In this short paper we prove a quantitative version of the Khintchine–Groshev Theorem with congruence conditions. Our argument relies on a classical argument of Schmidt on counting generic lattice points, which in turn relies on a certain variance bound on the space of lattices.
Dans ce court article, nous prouvons une version quantitative du théorème de Khintchine–Groshev avec des conditions de congruence. Notre argument repose sur un argument classique de Schmidt sur le comptage de points de réseau génériques, qui à son tour repose sur une certaine borne de variance sur l’espace des réseaux.
Accepted:
Published online:
Mahbub Alam 1; Anish Ghosh 1; Shucheng Yu 2

@article{JTNB_2021__33_1_261_0, author = {Mahbub Alam and Anish Ghosh and Shucheng Yu}, title = {Quantitative {Diophantine} approximation with congruence conditions}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {261--271}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {1}, year = {2021}, doi = {10.5802/jtnb.1161}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1161/} }
TY - JOUR AU - Mahbub Alam AU - Anish Ghosh AU - Shucheng Yu TI - Quantitative Diophantine approximation with congruence conditions JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 261 EP - 271 VL - 33 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1161/ DO - 10.5802/jtnb.1161 LA - en ID - JTNB_2021__33_1_261_0 ER -
%0 Journal Article %A Mahbub Alam %A Anish Ghosh %A Shucheng Yu %T Quantitative Diophantine approximation with congruence conditions %J Journal de théorie des nombres de Bordeaux %D 2021 %P 261-271 %V 33 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1161/ %R 10.5802/jtnb.1161 %G en %F JTNB_2021__33_1_261_0
Mahbub Alam; Anish Ghosh; Shucheng Yu. Quantitative Diophantine approximation with congruence conditions. Journal de théorie des nombres de Bordeaux, Volume 33 (2021) no. 1, pp. 261-271. doi : 10.5802/jtnb.1161. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1161/
[1] Equidistribution on homogeneous spaces and the distribution of approximates in Diophantine approximation, Trans. Am. Math. Soc., Volume 373 (2020) no. 5, pp. 3357-3374 | DOI | MR | Zbl
[2] Quantitative rational approximation on spheres (2020) (https://arxiv.org/abs/2003.02243)
[3] Ergodic theory and Diophantine approximation for translation surfaces and linear forms, Nonlinearity, Volume 29 (2016) no. 8, pp. 2173-2190 | DOI | MR | Zbl
[4] Effective Density for Inhomogeneous Quadratic Forms I: Generic Forms and Fixed Shifts, Int. Math. Res. Not. (2020), rnaa206 | DOI
[5] The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems, Ann. Math., Volume 172 (2010) no. 3, pp. 1949-2033 | DOI | MR | Zbl
[6] Metric Diophantine approximation with congruence conditions, Int. J. Number Theory, Volume 16 (2020) no. 9, pp. 1923-1933 | DOI | MR | Zbl
[7] A metrical theorem in diophantine approximation, Can. J. Math., Volume 12 (1960), pp. 619-631 | DOI | MR | Zbl
[8] A metrical theorem in geometry of numbers, Trans. Am. Math. Soc., Volume 95 (1960), pp. 516-529 | DOI | MR | Zbl
Cited by Sources: