (2021) no. 24, pp. 18411-48441 | DOI | MR | Zbl
[9] Diophantine stability, Am. J. Math., Volume 140 (2018) no. 3, pp. 571-616 | MR | Zbl
[10] Algebraic number theory, Graduate Texts in Mathematics, 322, Springer, 1999 | DOI
[11] Number fields of given degree and bounded discriminant, Columbia University number theory seminar (New York, 1992) (Astérisque), Volume 228, Société Mathématique de France, 1995, pp. 189-195 | Numdam | Zbl
Cited by Sources: