En utilisant nos travaux antérieurs sur la structure des réalisations
We use our previous work [4] on the Galois module structure of
Révisé le :
Accepté le :
Publié le :
Mots-clés : Picard
Cornelius Greither 1 ; Cristian Popescu 2

@article{JTNB_2021__33_3.1_835_0, author = {Cornelius Greither and Cristian Popescu}, title = {Picard 1-motives and {Tate} sequences for function fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {835--852}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.1}, year = {2021}, doi = {10.5802/jtnb.1180}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1180/} }
TY - JOUR AU - Cornelius Greither AU - Cristian Popescu TI - Picard 1-motives and Tate sequences for function fields JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 835 EP - 852 VL - 33 IS - 3.1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1180/ DO - 10.5802/jtnb.1180 LA - en ID - JTNB_2021__33_3.1_835_0 ER -
%0 Journal Article %A Cornelius Greither %A Cristian Popescu %T Picard 1-motives and Tate sequences for function fields %J Journal de théorie des nombres de Bordeaux %D 2021 %P 835-852 %V 33 %N 3.1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1180/ %R 10.5802/jtnb.1180 %G en %F JTNB_2021__33_3.1_835_0
Cornelius Greither; Cristian Popescu. Picard 1-motives and Tate sequences for function fields. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.1, pp. 835-852. doi : 10.5802/jtnb.1180. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1180/
[1] On the values of equivariant zeta functions of curves over finite fields, Doc. Math., Volume 9 (2004), pp. 357-399 | MR | Zbl
[2] On Galois module invariants associated to Tate motives, Am. J. Math., Volume 120 (1998) no. 6, pp. 1343-1397 | DOI | Zbl
[3] Théorie de Hodge, III, Publ. Math., Inst. Hautes Étud. Sci., Volume 44 (1974), pp. 5-77 | DOI | Numdam | Zbl
[4] The Galois module structure of
[5] An equivariant main conjecture in Iwasawa theory and applications, J. Algebr. Geom., Volume 24 (2015) no. 4, pp. 629-692 | DOI | MR | Zbl
[6] Abstract
[7] Equivariant Iwasawa theory and non-abelian Stark-type conjectures, Proc. Lond. Math. Soc., Volume 106 (2013) no. 6, pp. 1223-1247 | DOI | MR | Zbl
[8] The cohomology groups of tori in finite Galois extensions of number fields, Nagoya Math. J., Volume 27 (1966), pp. 709-719 | DOI | MR | Zbl
[9] Les conjectures de Stark sur les fonctions
[10] Non-commutative Iwasawa theory for global fields, 2017 (Habilitationsschrift, Heidelberg)
[11] Non-commutative
- Geometric main conjectures in function fields, Journal für die reine und angewandte Mathematik (Crelles Journal) (2024) | DOI:10.1515/crelle-2024-0069
Cité par 1 document. Sources : Crossref