Nous établissons pour tout entier un principe de transfert général concernant la mesure d’irrationalité des points de dont les coordonnées sont linéairement indépendantes sur . Partant de là nous retrouvons une inégalité importante de Marnat et Moshchevitin qui décrit le spectre conjoint des exposants ordinaire et uniforme d’approximation rationnelle pour ces points. Lorsque les exposants d’un point réalisent quasiment l’égalité, nous fournissons davantage d’informations sur la suite de ses meilleures approximations rationnelles. Nous concluons avec une application.
We establish a general transference principle about the irrationality measure of points with -linearly independent coordinates in , for any given integer . On this basis, we recover an important inequality of Marnat and Moshchevitin which describes the spectrum of the pairs of ordinary and uniform exponents of rational approximation to those points. For points whose pair of exponents are close to the boundary in the sense that they almost realize the equality, we provide additional information about the corresponding sequence of best rational approximations. We conclude with an application.
Accepté le :
Publié le :
Mots clés : exponents of Diophantine approximation, heights, Marnat–Moshchevitin transference inequalities, measures of rational approximation, simultaneous approximation
@article{JTNB_2020__32_2_387_0, author = {Ngoc Ai Van Nguyen and Anthony Po\"els and Damien Roy}, title = {A transference principle for simultaneous rational approximation}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {387--402}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1127}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1127/} }
TY - JOUR AU - Ngoc Ai Van Nguyen AU - Anthony Poëls AU - Damien Roy TI - A transference principle for simultaneous rational approximation JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 387 EP - 402 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1127/ DO - 10.5802/jtnb.1127 LA - en ID - JTNB_2020__32_2_387_0 ER -
%0 Journal Article %A Ngoc Ai Van Nguyen %A Anthony Poëls %A Damien Roy %T A transference principle for simultaneous rational approximation %J Journal de théorie des nombres de Bordeaux %D 2020 %P 387-402 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1127/ %R 10.5802/jtnb.1127 %G en %F JTNB_2020__32_2_387_0
Ngoc Ai Van Nguyen; Anthony Poëls; Damien Roy. A transference principle for simultaneous rational approximation. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 387-402. doi : 10.5802/jtnb.1127. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1127/
[1] Zum Khintchineschen “Übertragungssatz”, Tr. Tbilis. Mat. Inst., Volume 3 (1938), pp. 193-212 | Zbl
[2] Über eine Klasse linearer diophantischer Approximationen, Rend. Circ. Mat. Palermo, Volume 50 (1926), pp. 170-195 | DOI | Zbl
[3] Zur metrischen Theorie der diophantischen Approximationen, Math. Z., Volume 24 (1926) no. 1, pp. 706-714 | DOI | MR | Zbl
[4] Simultaneous Diophantine approximation: sums of squares and homogeneous polynomials, Acta Arith., Volume 190 (2019) no. 1, pp. 87-100 | DOI | MR | Zbl
[5] Exponents of Diophantine approximation in dimension two, Can. J. Math., Volume 61 (2009) no. 1, pp. 165-189 | DOI | MR | Zbl
[6] An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation, Mathematika, Volume 66 (2020) no. 3, pp. 818-854 | DOI | MR
[7] Exponents for three-dimensional simultaneous Diophantine approximations, Czech. Math. J., Volume 62 (2012) no. 1, pp. 127-137 | DOI | MR | Zbl
[8] On some problems in Transcendental number theory and Diophantine approximation, Ph. D. Thesis, University of Ottawa (Canada) (2014) (https://ruor.uottawa.ca/handle/10393/30350)
[9] Rational approximation to real points on quadratic hypersurfaces (2019), 25 pages https://arxiv.org/abs/1909.01499, to appear in J. Lond. Math. Soc. (2)
[10] Parametric Geometry of Numbers, Ph. D. Thesis, University of Ottawa (Canada) (2019) (https://ruor.uottawa.ca/handle/10393/38871)
[11] Approximation to real numbers by cubic algebraic integers I, Proc. Lond. Math. Soc., Volume 88 (2004) no. 1, pp. 42-62 | MR | Zbl
[12] Rational approximation to real points on conics, Ann. Inst. Fourier, Volume 63 (2013) no. 6, pp. 2331-2348 | Numdam | MR | Zbl
[13] Diophantine Approximation, Lecture Notes in Mathematics, 785, Springer, 1980 | Zbl
[14] Diophantine Approximations and Diophantine Equations, Lecture Notes in Mathematics, 1467, Springer, 1991 | MR | Zbl
[15] Simultaneous approximation to three numbers, Mosc. J. Comb. Number Theory, Volume 3 (2013) no. 1, pp. 84-107 | MR | Zbl
Cité par Sources :