Réalisations galoisiennes explicites de certaines familles de 2-groupes
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 605-630.

Dans cet article, nous construisons, pour certains 2-groupes G, des extensions galoisiennes explicites E/(T) de groupe G vérifiant E ¯=. Nous fournissons aussi des progressions arithmétiques explicites d’entiers t 0 telles que la spécialisation E t 0 / de E/(T) en t 0 soit de groupe G.

In this paper, we construct, for some 2-groups G, explicit Galois extensions E/(T) of group G with E ¯=. We also provide explicit arithmetic progressions of integers t 0 such that the specialization E t 0 / of E/(T) at t 0 has Galois group G.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1136
Classification : 12E30, 12F12
Mots clés : Théorie inverse de Galois, spécialisation, réalisations explicites, quaternions généralisés
Angelot Behajaina 1

1 Laboratoire de Mathématiques Nicolas Oresme Université de Caen Normandie BP 5186, 14032 Caen Cedex, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2020__32_2_605_0,
     author = {Angelot Behajaina},
     title = {R\'ealisations galoisiennes explicites de certaines familles de $2$-groupes},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {605--630},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {2},
     year = {2020},
     doi = {10.5802/jtnb.1136},
     language = {fr},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1136/}
}
TY  - JOUR
AU  - Angelot Behajaina
TI  - Réalisations galoisiennes explicites de certaines familles de $2$-groupes
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 605
EP  - 630
VL  - 32
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1136/
DO  - 10.5802/jtnb.1136
LA  - fr
ID  - JTNB_2020__32_2_605_0
ER  - 
%0 Journal Article
%A Angelot Behajaina
%T Réalisations galoisiennes explicites de certaines familles de $2$-groupes
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 605-630
%V 32
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1136/
%R 10.5802/jtnb.1136
%G fr
%F JTNB_2020__32_2_605_0
Angelot Behajaina. Réalisations galoisiennes explicites de certaines familles de $2$-groupes. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 605-630. doi : 10.5802/jtnb.1136. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1136/

[1] Sybilla Beckmann On extensions of number fields obtained by specializing branched coverings, J. Reine Angew. Math., Volume 419 (1991), pp. 27-53 | MR | Zbl

[2] Pierre Dèbes; Nour Ghazi Galois covers and the Hilbert-Grunwald property, Ann. Inst. Fourier, Volume 62 (2012) no. 3, pp. 989-1013 | DOI | Numdam | MR | Zbl

[3] Pierre Dèbes; François Legrand Specialization results in Galois theory, Trans. Am. Math. Soc., Volume 365 (2013) no. 10, pp. 5259-5275 | DOI | MR | Zbl

[4] Michael D. Fried On Hilbert’s irreducibility theorem, J. Number Theory, Volume 6 (1974), pp. 211-231 | DOI | MR | Zbl

[5] Michael D. Fried Fields of definition of function fields and Hurwitz families-groups as Galois groups, Commun. Algebra, Volume 5 (1977) no. 1, pp. 17-82 | DOI | MR | Zbl

[6] Michael D. Fried; Moshe Jarden Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 11, Springer, 2008 | MR | Zbl

[7] Christian U. Jensen; Arne Ledet; Noriko Yui Generic polynomials. Constructive Aspects of the Inverse Galois Problem, Mathematical Sciences Research Institute Publications, 45, Cambridge University Press, 2002, x+258 pages | Zbl

[8] François Legrand Specialization results and ramification conditions, Isr. J. Math., Volume 214 (2016) no. 2, pp. 621-650 | DOI | MR | Zbl

[9] Gunter Malle; Bernd Heinrich Matzat Inverse Galois theory, Springer Monographs in Mathematics, Springer, 2018, xvii+532 pages | Zbl

[10] Dominique Martinais; Leila Schneps Polynômes à groupe de galois diédral, Sémin. Théor. Nombres Bordx., Sér. II, Volume 4 (1992) no. 1, pp. 141-153 | DOI | Numdam | Zbl

[11] Jürgen Neukirch; Alexander Schmidt; Kay Wingberg Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008, xvi+825 pages | MR | Zbl

[12] Andrzej Schinzel Polynomials with special regard to reducibility, Encyclopedia of Mathematics and Its Applications, 77, Cambridge University Press, 2000, x+558 pages | MR | Zbl

[13] Jean-Pierre Serre Topics in Galois Theory, Research Notes in Mathematics, 1, Jones and Bartlett Publishers, 1992, xvi+117 pages | MR | Zbl

[14] Henning Stichtenoth Algebraic function fields and codes, Graduate Texts in Mathematics, 254, Springer, 2009, xiv+355 pages | MR | Zbl

[15] Helmut Völklein Groups as Galois groups, Cambridge Studies in Advanced Mathematics, 53, Cambridge University Press, 1996, xviii+248 pages | Zbl

[16] Steven Weintraub Galois Theory, Universitext, Springer, 2009 | Zbl

Cité par Sources :