Fix distinct primes and , a finite field such that , multiplicative characters of orders and , and let be the associated Jacobi sum. We prove new a -adic congruence for . More specifically, we give a necessary and sufficient condition for when in terms of certain cyclotomic units of being th powers.
Soient et deux nombres premiers distincts. Soient un corps fini tel que , deux caractères multiplicatifs d’ordres respectifs et et la somme de Jacobi associée. Nous prouvons une nouvelle congruence pour Plus précisément, nous montrons que avec si et seulement si certaines unités cyclotomiques de sont des puissances -ièmes.
Revised:
Accepted:
Published online:
Mots-clés : Jacobi sums, finite fields, cyclotomic units, congruences
Vishal Arul 1
@article{JTNB_2021__33_2_607_0, author = {Vishal Arul}, title = {On the $\ell $-adic valuation of certain {Jacobi} sums}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {607--625}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {2}, year = {2021}, doi = {10.5802/jtnb.1171}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1171/} }
TY - JOUR AU - Vishal Arul TI - On the $\ell $-adic valuation of certain Jacobi sums JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 607 EP - 625 VL - 33 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1171/ DO - 10.5802/jtnb.1171 LA - en ID - JTNB_2021__33_2_607_0 ER -
%0 Journal Article %A Vishal Arul %T On the $\ell $-adic valuation of certain Jacobi sums %J Journal de théorie des nombres de Bordeaux %D 2021 %P 607-625 %V 33 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1171/ %R 10.5802/jtnb.1171 %G en %F JTNB_2021__33_2_607_0
Vishal Arul. On the $\ell $-adic valuation of certain Jacobi sums. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 2, pp. 607-625. doi : 10.5802/jtnb.1171. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1171/
[1] Torsion points on Fermat quotients of the form (2020) (https://arxiv.org/abs/1910.14251)
[2] Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, 1998 | Zbl
[3] Jacobi sums and Stickelberger’s congruence, Enseign. Math., Volume 41 (1995) no. 1-2, p. 141-141 | MR | Zbl
[4] Congruences for Jacobi sums, J. Number Theory, Volume 71 (1998) no. 1, pp. 109-120 | DOI | MR | Zbl
[5] Profinite braid groups, Galois representations and complex multiplications, Ann. Math., Volume 123 (1986) no. 1, pp. 43-106 | DOI | MR | Zbl
[6] A note on Jacobi sums, Symposia Math, Volume 15 (1975), pp. 447-459 | Zbl
[7] On the torsion of the jacobians of superelliptic curves , J. Number Theory, Volume 145 (2014), pp. 402-425 | DOI | MR | Zbl
[8] A note on the torsion of the jacobians of superelliptic curves , Algebra, logic and number theory (Banach Center Publications), Volume 108, Polish Academy of Sciences, 2016, pp. 143-149 | MR | Zbl
[9] Crystalline Cohomology, Dieudonné Modules, and Jacobi Sums, Automorphic forms, representation theory and arithmetic (Tata Institute of Fundamental Research Studies in Mathematics), Volume 10, Springer, 1981, pp. 165-246 | DOI | Zbl
[10] On the -adic expansion of certain Gauss sums and its applications, Galois representations and arithmetic algebraic geometry (Advanced Studies in Pure Mathematics), Volume 12, North-Holland, 1987, pp. 87-118 | DOI | MR | Zbl
[11] On a congruence relation between Jacobi sums and cyclotomic units, J. Reine Angew. Math., Volume 382 (1987), pp. 199-214 | MR | Zbl
Cited by Sources: